
QF-Test Manual

Version 9.0.4

Quality First Software GmbH1

Copyright © 1999-2025 Quality First Software GmbH

June 11, 2025

1https://www.qftest.com

i

Contents

I User manual 1

1 Installation and startup 2

1.1 System requirements . 3

1.1.1 Hard- and Software . 3

1.1.2 Supported technologies - QF-Test 3

1.1.3 Supported technologies - System under Test 4

1.2 Windows Installation . 6

1.2.1 Installing via the Windows setup file QF-Test-9.0.4.exe . . . 6

1.2.2 Unpacking the self-extracting archive QF-Test-9.0.4-sfx.exe 7

1.2.3 Completing the installation and configuring Java 8

1.3 Linux Installation . 8

1.4 macOS Installation . 9

1.5 The license file . 9

1.6 The configuration files . 11

1.7 Starting QF-Test . 12

1.8 Firewall Security Warning . 12

2 The user interface 13

2.1 The test suite . 13

2.2 Basic editing . 15

2.2.1 Navigating the tree . 15

2.2.2 Insertion marker . 16

2.2.3 Moving nodes . 16

2.2.4 Transforming nodes . 17

CONTENTS ii

2.2.5 Tables . 17

2.2.6 Packing and Unpacking . 18

2.2.7 Sorting Nodes . 19

2.3 Advanced editing . 19

2.3.1 Searching . 19

2.3.2 Replacing . 24

2.3.3 Complex searches and replace operations 27

2.3.4 Multiple views . 27

2.3.5 Hiding toolbar buttons . 27

3 Quickstart your application 28

3.1 Setup sequence creation . 29

3.2 Executing the setup sequence . 31

3.3 In case the client does not connect ... 31

3.4 Program output and the Clients menu . 32

3.5 An application started indirectly from an already connected SUT 33

4 Capture and replay 35

4.1 Recording sequences . 35

4.2 Running tests . 37

4.3 Recording checks . 38

4.4 Fetching data from the UI . 39

4.5 Recording components . 40

4.6 Recording of HTTP requests (GET/POST) 41

5 Components 42

5.1 Components of a GUI . 44

5.2 Component nodes versus SmartID . 46

5.2.1 Improved readability of tests . 46

5.2.2 Test-driven development . 47

5.2.3 Keyword-driven testing . 47

5.2.4 Stability of recognition . 48

5.2.5 Maintainability . 48

CONTENTS iii

5.2.6 Performance . 49

5.2.7 Combining Component nodes and SmartIDs 49

5.3 How to achieve robust component recognition 49

5.3.1 How to judge robust component recognition 50

5.3.2 Opportunities for optimization . 54

5.4 Recognition criteria . 56

5.4.1 Class . 56

5.4.2 Name . 58

5.4.3 Feature . 63

5.4.4 Extra features . 66

5.4.5 Index . 69

5.4.6 Geometry . 69

5.4.7 Component hierarchy . 69

5.5 Component node . 70

5.6 SmartID . 72

5.6.1 Use cases for SmartIDs . 74

5.6.2 SmartID syntax for Class name . 75

5.6.3 SmartID syntax for Name . 75

5.6.4 SmartID syntax for Feature . 76

5.6.5 SmartID syntax for Extra features 76

5.6.6 SmartID with index . 78

5.6.7 SmartID syntax for component hierarchies 78

5.6.8 Recording and replaying SmartIDs 79

5.6.9 Component QF-Test ID as SmartID 80

5.7 Scope . 80

5.8 Generic components . 81

5.9 Sub-items: Addressing relative to a parent component 82

5.9.1 Addressing via index . 84

5.9.2 Addressing via QPath . 86

5.9.3 Addressing via XPath and/or CSS selectors 87

5.9.4 Addressing via Items nodes . 88

CONTENTS iv

5.10 Troubleshooting component recognition problems 90

5.10.1 Timing synchronisation . 90

5.10.2 Recognition . 91

5.11 Component tree maintenance . 93

5.11.1 Clean up the component tree . 94

5.11.2 Update Components . 94

5.12 Inspecting components . 96

5.12.1 Show methods . 96

5.12.2 UI Inspector . 97

6 Variables 104

6.1 Variable references . 104

6.1.1 Referencing simple variables . 104

6.1.2 Referencing group variables . 105

6.1.3 Referencing variables in scripts and script expressions 105

6.2 Variable lookup . 106

6.3 Defining variables . 106

6.4 Variable levels . 108

6.4.1 Primary stack . 108

6.4.2 Seconday stack . 110

6.5 Displaying variables in debug mode – Example 110

6.6 Data types of variables . 112

6.6.1 JSON data . 113

6.7 External data . 113

6.8 Special groups . 114

6.9 Immediate and lazy binding . 121

7 Problem analysis and debugging 123

7.1 The run log . 124

7.1.1 Error states . 125

7.1.2 Navigating the run log tree . 126

7.1.3 Run-time behavior . 127

CONTENTS v

7.1.4 Showing return values . 128

7.1.5 Accepting values of failed checks as good 128

7.1.6 Split run logs . 129

7.1.7 Run log options . 130

7.1.8 Creating a test suite from the run log 130

7.1.9 Merging run logs . 131

7.2 The debugger . 131

7.2.1 Entering the debugger . 132

7.2.2 Displaying the current variable values 132

7.2.3 Debugger commands . 133

7.2.4 Manipulating breakpoints . 134

7.2.5 The debugger window . 135

8 Organizing the test suite 136

8.1 Test suite structure . 137

8.2 Test set and Test case nodes . 138

8.2.1 Test management with Test set and Test case nodes 138

8.2.2 Concept . 138

8.2.3 Variables and special attributes 139

8.3 Sequence and Test step nodes . 140

8.4 Setup and Cleanup nodes . 140

8.5 Procedures and Packages . 142

8.5.1 Local Procedures and Packages . 144

8.5.2 Relative Procedures . 144

8.5.3 Inserting Procedure call nodes . 144

8.5.4 Parameterizing nodes . 145

8.5.5 Transforming a Sequence into a Procedure 145

8.6 Dependency nodes . 145

8.6.1 Concept . 146

8.6.2 Usage of Dependencies . 147

8.6.3 Dependency execution and Dependency stack 147

8.6.4 Characteristic variables . 152

CONTENTS vi

8.6.5 Forced cleanup . 155

8.6.6 Rolling back Dependencies . 155

8.6.7 Error escalation . 155

8.6.8 Error handling . 157

8.6.9 Name spaces for Dependencies 158

8.7 Documenting test suites . 162

9 Projects 163

10 The standard library 165

11 Scripting 168

11.1 General . 169

11.2 Script expressions . 171

11.3 The run context rc . 171

11.3.1 Logging messages . 172

11.3.2 Performing checks . 172

11.3.3 Variables . 173

11.3.4 Accessing the SUT’s GUI components 176

11.3.5 Calling Procedures . 177

11.3.6 Setting options . 178

11.3.7 Override components . 179

11.4 Fundamentals of the Jython integration 180

11.4.1 Jython Variables . 181

11.4.2 Modules . 181

11.4.3 Post-mortem debugging of Jython scripts 182

11.4.4 Boolean type . 182

11.4.5 Jython strings and character encodings 182

11.4.6 Getting the name of a Java class 185

11.4.7 A complex example . 186

11.5 Scripting with Groovy . 189

11.5.1 Groovy packages . 191

11.6 Scripting with JavaScript . 192

CONTENTS vii

11.6.1 JavaScript imports . 193

11.6.2 NPM modules . 194

11.6.3 Print statements . 194

11.6.4 Execution . 195

12 Unit Tests 196

12.1 Java Classes as the Source for the Unit Test 196

12.2 Basics of the Test Scripts . 198

12.2.1 Groovy Unit Tests . 199

12.2.2 Jython Unit Tests . 199

12.2.3 JavaScript Unit test . 200

12.3 Injections . 200

12.3.1 Component-Injections . 201

12.3.2 WebDriver-Injections . 203

12.4 Unit Tests in Report . 205

13 Testing Java desktop applications 206

14 Web testing 208

14.1 Supported browsers . 208

14.2 General approach . 209

14.3 Browser connection . 209

14.4 Recognition of web components and toolkits 210

14.5 Cross browser tests . 211

14.6 Emulation of mobile browsers . 212

14.7 Web-Tests in headless mode . 213

14.8 Integrating existing Selenium web tests 213

14.9 Selecting the browser installation . 214

15 Testing native Windows applications 215

15.1 Getting started . 215

15.2 Technical background . 216

15.3 Launching/Attaching to an application . 217

CONTENTS viii

15.4 Recording . 218

15.5 Components . 219

15.6 Playback and Patterns . 219

15.7 Scripting . 221

15.8 Options . 221

15.8.1 Windows scaling . 222

15.8.2 Visibility . 222

15.8.3 Attaching to a window with a given class 222

15.8.4 Child count limitation . 223

15.9 (Current) Limitations . 223

15.10 Links . 224

16 Testing Android applications 225

16.1 Preconditions and known restrictions . 225

16.1.1 Preconditions . 225

16.1.2 Known restrictions . 226

16.2 Emulator or real device . 226

16.3 Installing Android Studio, emulator and virtual devices (AVD) 227

16.3.1 Android Studio installation . 227

16.3.2 Android Studio virtual device configuration 227

16.4 Connecting to a real Android device . 233

16.5 Create a QF-Test setup sequence for Android testing 234

16.5.1 Usage of an Android emulator . 235

16.5.2 Usage of a real Android device 239

16.6 Record actions and checks for Android 243

16.7 Android utility procedures . 245

17 Testing iOS applications 247

17.1 Preconditions and known restrictions . 247

17.1.1 Preconditions . 247

17.1.2 Known restrictions . 248

17.2 Installing Xcode, Simulators and IDB . 249

CONTENTS ix

17.2.1 Xcode Installation . 249

17.2.2 iOS Development Bridge (idb) Installation 253

17.3 Testing on a real iOS device . 254

17.4 Create a QF-Test Setup sequence for iOS testing 255

17.5 Record actions and checks for iOS . 260

17.6 iOS utility procedures . 262

18 Testing PDF documents 264

18.1 PDF Client . 264

18.1.1 PDF Client start . 264

18.1.2 PDF Client window . 264

18.2 PDF events . 266

18.2.1 Open a PDF document . 266

18.2.2 Switch page . 266

18.3 Checks for PDF components . 266

18.3.1 Check text . 267

18.3.2 Check image . 270

18.3.3 ’Check Font’ . 272

18.3.4 ’Check Font size’ . 272

18.4 PDF component types . 272

18.5 PDF component recognition . 273

19 Accessibility Testing 274

19.1 General parameters of the check functions 275

19.2 Axe-checks with QF-Test . 276

19.2.1 Parameters of axe-checks . 276

19.2.2 Axe-core’s ”impact” rating . 277

19.3 Color contrast check for simple graphics 278

19.3.1 Parameters of the color contrast check 278

19.4 A11y run logs and reports . 278

19.4.1 Working with the run log . 278

19.4.2 Notes on generating reports . 281

CONTENTS x

20 Testing Java desktop applications in a browser with Webswing and JPro 283

20.1 Technical concepts of JiB for Webswing and JPro 284

21 Testing Electron applications 286

21.1 Starting the Electron Client . 286

21.1.1 Electron settings for the quickstart wizard 287

21.2 Electron specific functionality of QF-Test 287

21.2.1 Native Menus . 287

21.2.2 Native Dialogs . 287

21.2.3 Extended Javascript-API . 288

21.3 Technical remarks on testing Electron applications in WebDriver connec-
tion mode . 289

22 Testing web services 292

22.1 RESTful web services . 292

22.1.1 HTTP standards and web services 292

22.1.2 HTTP request . 293

22.1.3 Examples . 294

23 Data-driven testing 295

23.1 Data driver examples . 296

23.2 General use of Data drivers . 301

23.3 Examples for Data drivers . 302

23.4 Advanced use . 302

24 Reports and test documentation 305

24.1 Reports . 306

24.1.1 Report concepts . 307

24.1.2 Report contents . 307

24.1.3 Creating reports . 308

24.1.4 Customizing reports . 310

24.2 Testdoc documentation for Test sets and Test cases 310

24.3 Pkgdoc documentation for Packages, Procedures and Dependencies 312

CONTENTS xi

25 Test execution 314

25.1 Test execution in batch mode . 314

25.1.1 Command line usage . 315

25.1.2 Windows batch script . 317

25.1.3 Groovy . 318

25.2 Executing tests in daemon mode . 320

25.2.1 Launching the daemon . 320

25.2.2 Controlling a daemon from QF-Test’s command line 321

25.2.3 Controlling a daemon with the daemon API 322

25.3 Re-execution of nodes (Rerun) . 326

25.3.1 Triggering rerun from a run log 326

25.3.2 Rerunning failing nodes immediately 329

26 Distributed test development 332

26.1 Referencing nodes in another test suite 332

26.2 Managing Components . 334

26.3 Merging test suites . 335

26.3.1 Importing Components . 335

26.3.2 Importing Procedures and Testcases 335

26.4 Strategies for distributed development . 335

26.5 Static validation of test suites . 337

26.5.1 Avoiding invalid references . 338

26.5.2 Unused procedures . 340

27 Automated Creation of Basic Procedures 341

27.1 Introduction . 341

27.2 How to use the Procedure Builder . 341

27.3 Configuration of the Procedure Builder 343

27.3.1 The Procedure Builder definition file 344

28 Interaction with Test Management Tools 346

28.1 HP ALM - Quality Center . 346

28.1.1 Introduction . 346

CONTENTS xii

28.1.2 Step-by-step integration guide . 348

28.1.3 Troubleshooting . 358

28.2 Imbus TestBench . 360

28.2.1 Introduction . 360

28.2.2 Creating QF-Test template from interactions 360

28.2.3 Importing test execution results 360

28.3 QMetry . 361

28.3.1 Introduction . 361

28.3.2 Sample Configuration . 363

28.4 Klaros . 364

28.4.1 Introduction . 364

28.4.2 Importing QF-Test results into Klaros 364

28.5 TestLink . 365

28.5.1 Introduction . 365

28.5.2 Generating template test suites for QF-Test from test cases . . . 365

28.5.3 Execution of test cases . 367

28.5.4 Importing QF-Test results into TestLink 367

29 Integration with Development Tools 370

29.1 Eclipse . 370

29.1.1 Installation . 371

29.1.2 Configuration of the test nodes 371

29.2 Ant . 374

29.3 Maven . 375

29.4 Jenkins . 377

29.4.1 Install and start Jenkins . 377

29.4.2 Requirements for GUI tests . 378

29.4.3 Install QF-Test Plugin . 379

29.5 JUnit 5 Jupiter . 380

29.6 TeamCity CI . 381

30 Integration with Robot Framework 382

CONTENTS xiii

30.1 Introduction . 382

30.2 Prerequisites and installation . 382

30.3 Getting started . 383

30.4 Using the library . 384

30.5 Creating your own keywords . 384

31 Keyword-driven testing with QF-Test 385

31.1 Introduction . 385

31.2 Simple Keyword-driven testing with QF-Test 387

31.2.1 Business-related Procedures . 388

31.2.2 Atomic component-oriented procedures 391

31.3 Keyword-driven testing using dynamic or generic components 392

31.4 Behavior-driven testing (BDT) . 396

31.4.1 Behavior-Driven Testing (BDT) from technical perspective 396

31.4.2 Behavior-Driven Testing (BDT) from business perspective 399

31.5 Scenario files . 400

31.6 Custom test case description . 403

31.7 Adapting to your software . 404

32 Usage of QF-Test in Docker Environments 406

32.1 What is Docker? . 406

32.2 QF-Test Docker Images . 406

33 Performing GUI-based load tests 408

33.1 Background and comparison with other techniques 408

33.2 Load testing with QF-Test . 410

33.2.1 Provision of test systems . 414

33.2.2 Conception of the test run . 414

33.2.3 Preparing test systems prior to the test run 415

33.2.4 Test execution . 415

33.2.5 Evaluating results . 416

33.3 Hints on test execution . 416

33.3.1 Synchronization . 416

CONTENTS xiv

33.3.2 Measuring end-to-end response times 418

33.4 Troubleshooting . 418

33.5 Web load testing with headless browsers 419

34 Executing Manual Tests in QF-Test 420

34.1 Introduction . 420

34.2 Step-by-step Guide . 421

34.3 Structure of the Excel file . 422

34.4 The ManualTestRunner test suite . 423

34.5 Results . 424

II Best Practices 425

35 Introduction 426

36 How to start a testing project 427

36.1 Infrastructure and testing environment 427

36.2 Location of files . 429

36.2.1 Network installation . 430

36.3 Component Recognition . 430

37 Organizing test suites 432

37.1 Organizing tests . 432

37.2 Modularization . 433

37.3 Parameterization . 433

37.4 Working in multiple test suites . 434

37.5 Roles and responsibilities . 436

37.6 Managing components at different levels 438

37.7 Reverse includes . 438

38 Efficient working techniques 439

38.1 Using QF-Test projects . 439

38.2 Creating test suites from scratch . 439

CONTENTS xv

38.3 The standard library qfs.qft . 440

38.4 Component storage . 440

38.5 Extending test suites . 441

38.6 Working in the script editor . 442

39 Hints on setting up test systems 443

39.1 Using the task scheduler . 443

39.2 Remote access to Windows systems . 444

39.3 Automated logon on Windows systems 445

39.4 Test execution on Linux . 446

40 Test execution 447

40.1 Dependencies . 447

40.2 Timeout vs. delay . 447

40.3 What to do if the run log contains an error 448

III Reference manual 449

41 Options 450

41.1 General options . 452

41.1.1 Project settings . 454

41.1.2 Saving test suites . 456

41.1.3 Display . 458

41.1.4 Editing . 460

41.1.5 Bookmarks . 463

41.1.6 External tools . 464

41.1.7 Backup files . 467

41.1.8 Library . 469

41.1.9 License . 471

41.1.10 Updates . 472

41.2 Recording options . 473

41.2.1 Events to record . 474

CONTENTS xvi

41.2.2 Events to pack . 476

41.2.3 Components . 480

41.2.4 Recording sub-items . 488

41.2.5 Recording Window . 489

41.2.6 Recording procedures . 492

41.3 Replay options . 493

41.3.1 Client options . 497

41.3.2 Terminal options . 501

41.3.3 Event handling . 504

41.3.4 Component recognition . 509

41.3.5 Delays . 512

41.3.6 Timeouts . 514

41.3.7 Backward compatibility . 519

41.4 SmartID und qfs:label . 520

41.5 Android . 523

41.6 iOS . 524

41.7 Web options . 528

41.7.1 HTTP Requests . 532

41.7.2 Backward compatibility . 533

41.8 SWT options . 535

41.9 UI Inspector options . 536

41.10 Debugger options . 536

41.11 Run log options . 538

41.11.1 General run log options . 539

41.11.2 Options for splitting run logs . 543

41.11.3 Options determining run log content 546

41.11.4 Options for mapping between directories with test suites 551

41.12 Variables . 552

41.13 Runtime only . 553

42 Elements of a test suite 555

42.1 The test suite and its structure . 555

CONTENTS xvii

42.1.1 Test suite . 555

42.2 Test and Sequence nodes . 558

42.2.1 Test case . 558

42.2.2 Test set . 566

42.2.3 Test call . 572

42.2.4 Sequence . 577

42.2.5 Test step . 580

42.2.6 Sequence with time limit . 584

42.2.7 Extras . 588

42.3 Dependencies . 589

42.3.1 Dependency . 589

42.3.2 Dependency reference . 592

42.3.3 Setup . 595

42.3.4 Cleanup . 598

42.3.5 Error handler . 601

42.4 Data driver . 603

42.4.1 Data driver . 603

42.4.2 Data table . 607

42.4.3 Database . 610

42.4.4 Excel data file . 615

42.4.5 CSV data file . 620

42.4.6 Data loop . 624

42.5 Procedures . 627

42.5.1 Procedure . 627

42.5.2 Procedure call . 630

42.5.3 Return . 633

42.5.4 Package . 635

42.5.5 Procedures . 637

42.6 Control structures . 638

42.6.1 Loop . 639

42.6.2 While . 642

CONTENTS xviii

42.6.3 Break . 646

42.6.4 If . 647

42.6.5 Elseif . 651

42.6.6 Else . 655

42.6.7 Try . 658

42.6.8 Catch . 661

42.6.9 Finally . 665

42.6.10 Throw . 667

42.6.11 Rethrow . 669

42.6.12 Server script . 670

42.6.13 SUT script . 673

42.7 Processes . 676

42.7.1 Start Java SUT client . 677

42.7.2 Start SUT client . 681

42.7.3 Start process . 684

42.7.4 Execute shell command . 687

42.7.5 Start web engine . 689

42.7.6 Start PDF client . 693

42.7.7 Start windows application . 696

42.7.8 Attach to windows application . 699

42.7.9 Launch Android emulator . 702

42.7.10 Connect to Android device . 704

42.7.11 Connect to iOS device . 707

42.7.12 Wait for client to connect . 709

42.7.13 Wait for mobile device . 712

42.7.14 Open browser window . 714

42.7.15 Launch a mobile app . 717

42.7.16 Stop client . 720

42.7.17 Wait for process to terminate . 722

42.8 Events . 726

42.8.1 Mouse event . 726

CONTENTS xix

42.8.2 Key event . 730

42.8.3 Text input . 734

42.8.4 Window event . 737

42.8.5 Component event . 740

42.8.6 Selection . 742

42.8.7 File selection . 750

42.9 Checks . 753

42.9.1 Check text . 754

42.9.2 Boolean check . 759

42.9.3 Check items . 765

42.9.4 Check selectable items . 770

42.9.5 Check image . 775

42.9.6 Check geometry . 780

42.10 Queries . 786

42.10.1 Fetch text . 786

42.10.2 Fetch index . 790

42.10.3 Fetch geometry . 793

42.11 Miscellaneous . 797

42.11.1 Comment . 797

42.11.2 Error . 799

42.11.3 Warning . 803

42.11.4 Message . 809

42.11.5 Set variable . 814

42.11.6 Wait for component to appear . 818

42.11.7 Wait for document to load . 822

42.11.8 Wait for download to finish . 826

42.11.9 Load resources . 831

42.11.10Load properties . 834

42.11.11Unit test . 836

42.11.12Install CustomWebResolver . 842

42.12 HTTP Requests . 848

CONTENTS xx

42.12.1 Server HTTP request . 848

42.12.2 Browser HTTP request . 854

42.13 Windows, Components and Items . 857

42.13.1 Window . 858

42.13.2 Web page . 864

42.13.3 Component . 869

42.13.4 Item . 875

42.13.5 Window group . 878

42.13.6 Component group . 879

42.13.7 Windows and components . 881

42.14 Deprecated nodes . 882

42.14.1 Test . 882

42.14.2 Procedure installCustomWebResolver 887

43 Exceptions 896

IV Technical reference 907

44 Command line arguments and exit codes 908

44.1 Call syntax . 908

44.2 Command line arguments . 913

44.2.1 Arguments for the starter script 913

44.2.2 Arguments for the Java VM . 914

44.2.3 Arguments for QF-Test . 914

44.2.4 Placeholders in the filename parameter for run log and report . . 930

44.3 Exit codes for QF-Test . 931

45 GUI engines 933

46 Running an application from QF-Test 935

46.1 Various methods to start the SUT . 935

46.1.1 A standalone script or executable file 936

46.1.2 An application launched through Java WebStart 937

CONTENTS xxi

46.1.3 An application started with java -jar <archive> 938

46.1.4 An application started with java -classpath <classpath>
<class> . 939

46.1.5 A web application in a browser 941

46.1.6 Opening a PDF Document . 943

47 JRE and SWT instrumentation 945

47.1 JRE deinstrumentation . 945

47.2 SWT instrumentation . 946

47.2.1 Preparation for manual SWT instrumentation 946

47.2.2 Manual SWT instrumentation for eclipse based applications . . . 947

47.2.3 Manual instrumentation for standalone SWT applications 947

48 Technical information about components 948

48.1 Weighting of recognition features for recorded components 948

48.2 Generating the component QF-Test ID . 950

48.3 SmartIDs - general syntax . 950

48.4 SmartIDs - special characters . 951

48.5 Android - list of trivial component identifiers 952

49 Technical details about miscellaneous issues 954

49.1 Drag&Drop . 954

49.2 Timing . 955

49.3 Regular expressions . 955

49.4 Line breaks under Linux and Windows 957

49.5 Quoting and escaping special characters 958

49.6 Include file resolution . 959

50 Scripting (Jython, Groovy and JavaScript) 961

50.1 Module load-path . 961

50.2 The plugin directory . 962

50.3 Initialization (Jython) . 962

50.4 Namespace environment for script execution (Jython) 963

CONTENTS xxii

50.5 Run context API . 963

50.5.1 The expand parameter . 987

50.6 The qf module . 988

50.7 Image API . 991

50.7.1 The ImageWrapper class . 991

50.8 The JSON module . 994

50.9 Natural Language Assertions . 996

50.9.1 Motivation . 996

50.9.2 API documentation . 997

50.9.3 Result handling . 1001

50.10 Exception handling . 1002

50.11 Debugging scripts (Jython) . 1003

51 Web 1004

51.1 Improving component recognition with a CustomWebResolver 1004

51.1.1 General configuration . 1005

51.1.2 The Install CustomWebResolver node 1008

51.1.3 CustomWebResolver – Tables . 1021

51.1.4 CustomWebResolver – Tree . 1023

51.1.5 CustomWebResolver – TreeTable 1026

51.1.6 CustomWebResolver – Lists . 1028

51.1.7 CustomWebResolver – Combo boxes 1030

51.1.8 CustomWebResolver – TabPanel and Accordion 1032

51.1.9 Example for ”CarConfigurator Web” demo 1034

51.2 Special support for various web frameworks 1047

51.2.1 Web framework resolver concepts 1049

51.2.2 Setting unique IDs . 1049

51.3 Browser connection mode . 1052

51.3.1 QF-Driver connection mode . 1053

51.3.2 CDP-Driver connection mode . 1054

51.3.3 WebDriver in general . 1054

51.3.4 Known limitations of the WebDriver mode 1054

CONTENTS xxiii

51.4 Web – Pseudo Attributes . 1055

51.5 Accessing hidden fields on a web page 1057

51.6 WebDriver with Safari . 1058

52 Controlling native Windows applications via the UIAuto module - without
the QF-Test win engine 1059

52.1 Proceeding . 1060

52.1.1 Starting the application . 1062

52.1.2 Listing the GUI elements of a window 1062

52.1.3 Information on single GUI elements 1062

52.1.4 Identifiers for GUI elements . 1063

52.1.5 Actions on GUI elements . 1064

52.2 Example . 1066

52.2.1 Starting the application . 1066

52.2.2 GUI element information . 1067

53 Controlling and testing native MacOS applications 1069

53.1 Proceeding . 1069

53.1.1 Starting the application . 1070

53.1.2 Listing the GUI elements of a window 1071

53.1.3 Information on single GUI elements 1071

53.1.4 Identifiers for GUI elements . 1071

53.1.5 Actions on GUI elements . 1072

54 Extension APIs 1075

54.1 The resolvers module . 1075

54.1.1 Usage . 1075

54.1.2 Implementation . 1077

54.1.3 addResolver . 1079

54.1.4 removeResolver . 1081

54.1.5 listNames . 1082

54.1.6 Accessing ’Best label’ . 1082

54.1.7 The NameResolver Interface 1082

CONTENTS xxiv

54.1.8 The GenericClassNameResolver Interface 1085

54.1.9 The ClassNameResolver Interface 1085

54.1.10 The FeatureResolver Interface 1086

54.1.11 The ExtraFeatureResolver Interface 1087

54.1.12 The ItemNameResolver Interface 1093

54.1.13 The ItemValueResolver Interface 1094

54.1.14 The TreeTableResolver Interface 1095

54.1.15 The InterestingParentResolver Interface 1097

54.1.16 The TooltipResolver Interface 1098

54.1.17 The IdResolver interface . 1098

54.1.18 The EnabledResolver Interface 1099

54.1.19 The VisibilityResolver Interface 1100

54.1.20 The MainTextResolver Interface 1101

54.1.21 The WholeTextResolver Interface 1102

54.1.22 The BusyPaneResolver Interfaces 1102

54.1.23 The GlassPaneResolver Interfaces 1103

54.1.24 The TreeIndentationResolver Interface 1104

54.1.25 The EventSynchronizer Interface 1105

54.1.26 The BusyApplicationDetector Interface 1105

54.1.27Matcher . 1106

54.1.28 External Implementation . 1107

54.2 The ResolverRegistry . 1108

54.3 Implementing custom item types with the ItemResolver interface . . 1115

54.3.1 ItemResolver concepts . 1115

54.3.2 The ItemResolver interface . 1116

54.3.3 The class SubItemIndex . 1120

54.3.4 The ItemRegistry . 1122

54.3.5 Default item representations . 1124

54.4 Implementing custom checks with the Checker interface 1126

54.4.1 The Checker interface . 1127

54.4.2 The class Pair . 1128

CONTENTS xxv

54.4.3 The CheckType interface and its implementation
DefaultCheckType . 1129

54.4.4 The class CheckDataType . 1130

54.4.5 The class CheckData and its subclasses 1131

54.4.6 The CheckerRegistry . 1133

54.4.7 Custom checker example . 1134

54.5 Working with the Eclipse Graphical Editing Framework (GEF) 1136

54.5.1 Recording GEF items . 1136

54.5.2 Implementing a GEF ItemNameResolver2 1138

54.5.3 Implementing a GEF ItemValueResolver2 1140

54.6 Test run listeners . 1140

54.6.1 The TestRunListener interface 1141

54.6.2 The class TestRunEvent . 1142

54.6.3 The class TestSuiteNode . 1143

54.7 ResetListener . 1144

54.8 DOM processors . 1146

54.8.1 The DOMProcessor interface . 1147

54.8.2 The DOMProcessorRegistry 1148

54.8.3 Error handling . 1149

54.9 Image API extensions . 1149

54.9.1 The ImageRep class . 1149

54.9.2 The ImageComparator interface 1152

54.9.3 The ImageRepDrawer class . 1153

54.10 Pseudo DOM API . 1171

54.10.1 The abstract Node class . 1172

54.10.2 The DocumentNode class . 1179

54.10.3 The FrameNode class . 1181

54.10.4 The DomNode class . 1182

54.10.5 The DialogNode class . 1185

54.11 WebDriver SUT API . 1185

54.11.1 The WebDriverConnection class 1186

54.12 Windows Control API . 1188

CONTENTS xxvi

54.12.1 The WinControl class . 1188

55 Daemon mode 1193

55.1 Daemon concepts . 1193

55.2 Daemon API . 1194

55.2.1 The DaemonLocator . 1195

55.2.2 The Daemon . 1196

55.2.3 The TestRunDaemon . 1198

55.2.4 The DaemonRunContext . 1202

55.2.5 The DaemonTestRunListener 1209

55.3 Daemon security considerations . 1210

55.3.1 Creating your own keystore . 1210

55.3.2 Specifying the keystore . 1211

55.3.3 Specifying the keystore on the client side 1211

56 The Procedure Builder definition file 1212

56.1 Placeholders . 1212

56.1.1 Fallback values for placeholders 1214

56.2 Conditions for Package and Procedure Definition 1215

56.3 Interpretation of the Component Hierarchy 1216

56.4 Details about the @CONDITION tag . 1216

57 The ManualStepDialog 1218

57.1 The ManualStepDialog API . 1218

58 Details about transforming nodes 1220

58.1 Introduction . 1220

58.2 Transformation with type changes . 1220

58.3 Additional transformations below the Extras node 1221

58.3.1 Transformations without side-effects 1221

58.3.2 Transformations with side-effects 1221

59 Details about the algorithm for image comparison 1223

CONTENTS xxvii

59.1 Introduction . 1223

59.2 Description of algorithms . 1224

59.2.1 Classic image check . 1224

59.2.2 Pixel-based identity check . 1225

59.2.3 Pixel-based similarity check . 1226

59.2.4 Block-based identity check . 1227

59.2.5 Block-based similarity check . 1228

59.2.6 Histogram check . 1230

59.2.7 Analysis with Discrete Cosine Transformation 1231

59.2.8 Block-based analysis with Discrete Cosine Transformation 1233

59.2.9 Bilinear Filter . 1234

59.3 Description of special functions . 1235

59.3.1 Image-in-image search . 1235

60 Result lists 1238

60.1 Introduction . 1238

60.2 Specific list actions . 1240

60.2.1 All types of lists . 1240

60.2.2 Replacing . 1240

60.2.3 Error list . 1241

60.3 Exporting and loading results . 1241

61 Generic classes 1242

61.1 Accordion . 1243

61.2 BusyPane . 1243

61.3 Button . 1244

61.4 Calendar . 1244

61.5 CheckBox . 1245

61.6 Closer . 1245

61.7 ColorPicker . 1246

61.8 ComboBox . 1246

61.9 Divider . 1247

CONTENTS xxviii

61.10 Expander . 1247

61.11 FileChooser . 1248

61.12 Graphics . 1248

61.13 Icon . 1248

61.14 Indicator . 1249

61.15 Item . 1249

61.16 Label . 1250

61.17 Link . 1251

61.18 List . 1251

61.19 LoadingComponent . 1252

61.20 Maximizer . 1252

61.21 Menu . 1253

61.22 MenuItem . 1253

61.23 Minimizer . 1254

61.24 ModalOverlay . 1254

61.25 Panel . 1255

61.26 Popup . 1256

61.27 ProgressBar . 1256

61.28 RadioButton . 1257

61.29 Restore . 1257

61.30 ScrollBar . 1258

61.31 Separator . 1258

61.32 Sizer . 1258

61.33 Slider . 1259

61.34 Spacer . 1259

61.35 Spinner . 1260

61.36 SplitPanel . 1260

61.37 Table . 1261

61.38 TableCell . 1261

61.39 TableFooter . 1262

61.40 TableHeader . 1262

CONTENTS xxix

61.41 TableHeaderCell . 1263

61.42 TableRow . 1263

61.43 TabPanel . 1264

61.44 Text . 1264

61.45 TextArea . 1265

61.46 TextField . 1265

61.47 Thumb . 1266

61.48 ToggleButton . 1266

61.49 ToolBar . 1267

61.50 ToolBarItem . 1267

61.51 ToolTip . 1268

61.52 Tree . 1268

61.53 TreeNode . 1269

61.54 TreeTable . 1269

61.55 Window . 1270

62 Doctags 1271

62.1 Doctags for reporting and documentation 1271

62.1.1 @noreport Doctag . 1272

62.2 Doctags for Robot Framework . 1273

62.3 Doctags for test execution . 1274

62.4 Doctags for Editing . 1275

62.5 Doctags influencing the procedure builder 1275

A FAQ - Frequently Asked Questions 1276

B Release notes 1285

B.1 QF-Test version 9.0 . 1285

B.1.1 Version 9.0.4 - June 11, 2025 . 1285

B.1.2 Version 9.0.3 - April 29, 2025 . 1286

B.1.3 Version 9.0.2 - April 9, 2025 . 1287

B.1.4 Version 9.0.1 - March 12, 2025 1288

B.1.5 Changes that can affect test execution 1288

CONTENTS xxx

B.1.6 Version 9.0.0 - February 20, 2025 1289

B.2 QF-Test version 8.0 . 1292

B.2.1 Version 8.0.2 - December 05, 2024 1292

B.2.2 Version 8.0.1 - September 11, 2024 1292

B.2.3 Changes that can affect test execution 1293

B.2.4 Version 8.0.0 - August 8, 2024 1294

B.3 QF-Test version 7.1 . 1297

B.3.1 Version 7.1.5 - July 16, 2024 . 1297

B.3.2 Version 7.1.4 - June 12, 2024 . 1297

B.3.3 Version 7.1.3 - April 24, 2024 . 1298

B.3.4 Version 7.1.2 - March 14, 2024 1299

B.3.5 Version 7.1.1 - February 27, 2024 1299

B.3.6 Changes that can affect test execution 1299

B.3.7 Version 7.1.0 - February 20, 2024 1300

B.4 QF-Test version 7.0 . 1303

B.4.1 Version 7.0.8 - December 5, 2023 1303

B.4.2 Version 7.0.7 - October 11, 2023 1303

B.4.3 Version 7.0.6 - September 29, 2023 1304

B.4.4 Version 7.0.5 - September 20, 2023 1304

B.4.5 Version 7.0.4 - August 30, 2023 1305

B.4.6 Version 7.0.3 - Juli 13, 2023 . 1305

B.4.7 Version 7.0.2 - June 22, 2023 . 1306

B.4.8 Version 7.0.1 - May 31, 2023 . 1306

B.4.9 Changes that can affect test execution 1308

B.4.10 Version 7.0.0 - April 27, 2023 . 1309

B.5 QF-Test version 6.0 . 1312

B.5.1 Version 6.0.5 - March 15, 2023 1312

B.5.2 Version 6.0.4 - November 29, 2022 1313

B.5.3 Version 6.0.3 - September 6, 2022 1314

B.5.4 Version 6.0.2 - July 20, 2022 . 1315

B.5.5 Version 6.0.1 - June 9, 2022 . 1316

CONTENTS xxxi

B.5.6 Changes that can affect test execution 1317

B.5.7 Version 6.0.0 - May 17, 2022 . 1317

B.6 QF-Test Version 5.4 . 1320

B.6.1 Version 5.4.3 - March 11, 2022 1320

B.6.2 Version 5.4.2 - February 18, 2022 1321

B.6.3 Version 5.4.1 - January 20, 2022 1322

B.6.4 Changes that can affect test execution 1322

B.6.5 Version 5.4.0 - December 15, 2021 1323

B.7 QF-Test Version 5.3 . 1325

B.7.1 Version 5.3.4 - September 30, 2021 1325

B.7.2 Version 5.3.3 - September 14, 2021 1325

B.7.3 Version 5.3.2 - July 21, 2021 . 1326

B.7.4 Version 5.3.1 - June 15, 2021 . 1326

B.7.5 Changes that can affect test execution 1327

B.7.6 Version 5.3.0 - May 20, 2021 . 1327

B.8 QF-Test version 5.2 . 1330

B.8.1 Version 5.2.3 - March 9, 2021 . 1330

B.8.2 Version 5.2.2 - February 12, 2021 1330

B.8.3 Version 5.2.1 - December 3, 2020 1331

B.8.4 Changes that can affect test execution 1331

B.8.5 Version 5.2.0 - November 10, 2020 1332

B.9 QF-Test version 5.1 . 1334

B.9.1 Version 5.1.2 - September 15, 2020 1334

B.9.2 Version 5.1.1 - August 26, 2020 1335

B.9.3 Changes that can affect test execution 1336

B.9.4 Version 5.1.0 - July 8, 2020 . 1337

B.10 QF-Test version 5.0 . 1338

B.10.1 Version 5.0.3 - June 17, 2020 1338

B.10.2 Version 5.0.2 - May 5, 2020 . 1339

B.10.3 Version 5.0.1 - March 2, 2020 1339

B.10.4 Main new features in version 5 1340

CONTENTS xxxii

B.10.5 Version 5.0.0 - February 6, 2020 1341

C Keyboard shortcuts 1343

C.1 Navigation and editing . 1343

C.2 UI Inspector . 1346

C.3 Record and replay functions . 1346

C.4 Keyboard helper . 1347

D Glossary 1349

E Privacy 1350

E.1 Server data for version query . 1350

E.2 Sending support requests from within QF-Test 1351

E.3 Context Information for Online Manual 1352

E.4 Request Data on WebDriver Download 1353

E.5 Client data in QF-Test log files . 1353

F Third party software 1355

Preface

As the name indicates, Quality First Software GmbH is dedicated to quality assurance
for the software development process. Our contribution to this area is the product QF-
Test the manual of which you are currently reading.

QF-Test is a professional tool for automating functional tests for Java or web applications
with a graphical user interface. Depending on size and structure of a company the
ungrateful task of testing sometimes falls to a QA department or team, sometimes to
the developers and sometimes to the unlucky customer. Users of QF-Test are therefore
usually developers or testers with varying knowledge about software development and
testing in general and Java or web GUIs in particular.

The videoVideo

’Overview’
https://www.qftest.com/en/yt/overview-42.html

gives a general overview of QF-Test.

You will find a more technical overview in the video

’Technical insights’
https://www.qftest.com/en/yt/technial-insights.html

This manual is the primary source of information for QF-Test. We have tried to explain
things in a way that is understandable for all users, independent of their technical knowl-
edge, yet provide a complete and concise reference. In case of Java specific questions,
testers may fare best by contacting their developers who will surely be able to assist.

Initially QF-Test did only support Java Swing GUIs. With version 2.0 support for
Eclipse/SWT was added and web support with version 3.0. Parts of QF-Test and this
manual owe to this history and most things are explained from the perspective of
testing a Swing GUI. In most cases the concepts are universal apply similarly to all
GUIs. Where things differ, specific notes explain the particularities of a web or SWT
GUI.

CONTENTS xxxiv

How to use this manual

This manual is available in HTML and PDF versions. The HTML version is split across
multiple files for better navigation and to avoid excessive memory consumption of the
web browser. Due to extensive cross-linking, the HTML document is the preferred ver-
sion for online viewing, while the PDF version is better suited for printing.

The PDF version of the manual is located at
qftest-9.0.4/doc/manual_en.pdf, the entry page of the HTML version is at
qftest-9.0.4/doc/manual/en/manual.html.

A web-browser for the HTML manual can be started directly from QF-Test. The
Help→Manual... menu item will take you to the entry page of the manual and

Help→News... will bring up the section documenting the latest changes.
Context-sensitive help is also available for all kinds of tree nodes, attributes and
configurable options by clicking with the right mouse button and selecting What’s this?
from the popup menu. This may not work if the system’s browser is not accessible from
QF-Test.

The manual consists of three parts which are kept in one document for technical reasons
(it simplifies cross-linking and index generation). These parts are

User manual(2)

This part explains how to install and run QF-Test and how to work with its user
interface. It shows how to create and organize tests, then continues with more
advanced material. To avoid duplication of text, the user manual often refers to
the reference manual for detailed explanation. We recommend that you follow
these links.

Reference manual(450)

This is a complete reference that covers all configurable options, all parts of a
test suite, etc. When looking for specific information, this is the place to go. The
reference manual also serves as the source for context-sensitive help.

Technical reference(908)

The part about technical details contains in-depth and background information
about miscellaneous topics as well as a comprehensive API reference for the
scripting interface. Beginners will rarely need to take a look at this part, but for the
advanced user and the technically interested it is a valuable resource.

A learning-by-doing tutorial is also available in HTML and PDF versions. The HTML
version, which is directly accessible from the Help→Tutorial... menu item, is located
at qftest-9.0.4/doc/tutorial/en/tutorial.html. The PDF version is to be
found at qftest-9.0.4/doc/tutorial/tutorial_en.pdf.

CONTENTS xxxv

The following notations are used throughout the manual:

• Menu→Submenu represents a menu or menu item.

•
�� ��Modifier-Key stands for a keystroke, where the modifier is one (or a combination)
of

�� ��Shift /
�� ��, �� ��Control /

�� ��, �� ��Alt /
�� ��, or

�� ��.
• Monospaced font is used for names of directories and files, user input and pro-

gram output.

• In order to transfer at least part of the convenience of cross-linking to the paper
version, references(iii) in the PDF version are underlined and show the target page
number in small braces.

In the HTML edition of the manual, the following keyboard shortcuts are available:

•
�� ��K : Jump to next page

•
�� ��J : Jump to previous page

•
�� ��L : Jump to translation of current page

•
�� ��T : Jump to table of contents

•
�� ��S : Show/hide navigation

During a local search, the following keyboard shortcuts are also available:

•
�� ��: Jump to next search result

•
�� ��: Jump to previous search result

•
�� ��Escape : Cancel search

Results of a local search contain all requested terms in the same section. If possible,
terms with the same root word are also found and partial words are completed. If you
require an exact term to be present in the search result, enclose it in double quotes
(”...”).

xxxvi

List of Figures

2.1 Structure of a test suite . 14

2.2 Insertion marker . 16

2.3 Example table . 17

2.4 The simple search dialog . 20

2.5 The advanced search dialog . 21

2.6 Result list for ’Locate references’ . 23

2.7 Incremental search . 24

2.8 The replace dialog . 25

2.9 The replace query dialog . 26

3.1 Quickstart Wizard . 30

3.2 Startup sequence created by the Quickstart Wizard 30

3.3 GUI technology information . 33

4.1 Disabled and enabled Record button . 36

5.1 Components of a GUI . 45

5.2 Readability of SmartIDs . 46

5.3 Readability of identifiers . 47

5.4 Readability of SmartIDs in panels with description 47

5.5 Component tree 1 . 51

5.6 Stable component recognition - Example 1 52

5.7 Stable component recognition - Example 2 53

5.8 Using a regular expression in the Feature attribute 64

5.9 Component hierarchy of a Swing SUT . 70

LIST OF FIGURES xxxvii

5.10 Component node . 71

5.11 Extra feature attribute for component recognition via XPath or CSS se-
lector. 88

5.12 An Item for a table cell . 89

5.13 Update components dialog . 95

5.14 UI Inspector . 98

5.15 General information . 100

5.16 Web-specific information . 100

5.17 Android-specific information . 101

5.18 Windows-specific information . 101

5.19 Swing-specific information . 101

5.20 FX-specific information . 102

5.21 SWT-specific information . 102

5.22 QF-Test specific information . 103

6.1 Direct and fallback bindings . 106

6.2 Definition of system variables in the options dialog 108

6.3 Variable example . 111

6.4 Variable definitions . 111

7.1 A simple test and its run log . 124

7.2 Error states in a run log . 126

7.3 Display of duration indicators in the run log 128

8.1 Test suite structure . 137

8.2 Test structure with simple Setup and Cleanup 141

8.3 Test execution with simple Setup and Cleanup 142

8.4 Packages and Procedures . 143

8.5 Dependency stack A-B-C . 149

8.6 Good practice Setup node . 150

8.7 Dependency stack A-B-D-E . 152

8.8 Dependency with Characteristic variables . 154

8.9 Exception in forced cleanup sequence of C causes B to clean up 156

LIST OF FIGURES xxxviii

8.10 Typical Cleanup node . 157

8.11 Example Test set for name spaces . 159

8.12 Dependency handling for test case ’Data entry by User A’ 160

8.13 Dependency handling for test case ’Offer processing by User C’ 160

8.14 Dependency handling for test case ’Check offer 1 in DMS’ 160

8.15 Dependency handling for test case ’Data entry by User B’ 161

8.16 Dependency handling for test case ’Offer processing by User D’ 161

8.17 Dependency handling for test case ’Check offer 2 in DMS’ 162

9.1 The project view . 164

10.1 Standard library qfs.qft . 166

11.1 Detail view of a Server script with help window for rc methods 169

11.2 Overview of the types of variables in QF-Test 173

12.1 Unit Test node with Java classes . 197

12.2 Example Unit Test node with Injections 202

12.3 Example Unit Test node with Injections 204

12.4 Unit Test Report . 205

14.1 Cross-Browser Tests . 212

16.1 Android studio start screen . 228

16.2 Android studio virtual device creation screen 229

16.3 Android studio screen to chose a device definition 230

16.4 Android studio screen to download and select the system image 231

16.5 Android studio screen to finish the AVD configuration procedure 232

16.6 Android studio screen showing available AVDs 233

16.7 Quickstart wizard screen to select the application type 234

16.8 Quickstart wizard screen to select the emulate as test device 235

16.9 Quickstart wizard screen to select the AVD 236

16.10 Quickstart wizard screen to select an APK 237

16.11 Quickstart wizard screen to specify the client name 238

LIST OF FIGURES xxxix

16.12 Android setup sequence created by the quickstart wizard 238

16.13 Android emulator window . 239

16.14 Quickstart wizard screen to select the application type 240

16.15 Quickstart wizard screen to select the real device 241

16.16 Quickstart wizard screen to select a .apk file 242

16.17 Quickstart wizard screen to specify the client name 242

16.18 Android setup sequence created by the quickstart wizard 243

16.19 QF-Test Android recording window . 244

16.20 Android utility procedures . 246

17.1 Xcode in the macOS App Store . 250

17.2 Recommended App Store settings . 251

17.3 Platform management in Xcode . 252

17.4 The iOS Simulator menu . 253

17.5 Navigate to the iOS profile trust section 255

17.6 Quickstart wizard screen to select the application type 256

17.7 Quickstart wizard screen to select the test device 257

17.8 Quickstart wizard screen to select an app file 258

17.9 Quickstart wizard screen to specify the client name 259

17.10 iOS setup sequence created by the quickstart wizard 260

17.11 QF-Test iOS recording window . 261

17.12 iOS utility procedures . 263

18.1 PDF Client main window with PDF document 265

18.2 Check text ’default’ . 267

18.3 Check text ’Text positioned’ . 267

18.4 Check Items ’Text as items (whole page)’ 268

18.5 Check Items ’Text positioned as items (whole page)’ 268

18.6 Check text ’Text (whole page)’ . 269

18.7 Check text ’Text positioned (whole page)’ 270

18.8 Check Image ’default’ recording of a Text object 271

18.9 Check Image ’default’ recording of an Image object 271

LIST OF FIGURES xl

18.10 Check Image ’unscaled’ recording of an Image object 271

18.11 Check Image ’scaled’ recording of an Image object 272

19.1 Excerpt of the run log of an axe accessibility test 279

19.2 Error message for the selected error . 280

19.3 Screenshot: Overview of faulty and skipped elements 281

19.4 Example of settings for report generation 282

22.1 Browser send HTTP GET . 293

22.2 GET response . 294

23.1 A simple data-driven test . 296

23.2 Data table example . 297

23.3 Run log of a data-driven test . 298

23.4 Data-driven test with nested loops . 299

23.5 Second data table example . 300

23.6 Run log of a data-driven test with nested loops 301

24.1 Example report . 306

25.1 Dialog to rerun test cases . 328

26.1 Result of analyzing references . 339

27.1 Recorded procedures . 343

27.2 The Procedure Builder definition file . 344

28.1 Integration with ALM - QualityCenter . 347

28.2 QF-Test VAPI-XP-TEST test case in HP ALM - QualityCenter 348

28.3 In Test plan create new Test set . 349

28.4 Create new test of type VAPI-XP-TEST 350

28.5 HP VAPI-XP Wizard . 351

28.6 Test details . 352

28.7 Copy template content to script text area 353

28.8 New test set in Test lab section . 354

LIST OF FIGURES xli

28.9 Add test to execution grid . 355

28.10 Run the test . 356

28.11 Test result . 357

28.12 Uploaded run log . 358

28.13 Script debug run . 359

28.14 QF-Test run log in QMetry . 363

29.1 Eclipse plugin configuration - tab ’Main’ 371

29.2 Eclipse plugin configuration - Tab ’Settings’ 373

29.3 Eclipse plugin configuration - Tab ’Initial Settings’ 374

29.4 Jenkins after start-up. 378

29.5 Install QF-Test Plugin. 379

31.1 Excel file business-related keywords . 388

31.2 Test suite business-related keywords . 389

31.3 Procedure fillDialog . 391

31.4 Excel file of generic components . 394

31.5 Test suite for generic components . 395

31.6 Test suite Behavior-driven testing technical 398

31.7 Test suite Behavior-driven testing from business perspective 400

31.8 Excel file as scenario file . 401

31.9 Test suite scenario file . 402

33.1 Load testing scenario . 410

33.2 Overview load testing project . 412

33.3 Sample test suite daemonController_twoPhases.qft 413

33.4 Call of rc.syncThreads in demo test suite 417

34.1 Example for a ManualStepDialog . 421

37.1 Structure of multiple test suites . 435

37.2 Including test suites of level 1 . 436

37.3 Structure of different test suites with roles 437

LIST OF FIGURES xlii

41.1 Options tree . 451

41.2 General options . 452

41.3 Projects . 455

41.4 Saving test suites . 456

41.5 Display . 458

41.6 Editing . 461

41.7 Bookmarks . 464

41.8 External tools options . 464

41.9 Backup file options . 467

41.10 Library options . 469

41.11 License options . 471

41.12 Update options . 472

41.13 Recording options . 473

41.14 Options for events to record . 475

41.15 Options for events to pack . 477

41.16 Dragging to a sub-menu . 478

41.17 Options for recording components . 481

41.18 Popup menu for recording components 482

41.19 Options for recording sub-items . 488

41.20 Options for the recording window . 490

41.21 Procedure Builder options . 492

41.22 Replay options . 494

41.23 Client options . 498

41.24 Terminal options . 501

41.25 Event handling options . 504

41.26 Component recognition options . 509

41.27 Delay options . 513

41.28 Timeout options . 516

41.29 Options for replay backward compatibility 520

41.30 SmartID und qfs:label-Optionen . 521

41.31 Options for Android . 524

LIST OF FIGURES xliii

41.32 Options for iOS Tests . 525

41.33 Web options . 528

41.34 Options for HTTP Requests . 532

41.35 Options for web backward compatibility 534

41.36 SWT options . 535

41.37 UI Inspector options . 536

41.38 Debugger options . 537

41.39 General run log options . 539

41.40 Options for splitting run logs . 543

41.41 Options determining run log content . 546

41.42 Options for mapping between directories with test suites 551

41.43 Variable options . 552

42.1 Test suite attributes . 556

42.2 Test case attributes . 561

42.3 Test set attributes . 568

42.4 Test call Attributes . 574

42.5 Sequence attributes . 578

42.6 Test step attributes . 581

42.7 Sequence with time limit attributes . 585

42.8 Extras attributes . 588

42.9 Dependency attributes . 590

42.10 Dependency reference attributes . 593

42.11 Setup attributes . 596

42.12 Cleanup attributes . 599

42.13 Error handler attributes . 601

42.14 Data driver attributes . 604

42.15 Data table attributes . 608

42.16 Database attributes . 611

42.17 Excel data file attributes . 617

42.18 CSV data file attributes . 621

42.19 Data loop attributes . 625

LIST OF FIGURES xliv

42.20 Procedure Attributes . 628

42.21 Procedure call Attributes . 631

42.22 Return Attributes . 634

42.23 Package Attributes . 636

42.24 Procedures Attributes . 637

42.25 Loop attributes . 640

42.26 While attributes . 643

42.27 Break attributes . 646

42.28 If attributes . 648

42.29 Elseif attributes . 652

42.30 Else attributes . 656

42.31 Try attributes . 659

42.32 Catch attributes . 662

42.33 Finally attributes . 665

42.34 Throw attributes . 668

42.35 Rethrow attributes . 669

42.36 Server script attributes . 671

42.37 SUT script attributes . 674

42.38 Start Java SUT client attributes . 678

42.39 Start SUT client attributes . 682

42.40 Start process attributes . 685

42.41 Execute shell command attributes . 688

42.42 Start web engine attributes . 690

42.43 Start PDF client attributes . 694

42.44 Start windows application attributes . 697

42.45 Attach to windows application attributes . 700

42.46 Launch Android emulator attributes . 702

42.47 Connect to Android device Attributes . 705

42.48 Connect to iOS device Attributes . 707

42.49 Wait for client to connect attributes . 710

42.50 Wait for mobile device Attributes . 713

LIST OF FIGURES xlv

42.51 Open browser window attributes . 715

42.52 Launch a mobile app attributes . 718

42.53 Stop client attributes . 721

42.54 Wait for process to terminate attributes . 723

42.55 Mouse event attributes . 727

42.56 Key event attributes . 731

42.57 Text input attributes . 735

42.58 Window event attributes . 738

42.59 Component event attributes . 740

42.60 Selection attributes . 743

42.61 File selection attributes . 751

42.62 Check text attributes . 755

42.63 Boolean check attributes . 760

42.64 Check items attributes . 766

42.65 Check selectable items attributes . 771

42.66 Check image attributes . 776

42.67 Check geometry attributes . 782

42.68 Fetch text attributes . 788

42.69 Fetch index attributes . 791

42.70 Fetch geometry attributes . 794

42.71 Comment attributes . 798

42.72 Error attributes . 799

42.73 Warning attributes . 804

42.74 Message attributes . 810

42.75 Set variable attributes . 815

42.76 Wait for component to appear attributes . 819

42.77 Wait for document to load attributes . 823

42.78 Wait for download to finish attributes . 828

42.79 Load resources attributes . 831

42.80 Load properties attributes . 834

42.81 Unit test server attributes . 837

LIST OF FIGURES xlvi

42.82 Unit test client attributes . 838

42.83 Install CustomWebResolver attributes . 843

42.84 CustomWebResolver configuration template actions 844

42.85 CustomWebResolver edit menu . 846

42.86 Server HTTP request Attribute . 850

42.87 Browser HTTP request Attribute . 855

42.88 Window attributes . 859

42.89 Web page attributes . 865

42.90 Component attributes . 870

42.91 Item attributes . 876

42.92 Window group attributes . 878

42.93 Component group attributes . 880

42.94 Windows and components attributes . 881

42.95 Test attributes . 884

42.96 CustomWebResolver call in Setup node of the Quickstart Wizard 888

46.1 Starting the SUT from a script or executable 936

46.2 Starting the SUT through Java WebStart 937

46.3 Starting the SUT from a jar archive . 938

46.4 Starting the SUT via the main class . 940

46.5 Launch the browser process . 942

46.6 Open the web site in the browser . 943

46.7 Opening a PDF Document . 944

51.1 Reduction of complexity for ”CarConfigurator Web” demo 1006

51.2 Installing the CustomWebResolver in the Setup node of the Quickstart Wizard1009

51.3 CustomWebResolver configuration templates 1010

51.4 CustomWebResolver with a template for genericClasses 1011

51.5 CustomWebResolver with two generic classes 1011

51.6 CustomWebResolver with more complex mapping 1012

51.7 CarConfigurator Web . 1026

51.8 CarConfigurator Web . 1035

LIST OF FIGURES xlvii

51.9 Simplification due to simple class mapping 1036

51.10 Recording of ’-5%’ button in ”CarConfigurator Web” demo 1037

51.11 Recording with genericClasses in ”CarConfigurator Web” 1038

51.12 Simplification due to advanced class mapping 1039

51.13 Recording of SPAN text fields . 1040

51.14 Recording text fields in ”CarConfigurator Web” 1041

51.15 Simplification for complex components 1042

51.16 Recording of a table in ”CarConfigurator Web” 1043

51.17 Recording of resolved table item in ”CarConfigurator Web” 1045

51.18 Simplification of the ”CarConfigurator Web” demo 1047

52.1 UI Automation procedures in the standard library 1061

52.2 The WPF demo application . 1067

54.1 Pseudo class hierarchy for web elements 1171

59.1 Original image . 1224

59.2 Classic image check . 1225

59.3 Pixel-based identity check . 1225

59.4 Pixel-based similarity check . 1227

59.5 Block-based identity check . 1228

59.6 Block-based similarity check . 1229

59.7 Histogram . 1230

59.8 Analysis with Discrete Cosine Transformation 1232

59.9 Block-based analysis with Discrete Cosine Transformation 1233

59.10 Bilinear Filter . 1235

59.11 Image-in-image search: Expected image 1236

59.12 Image-in-image search: Got image . 1236

60.1 Sample result list for ’Locate references’ 1239

A.1 Set browser maximum memory . 1283

C.1 Keyboard helper . 1348

xlviii

List of Tables

1.1 Supported operating systems for QF-Test 3

1.2 Supported Java versions . 4

1.3 Supported web browsers and toolkits . 5

1.4 Other supported technologies . 5

4.1 Test result counter in the status line . 38

5.1 Feature attribute special cases for web components 65

5.2 qfs:label* positional variants . 66

5.3 qfs:label* variants . 67

5.4 Addressing sub-items . 84

5.5 Separator and index format for accessing sub-items 84

5.6 Indices for sub item . 86

6.1 Definitions in the special group qftest 120

8.1 Relative procedure calls . 144

15.1 Supported details for a Selection . 220

18.1 Supported PDF objects . 272

18.2 Color code for PDF objects . 273

22.1 Supported HTTP Methods . 293

25.1 Choices for handling the run log of a rerun 327

31.1 Test case using business-related keywords 386

LIST OF TABLES xlix

31.2 Test case using atomic keywords . 386

31.3 Test case with Behavior-Driven Testing from a technical perspective . . . 386

31.4 Test case with Behavior-Driven Testing from a business perspective . . . 387

31.5 Structure of SimpleKeywords.qft . 390

31.6 Structure of Keywords_With_Generics.qft 403

31.7 Necessary adaptions to your SUT . 405

33.1 Content of load testing directory . 411

34.1 Description of the Excel file for the definition of manual tests 422

34.2 Description of the Excel file with the results of manual tests 423

34.3 Description of the global variables in the ManualTestRunner test suite . . 423

34.4 States of manual test execution . 424

38.1 List of variables with autocompletion. 442

42.1 Placeholders for the Name for separate run log attribute 563

42.2 Placeholders for the Name for separate run log attribute 570

42.3 Placeholders for the Name for separate run log attribute 575

42.4 Placeholders for the Name for separate run log attribute 582

42.5 Placeholders for the Name for separate run log attribute 605

42.6 Iteration range examples . 609

42.7 Iteration range examples . 612

42.8 Database drivers . 613

42.9 Database connection strings . 614

42.10 Iteration range examples . 618

42.11 Iteration range examples . 622

42.12 Iteration range examples . 626

42.13 Condition examples . 644

42.14 Condition examples . 649

42.15 Condition examples . 653

42.16 Modifier values . 729

42.17 Modifier values . 733

LIST OF TABLES l

42.18 Supported SWT widgets for a Selection event 745

42.19 Supported DOM nodes for a Selection event 746

42.20 Supported DOM nodes for Electron SUTs in a Selection Event 746

42.21 Supported values for a Selection node for Android and iOS 749

42.22 Positions for gestures . 749

42.23 Provided Check types of Check text . 757

42.24 Provided Check types of Boolean check 762

42.25 Components supported by Fetch text . 787

42.26 Components supported by Fetch geometry 793

42.27 Settings for ”Create Screenshots” . 801

42.28 Settings for ”Create Client Screenshots” 802

42.29 Settings for ”Create Screenshots” . 806

42.30 Settings for ”Create Client Screenshots” 808

42.31 Settings for ”Create Screenshots” . 812

42.32 Settings for ”Create Client Screenshots” 813

42.33 Possible regular expressions . 840

42.34 Injection types . 841

42.35 Actions of the edit menu . 845

42.36 Extra features assigned by QF-Test . 862

42.37 Extra features assigned by QF-Test . 868

42.38 Extra features assigned by QF-Test . 873

42.39 Sub-items of complex Swing components 875

42.40 Placeholders for the Name for separate run log attribute 885

44.1 Samples -suitesfile <file> . 927

44.2 Placeholders in filename parameters . 931

44.3 Exit codes for QF-Test . 932

44.4 calldaemon exit codes for QF-Test . 932

50.1 QF-Test variables for the expand parameter sample below 987

51.1 Mapping of Tables . 1021

51.2 Mapping of trees . 1024

LIST OF TABLES li

51.3 Mapping of TreeTables . 1027

51.4 Mapping of Lists . 1029

51.5 Mapping of ComboBoxes . 1030

51.6 Mapping of tab panels . 1032

51.7 Supported web frameworks . 1048

51.8 Connection mode for browsers . 1053

54.1 Internal item representations for JavaFX GUI elements 1125

54.2 Internal item representations for Swing GUI elements 1125

54.3 Internal item representations for SWT GUI elements 1126

54.4 Internal item representations for DOM nodes 1126

55.1 The run state . 1202

55.2 The result codes . 1202

56.1 Placeholders for component procedures 1213

56.2 Additional placeholders for container procedures 1214

56.3 Comment attributes for procedure creation 1215

56.4 Hierarchy placeholders . 1216

56.5 Samples for the @CONDITION tag . 1217

61.1 Checktypes for Accordion . 1243

61.2 Special qfs:type values for Buttons . 1244

61.3 Special qfs:type values for CheckBoxes 1245

61.4 Checktypes for Checkbox . 1245

61.5 Special qfs:type values for Closer . 1246

61.6 Checktypes for ComboBox . 1247

61.7 Special qfs:type values for Expander . 1247

61.8 Special qfs:type values for Icon . 1249

61.9 Special qfs:type values for Indicator . 1249

61.10 Special qfs:type values for Item . 1250

61.11 Checktypes for Item . 1250

61.12 Special qfs:type values for Labels . 1251

LIST OF TABLES lii

61.13 Special qfs:type values for Links . 1251

61.14 Special qfs:type values for List . 1252

61.15 Checktypes for List . 1252

61.16 Special qfs:type values for Maximizer . 1253

61.17 Special qfs:type values for Menu . 1253

61.18 Special qfs:type values for Minimizer . 1254

61.19 Special qfs:type values for Panel . 1255

61.20 Special qfs:type values for Popup . 1256

61.21 Checktypes for ProgressBar . 1256

61.22 Special qfs:type values for RadioButtons 1257

61.23 Checktypes for RadioButton . 1257

61.24 Special qfs:type values for Restore . 1258

61.25 Special qfs:type values for Sizer . 1259

61.26 Checktypes for Slider . 1259

61.27 Special qfs:type values for Spacer . 1260

61.28 Checktypes for Spinner . 1260

61.29 Checktypes for Table . 1261

61.30 Checktypes for TableCell . 1262

61.31 Checktypes for TableHeader . 1263

61.32 Checktypes for TableHeaderCell . 1263

61.33 Checktypes for TabPanel . 1264

61.34 Special qfs:type values for Text . 1265

61.35 Checktypes for TextArea . 1265

61.36 Special qfs:type values for TextField . 1266

61.37 Checktypes for TextField . 1266

61.38 Checktypes for ToggleButton . 1267

61.39 Checktypes for Tree . 1268

61.40 Checktypes for TreeNode . 1269

61.41 Special qfs:type values for Window . 1270

62.1 Doctags for reporting and documentation 1272

62.2 Doctags for Robot Framework integration 1273

LIST OF TABLES liii

62.3 Doctags for test execution . 1274

62.4 Doctags for editing . 1275

B.1 New features in QF-Test 5 . 1340

C.1 Shortcuts for navigation and editing . 1346

C.2 Shortcuts for the UI inspector . 1346

C.3 Shortcuts for special record and replay functions 1347

Part I

User manual

Chapter 1

Installation and startup

The videoVideo

’Installation & Trial License’
https://www.qftest.com/en/yt/installation-trial-license.html

first explains the download and installation of QF-Test, then (starting at min 8:20) the
installation of a trial license.

The installation of QF-Test on the supported operating systems is explained in detail in
the subsequent sections. The following packages are available for download:

Windows (section 1.2(6))
On Windows QF-Test is normally installed via the setup program

QF-Test-9.0.4.exe which requires administrator privileges. If you are lacking
the required permissions or prefer to keep all QF-Test files together in one place
you can unpack the self-extracting archive QF-Test-9.0.4-sfx.exe instead.

Linux (section 1.3(8))
On Linux and other Linux systems please unpack the archive

QF-Test-9.0.4.tar.gz.

macOS (section 1.4(9))
The disk-image QF-Test-9.0.4.dmg is provided for the installation on macOS.

It is possible to have different versions of QF-Test installed in parallel. Existing configu-
ration files will not be overwritten during setup.

In section 36.2(429) you can find best practices about the QF-Test installation.

1.1. System requirements 3

1.1 System requirements

1.1.1 Hard- and Software

QF-Test itself runs with Java 17. The required 64bit Java Runtime Environment (JRE)
is provided with QF-Test, so Java does not need to be installed on your system unless
required by the SUT.

If your system under test (SUT) uses Java it should typically use its own JRE, not that ofNote
QF-Test. The Java command for the SUT can be configured separately when creating
the setup sequence for your SUT. Supported Java versions for the SUT are listed below.

For a QF-Test installation you need to reserve about 1 GB on your hard disk. The
required RAM to work with QF-Test is in the same region but depends on the sizes of
your test suites and the length of your test run, see I’ve got a long-running test and
QF-Test runs out of memory. How can I prevent that? A(1278). Note that you need to add
the resources required by the SUT.

1.1.2 Supported technologies - QF-Test

The following table summarizes the officially supported versions of operating systems
and required software for this QF-Test version 9.0.4. Support for additional systems and
versions may be available on request but is not owed by QFS. Another option to get
support for older software can be to use one of the older QF-Test versions that are still
available for download at https://www.qftest.com/en/qf-test/download.html.

In QF-Test version 7.0 support for 32 bit software was deprecated for removal in a futureNote
QF-Test version.

Java 17 is shipped with QF-Test. QF-Test runs on JDK/JRE 17 or higher on the following
operating systems:

Technology Version restriction Restrictions for SUT technologies
Windows 10, 11, Server 2016, Server

2019, Server 2022
no iOS

Linux no windows or iOS
macOS macOS 12 or higher no windows or SWT

Table 1.1: Supported operating systems for QF-Test

1.1. System requirements 4

1.1.3 Supported technologies - System under Test

The following table summarizes the officially supported versions of operating systems
and required software for this QF-Test version 9.0.4. Support for additional systems and
versions may be available on request but is not owed by QFS. Another option to get
support for older software can be to use one of the older QF-Test versions that are still
available for download at https://www.qftest.com/en/qf-test/download.html.

The system under test can be run on the same operating systems as QF-Test, for re-
strictions see Supported operating systems for QF-Test(3).

Support for 32bit software was deprecated in QF-Test version 7.0 and removed in ver-Note
sion 8.0. However, testing of 32bit native Windows applications remains supported.

Technology Version restriction Comment
JDK/JRE 17 or higher (17 provided with

QF-Test); 8 - 25 for the SUT
Swing All platforms.
JavaFX 8 or higher All platforms.
SWT 3.7 - 4.36 (i.e. 2025-06) 64bit on Windows and Linux

GTK only, GTK3 with SWT
4.6 and higher. For 32bit
Eclipse/SWT versions please
use QF-Test 7.1 or older. For
Eclipse/SWT 3.5 - 3.6 simply
download https://archive.qfs.de/
pub/qftest/swt_legacy.zip and
extract the contents into the
swt directory of your QF-Test
installation.

Table 1.2: Supported Java versions

1.1. System requirements 5

Technology Version restriction Comment
Chrome Version 131 via QF-Driver, cur-

rent versions via Chrome Dev-
Tools Protocol (CDP-Driver) and
automatic ChromeDriver down-
load (WebDriver).

Headless Chrome supported.
See also Browser connection
mode(1052)

Firefox (WebDriver) As supported by the included
GeckoDriver, i.e. currently
128esr and higher.

Headless Firefox supported

Microsoft Edge Current versions via Chrome
DevTools Protocol (CDP-Driver)
and automatic MSEdgeDriver
download (WebDriver).

Headless Edge supported.

Opera Current versions via Chrome
DevTools Protocol (CDP-
Driver).

Safari WebDriver with Safari(1058)

JxBrowser version 6, 7 and 8, embedded
into Swing, JavaFX or SWT

Electron 1.7 and newer
Web component libraries Detailed list of supported toolk-

its in section 51.2(1047)

Table 1.3: Supported web browsers and toolkits

Technology Version restriction Comment
Native Windows applications QF-Test can test applications

supporting Microsoft UI Au-
tomation or the Microsoft Active
Accessibility (MSAA) interface.

For more information see
section 15.1(215)

Android Android API 24 or höher,
which means Android version 7
Nougat or later.

For more information see
Preconditions and known
restrictions(225)

iOS iOS 15 or higher - there may be
system related restrictions due
to the installed Xcode version.

iOS applications can only be
tested on a macOS system
where a Xcode development en-
vironment, version 13 or higher,
is installed. For more infor-
mation see Preconditions and
known restrictions(247)

PDF For general information see
Testing PDF documents(264)

Table 1.4: Other supported technologies

1.2. Windows Installation 6

1.2 Windows Installation

On Windows QF-Test can be installed in two variants.

1.2.1 Installing via the Windows setup file QF-Test-9.0.4.exe

This setup requires administrator privileges and follows the Windows standard of sep-
arating read-only program files from writable configuration files. If an older QF-Test
version is detected it is also possible to skirt Windows standards and install QF-Test
and its system configuration together at the place of the old installation.

Windows compliant installation4.2+
Program files are saved to C:\Program Files\QFS\QF-Test or whichever target
directory you choose. The system configuration with writable data is stored in
%PROGRAMDATA%\QFS\QF-Test, irrespective of the selected target directory.

%PROGRAMDATA% usually refers to the directory C:\ProgramData but the name mayNote
vary depending on the Windows system. By default is is hidden in Windows Explorer.
A simple way to navigate to this directory is to enter %PROGRAMDATA% into the address
bar of Windows Explorer. In a PowerShell window use cd $env:PROGRAMDATA, in a
cmd console window cd /d %PROGRAMDATA% to change to the respective drive and
directory.

Installation together with an existing QF-Test version4.2+
If an older QF-Test installation is found and there is no system configuration in
%PROGRAMDATA%\QFS\QF-Test yet, you choose to follow the Windows compliant
installation using %PROGRAMDATA% or to stick with the existing structure and install
QF-Test there.

In the first case, after selecting the target directory for the QF-Test program files, the
system configuration files are copied - just this once - from the existing installation to
%PROGRAMDATA%\QFS\QF-Test.

When installing into the existing structure, QF-Test is installed into that directory and
shares the system configuration that is already present there.

In both cases the directory %PROGRAMDATA%\QFS\QF-Test\qftestpath is added to
the system PATH and the program files qftest.exe and qftestc.exe are copied there. This
allows to start QF-Test from anywhere.

Independent of the installation choice both old and new QF-Test can be run in paral-
lel. In case of the Windows compliant installation with %PROGRAMDATA% the old and
new system configuration are independent. If the old structure is kept, all versions
share the same system configuration. In the medium to long term we advise to move
to %PROGRAMDATA% because the old structure requires changing access rights in the
program directory, which is questionable. However, while migrating tests from QF-Test

1.2. Windows Installation 7

4.1 to 4.2 it may be convenient to keep both versions close together. The move to a
Windows compliant installation using %PROGRAMDATA% can also be made in the course
of a later installation.

Silent Installation
For an automatic distribution on test systems it might be necessary to install QF-Test
silently. QF-Test supports this kind of installation because the installer is based on
Inno Setup. This allows to use nearly all documented parameters from
https://jrsoftware.org/ishelp/index.php?topic=setupcmdline at the installation of
QF-Test.

You can perform a silent default installation with QF-Test-9.0.4.exe
/VERYSILENT.
If you want to not create a Deskop icon you can run QF-Test-9.0.4.exe
/VERYSILENT /MERGETASKS=”!desktopicon”. This executes a standard
installation without the task ”desktopicon”.
Both the minisetup-admin.exe and minisetup-noadmin.exe can also be
installed silently. For example via minisetup-admin.exe /VERYSILENT.

Please note that the installation for all users always requires elevated administrative
rights. To also automatically accept the Windows UAC dialog the calling process must
already have elevated rights. The parameter /CURRENTUSER does not help here, be-
cause the installation always requires elevated rights independent of installing for all or
just the current user.
An exception of this rule is minisetup-noadmin.exe, which allows to configure an
already installed QF-Test for the current user only. It does not need elevated rights.

Instead of performing a silent installation you can also use the portable self-extracting
archive QF-Test-9.0.4-sfx.exe.

1.2.2 Unpacking the self-extracting archive
QF-Test-9.0.4-sfx.exe

If you don’t have administrator privileges or want to keep all QF-Test files together in a
single place, unpack the archive QF-Test-9.0.4-sfx.exe at a suitable place. To do
so, copy the file to the desired location and execute it there. If 7-Zip is installed on your
system you can also right-click the archive to open and extract it with 7-Zip. This will
create a directory named qftest at the target location which we will refer to as the root
directory of QF-Test and that will also hold QF-Test’s system configuration files.

After unpacking the files you can run the program minisetup-noadmin.exe in the
subdirectory qftest-9.0.4. It will create associations for the file extensions
belonging to QF-Test and optionally a startup menu entry and a desktop icon for
QF-Test. If you have administrator privileges you can run minisetup-admin.exe
instead which applies the same settings for all users and also adds the directory

1.3. Linux Installation 8

%PROGRAMDATA%\QFS\QF-Test\qftestpath to the system PATH and copies the
program files qftest.exe and qftestc.exe there.

If you’d rather have a fully portable installation instead, you can create a folder named
userdir in the qftest directory which will then serve as the user-specific configura-
tion directory in place of %APPDATA%\QFS\QF-Test so that really all files belonging to
QF-Test are kept together in one place and no changes are made to the system.

1.2.3 Completing the installation and configuring Java

As the last step each of the setup programs will offer to configure the Java program for
QF-Test which is done with the help of a small dialog in which you can
make your choices. With a portable installation you can run the program
qftest\qftest-9.0.4\bin\qfconfig.exe to achieve the same.

A 64bit Java 17 Runtime Environment is installed with QF-Test into its installation folder.
It is recommended to use it.

The dialog also lets you adjust the maximum amount of memory to be used by QF-Test
with a default of 1024 MB.

The third value to be configured is the language for QF-Test. Normally the language is
determined by the system settings, but you can also choose to always use the English
or the German version.

The values above are stored in the file launcherwin.cfg in QF-Test’s system config-
uration directory from where they are read by the qftest.exe start program. You can
run the configuration program any time from the system menu to change these settings.

1.3 Linux Installation

First select a convenient directory that will contain this release of QF-Test as well as
future updates. Common choices are /opt or /usr/local. Make sure you have write
access to this directory and change to it. When upgrading to a new QF-Test version,
use the same directory again.

Unpack the .tar.gz archive with tar xfzv QF-Test-9.0.4.tar.gz. This will
create a directory named qftest, which we will refer to as the main or root directory of
QF-Test. On a Linux system this also serves as the system directory holding the system
configuration files of QF-Test.

After unpacking a QF-Test archive for the first time, QF-Test’s root directory will hold only
the version-specific subdirectory qftest-9.0.4. When upgrading, a new subdirectory
for the current version will be added.

1.4. macOS Installation 9

To finish the installation, change to the specific directory for the current QF-Test version
with cd qftest/qftest-9.0.4 and run the setup script provided (setup.sh).

The setup script will create the directories log, jython groovy and javascript
under QF-Test’s root directory unless they already exist. Additionally it will offer to cre-
ate a symbolic link from the /usr/local/bin directory (or /usr/bin if there is no
/usr/local/bin) to the shell run script for the qftest command. You need to have
write permission to the /usr/local/bin directory for the link to be created.

On Linux QF-Test should normally use its own JRE. Alternatively the default java pro-
gram for QF-Test can be defined now. Either way it can be overridden at execution time
with the -java <executable> (deprecated)(914) argument. The setup script searches
PATH and proposes to use the first java program it detects. If you want to use a differ-
ent program or if none was found, you can enter one. The script determines the JDK
version automatically.

Next setting to perform is the maximum amount of memory to be used by QF-Test. As
default 1024 MB are taken. Alternatively QF-Test can be started with the -J-XmxZZZm
command line argument, where ZZZ defines the memory in MB.

Finally the language for QF-Test can be configured. By default the language depends on
the system settings, but you can also choose to always use the English or the German
version. Note that this setting will affect all QF-Test users. Alternatively you can run QF-
Test with the -J-Duser.language=XX option using en for English or de for German.

Those of the above settings that differ from the default are written to the file
launcher.cfg in QF-Test’s root directory. This file is read by the qftest
launch-script and also evaluated during an update of QF-Test.

1.4 macOS Installation

To install QF-Test on a macOS System, simply mount the QF-Test-9.0.4.dmg disk
image and copy the QF-Test app to your Applications directory (or any other folder)
and start it from there.

To configure custom program arguments like memory used by QF-Test or the languageNote
there is a separate options-page in the QF-Test options (General->Startup). You can
configure the settings there and they will then be applied after restarting QF-Test.

1.5 The license file

The videoVideo

1.5. The license file 10

’Installation & Trial License’
https://www.qftest.com/en/yt/installation-trial-license.html

first explains the download and installation of QF-Test, then (starting at min 8:20) the
installation of a trial license.

The video

’License update’
https://www.qftest.com/en/yt/license-update.html

shows how to update a license.

QF-Test requires a license file to run, which you should have received from Quality First
Software GmbH.

Since QF-Test 4.0 the preferred way to activate or update your QF-Test license is by4.0+
way of the menu Help→Update license... .
The traditional way as described below is also still valid.

Place the license file into the system directory of QF-Test. On Windows, depending on
the type of installation, this will be %PROGRAMDATA%\QFS\QF-Test (see section 1.2(6))
or the root directory of your QF-Test installation as on Linux. Make sure the file is named
license with no extension. Some mail clients try to guess the file type and add an
extension on their own. When upgrading to a new QF-Test version you can simply keep
the license file provided that it is valid for the new version.

For a complete list of the directories relevant to QF-Test please open the info dialog viaNote

the menu Help→Info and select the ”System info” tab.

If you need to upgrade your license, for example to increase the number of concurrent
QF-Test instances or when upgrading to a new version, you will receive a file called
license.new from Quality First Software GmbH which is typically not a valid license
in itself but must be combined with your current license. To do so, proceed as follows:

• Place the file license.new in the same directory as the current license. Make
sure that this directory and the file license are writable by you.

• Start QF-Test in interactive mode. QF-Test will detect the license update, verify its
validity and offer to upgrade your license file.

• If you agree, the current license will be renamed to license.old and the new,
combined license will be written to license. When you are satisfied that every-
thing is OK, you can remove the files license.old and license.new.

• If QF-Test doesn’t seem to recognize the license upgrade, make sure that the
timestamp of the file license.new is newer than that of the file license. Also
make sure that no other instance of QF-Test is running on your computer.

1.6. The configuration files 11

In case you need to specify a special name or location for the license file or work with
more than one license, this can be achieved with help of the -license <file>(919)

argument as described in chapter 44(908).

1.6 The configuration files

For a complete list of the directories relevant to QF-Test please open the info dialog viaNote

the menu Help→Info and select the ”System info” tab.

QF-Test saves all of its window configuration and those global options that represent
personal preferences together in a file named config located in the QF-Test user con-
figuration directory which also holds run logs for tests run in interactive mode, profile
directories for web testing and temporary files for editing and running scripts.

On Windows the user configuration directory defaults to %APPDATA%\QFS\QF-Test4.2+
for new installations. If that directory doesn’t exist and you already used a QF-Test
version older than 4.2 on the same system that created the directory .qftest in your
home directory for the user configuration, QF-Test will continue to use that .qftest
directory.
You can manually move the content of the directory .qftest to
%APPDATA%\QFS\QF-Test and delete .qftest afterwards. QF-Test since version
4.2.0 will then use this directory only. You should not move the files if you still want to
use a version older than 4.2.0!
On Linux the user configuration directory is always ∼/.qftest.
On macOS it is located at /Users/<username>/Library/Application
Support/de.qfs.apps.qftest.
The personal config file is not read when QF-Test is run in batch mode (see section
1.7(12)). Irrespective of the system default you can always specify an explicit location for
the user configuration directory as a whole with the -userdir <directory>(929)

command line argument and just for the user config file with -usercfg <file>(929).

System specific options that need to be shared between users are saved in a file called
qftest.cfg in the system configuration directory which also serves as the home for
the license file, script modules, Java plugins and other customization files. On
Windows the location of the system configuration directory depends on the installation
variant (c.f. section 1.2(6)). It is either located in %PROGRAMDATA%\QFS\QF-Test or in
the root directory of QF-Test.
On Linux and macOS the default system configuration directory is the root directory of
QF-Test.
The location of the system config file can be changed with the command line argument
and -systemcfg <file>(927) and that of the entire system directory with
-systemdir <directory>(927).

1.7. Starting QF-Test 12

1.7 Starting QF-Test

QF-Test can be run in two modes. In normal mode QF-Test is the editor for test suites
and run logs and the control center for running programs, capturing events and exe-
cuting tests. When run with the -batch(913) argument, QF-Test goes into ”batch” mode.
Instead of opening an editor window, the test suites given on the command line are
loaded and executed automatically without the need for supervision. The result of the
test is reflected in QF-Test’s exit code(931), optional run logs (see section 7.1(124)) and
reports (see chapter 24(305)).

The setup script for Linux offers to create a symbolic link from /usr/local/bin to the
qftest start script in the qftest-9.0.4/bin directory under QF-Test’s root directory.
That way you can simply enter qftest at the shell prompt to launch the application.

On Windows a menu shortcut is created as well as an optional desktop icon. You can
either launch QF-Test from one of these or by double-clicking a test suite or a run log,
since these files are associated with the QF-Test application. To run QF-Test from the
console type qftest.

When run from the command line, QF-Test offers a wide range of arguments for cus-
tomization, like selecting the Java VM to use. These are explained in detail in chapter
44(908).

In case different versions of QF-Test are installed at the same time, a specific version
can be started by calling the qftest executable directly from the respective
qftest-X.Y.Z/bin directory.

In case QF-Test is not starting up anymore because of some incorrect settings underMac
Options->General->Startup the default startup settings need to be restored. This can
be done through running the following two commands from a macOS shell terminal.

defaults write de.qfs.qftest /de/qfs/qftest/ \
-dict-add JVMOptions/ '{"Xmx"="-Xmx1024m";"Xms"="-Xms16m";}'

defaults write de.qfs.qftest /de/qfs/qftest/ \
-dict-add JVMArguments/ '{"args"="";}'

Example 1.1: Resetting startup settings to defaults under macOS

1.8 Firewall Security Warning

On startup of QF-Test and/or the System Under Test (SUT) via QF-Test you might get
a security warning from the Windows firewall asking whether to block Java or not. As
QF-Test communicates with the SUT by means of network protocols, this must not be
blocked by the local firewall in order to allow automated testing.

Chapter 2

The user interface

This chapter explains the structure of QF-Test’s main window. When you are done
reading, it might be a good idea to run QF-Test and try things out. In the Help menu

there is an entry labeled Tutorial that should bring up your web browser with a
hands-on, learning-by-doing tutorial. Should this fail because QF-Test cannot
determine your system’s standard browser, the tutorial can be found in the directory
qftest-9.0.4/doc/tutorial, where a PDF version is also available.

The first part of the videoVideo

’Main window and the System under Test’
https://www.qftest.com/en/yt/main-window-sut-40.html

shows the structure of the QF-Test main window.

2.1 The test suite

Automating a GUI test basically requires two things: control structure and data. The
control structure defines what to do and when to do it. The data for a test consists of
information about the SUT’s GUI components, the events that will be triggered and the
expected results.

QF-Test combines all of these into one data structure, a tree hierarchy that we call a test
suite. The elements of the tree are called nodes. Nodes can contain child nodes (often
just called children) and are themselves contained in a parent node (or just parent). The
root node of the tree represents the test suite as a whole.

There are more than 60 different kinds of nodes all of which are explained in detail in the
reference manual(555). Some nodes are used as containers for data while others control
the execution of a test. All of them have their own unique set of attributes.

2.1. The test suite 14

The attributes of the currently selected node are displayed to the right of the tree in a
detail view which can be toggled on and off via the View→Details menu item.

Figure 2.1: Structure of a test suite

The image above shows an example for a simple test suite. The attributes of the node
named ”Simple test” can be edited in the detail view to the right.

The basic structure of a test suite and thus the child nodes of the Test suite(555) root node
is fixed. An arbitrary number of Test set(566) and Test case(558) with or without Dependency(589)

nodes are followed by the Procedures(637), Extras(588) and Windows and components(881) nodes.
The Procedures node holds Packages(635) and Procedures(627) which are explained further in
section 8.5(142). The Extras node is a kind of playground or clipboard where all kinds
of nodes can be added for experimentation or temporary storage. The windows and
components of the SUT’s user interface are represented as Window(858) and Component(869)

nodes which are located below the Windows and components node.

To get detailed information about a node or one of its attributes, click on it with the
right mouse button and select What’s this? from the context menu. This will bring up a
browser displaying the corresponding section of the reference manual.

2.2. Basic editing 15

2.2 Basic editing

Editing a test suite falls into two categories: operations like Cut/Copy/Paste on the tree’s
nodes and changing the attributes of a node. The latter can be done either by editing the
fields in the detail view and selecting OK or pressing

�� ��Return , or by bringing up a dialog
for the selected node with Edit→Properties or

�� ��Alt-Return and changing the values
there. If you change some values in the detail view and forget to press OK before
moving the selection to another node, QF-Test will pop up a dialog with the changed
values, asking you to either confirm your changes or discard them. This feature can be
turned off with the option Ask before implicitly accepting detail modifications(461).

Some non-obvious key-bindings may come in handy when editing multi-line text
attribute:

�� ��Ctrl-TAB and
�� ��Shift-Ctrl-TAB move the focus out of the text field, while�� ��Ctrl-Return is a shortcut to select the OK button.

An extremely useful feature is the Edit→Undo function (
�� ��Ctrl-Z) which will take back

any kind of change made to the test suite, including recordings or use of the replace
dialog. Changes are undone step by step. If you find you went too far and undid more
than you wanted, you can use Edit→Redo (

�� ��Ctrl-Y) to undo the undone. The number
of steps that can taken back are limited only by available memory and can be configured
with the option Number of undo levels per suite(462) (default 30).

2.2.1 Navigating the tree

Though the key-bindings for tree navigation are similar to those of most tree compo-
nents, it won’t hurt to mention them here. Besides, QF-Test comes with a few non-
standard bindings that may come in handy.

The cursor keys are used for basic navigation.
�� ��Up and

�� ��Down are obvious.
�� ��Right

either expands a closed node or moves down one row while
�� ��Left closes an open node

or moves to its parent.

QF-Test’s trees support a special variant of multi-selection. Multiple discontinuous re-
gions can be selected, but only among siblings, i.e. children of the same node. If
multi-selection across the whole tree were allowed, cutting and pasting nodes would
become a real brain-teaser. Keys to try are

�� ��Shift-Up and
�� ��Shift-Down to extend the

selection,
�� ��Ctrl-Up and

�� ��Ctrl-Down to move without affecting the selection and
�� ��Space

to toggle the selection of the current node. Similarly, mouse-clicks with
�� ��Shift extend the

selection while clicks with
�� ��Ctrl toggle the selection of the node being clicked on.

Special bindings include
�� ��Alt-Right and

�� ��Alt-Left which recursively expand or collapse a
node and all of its children.

�� ��Alt-Down and
�� ��Alt-Up can be used to move to the next or

previous sibling of a node, skipping the intermediate child nodes.

2.2. Basic editing 16

QF-Test keeps a history of recently visited nodes.
�� ��Ctrl-Backspace will take you back to

the previously selected node. Also worthy of note are
�� ��Ctrl-Right and

�� ��Ctrl-Left which
will scroll the tree to the right or left if it doesn’t fit its frame.

2.2.2 Insertion marker

When inserting a new node or pasting in a copy of some other nodes, the insertion
marker shows the place where the nodes will end up.

Figure 2.2: Insertion marker

Nodes are always inserted after the selected node. If the selected node is expanded,
the new node is inserted as the first child of the selected node, otherwise it becomes
a sibling of same. This behavior will take a little to get used to, especially for long-time
users of the Windows explorer. However, there is no other way to insert a node at a
definite position. In the example shown in figure 2.2(16) above, a new node would be
inserted as the first child of the sequence called ”Events”, just before the Mouse event(726).

2.2.3 Moving nodes

Nodes can be copied and pasted or moved around within a test suite or to another suite.
The standard keyboard shortcuts for cut, copy and paste,

�� ��Ctrl-X ,
�� ��Ctrl-C and

�� ��Ctrl-V are
available as well as entries in the context menu.

Alternatively, nodes can be moved using standard Drag&Drop operations. The default2.0+
operation will move the selected node(s). If the

�� ��CTRL key is held down during the drop,
the nodes are copied instead.

While dragging the mouse over the tree of a test suite, the insertion marker shows
where the nodes will be dropped when the mouse button is released and whether the

2.2. Basic editing 17

operation is allowed. A green marker signals a legal operation, a red marker an illegal
one. Nothing will happen if the nodes are dropped on an illegal target position.

During the drag you can expand or collapse nodes by dragging the mouse cursor over
the expansion toggle and keeping it there for a moment. That way you can easily navi-
gate to the desired target location without interrupting and restarting the drag.

The Drag&Drop operation can be aborted at any time by pressing
�� ��Esc .

2.2.4 Transforming nodes

Some nodes can be transformed into different node types, which is a lot more convenient
than first creating the desired target node and then copying over the required attributes.
Examples of interchangeable nodes are Sequence(577) and Test step(580) or Server script(670)

and SUT script(673). The transformation of a node is possible only if its childnodes and
its current position in the tree are also valid for the desired target node. The potential
transformation targets can be selected from the entry Transform node into in the con-
text menu. If the entry is not available there are no valid target nodes. In that case,
moving the node to the Extras(588) node first may help.

You can find more details about the conversion mechanism under Details about
transforming nodes(1220).

2.2.5 Tables

In various places QF-Test employs tables to view and edit a set of values, e.g. when
defining variables(104) or for checks(753) of multiple elements.

Figure 2.3: Example table

The buttons above the tables have the following keyboard shortcuts and effects:

2.2. Basic editing 18

�� ��Shift-Insert
Insert a new row.�� ��Shift-Return ,

�� ��Alt-Return
Edit a row. Opens a dialog with fields for every cell of the selected row.�� ��Shift-Delete
Delete the selected row.�� ��Shift-Ctrl-Up
Move the selected row up by one.�� ��Shift-Ctrl-Down
Move the selected row down by one.

Some tables also offer the ability to add and remove columns and edit the
column title. For these, the following additional buttons are available:

Insert a new column.

Delete the selected column.

Edit the title of the selected column.

To enter a value directly into the selected cell just start typing. This way you overwrite
the current value of the cell. To edit the current value, either double click the cell or press�� ��F2 . To finish editing press

�� ��Return , to cancel and restore the old value press
�� ��Escape .

If you try to enter an invalid value the cell’s border will turn red and you can’t accept the
value.

Multi-selection of table rows is supported via mouse-clicks with
�� ��Shift/Ctrl and�� ��Shift/Ctrl-Up/Down . Cut copy and paste of the selected rows is done with

�� ��Ctrl-X/C/V .
Pasting is restricted to tables with a similar column structure.

In the table’s context menu additional actions might be available, e.g. show line num-
bers, locate component, etc.

A mouse click in a column header will activate sorting of table rows. A double-click in a
column header will resize the column to fit the largest value in the column or opens the
editor for the header text (data table).

2.2.6 Packing and Unpacking

During test development it is often necessary to move several nodes into a new parent
node. A typical situation could be the re-factoring of procedures to re-organize them in
packages or to wrap a workflow into a Try/Catch block.

2.3. Advanced editing 19

For such requirements QF-Test allows the user to pack nodes into others. This can be
achieved by selecting the nodes to pack, right-clicking and selecting Pack nodes and
the desired parent node.

QF-Test also allows the user to unpack such nodes and remove their parent. This can
be used to remove unnecessary packages or test sets from the structure or to dispense
with sequences or Try/Catch blocks that are no longer required. For unpacking right-click
the node to unpack and select Unpack nodes .

The packing and unpacking actions are only shown in the menu if the desired targetNote
structure is legal.

2.2.7 Sorting Nodes

QF-Test allows sorting nodes. This can be achieved by clicking at a node with the
right mouse button and selecting Sort child nodes . Alternatively you can also select
multiple nodes, perform a right mouse click and then choose Sort nodes , which will
sort the current selected nodes.

To guarantee a better overview the sorting algorithm puts ciphers prior to capital letter
and those prior to small letters. Sorting doesn’t modify the base structure of QF-Test
nodes. It also follows the rule to keep Package nodes always prior to Dependency nodes
and those always prior to Procedure nodes.

The base structure of a test suite will not be altered during sorting. You can sort testNote
cases or procedures but the Procedures node will always stay prior to the Windows and
components node.

2.3 Advanced editing

This section explains how to use the more advanced editing techniques such as
search/replace and multiple views on the same test suite.

2.3.1 Searching

QF-Test provides two kinds of search operations, a general search through all nodes
and attributes of a test suite or run log and in incremental search through the contents
of a text area, including script consoles or program output.

2.3. Advanced editing 20

General search

Though search and replace operations in QF-Test have much in common, there are
significant differences, especially in the scope of the operation. Searching normally
starts at the selected node and traverses the whole tree depth-first to the end. After
asking for confirmation the search continues from the root of the tree to the original
start of the search so each node is traversed exactly once. This is not unlike search
operations in common text processors and should be intuitive to use.

By default QF-Test shows the search dialog in ’simple’ mode, which allows searching for
any appearance of a given text.

Figure 2.4: The simple search dialog

For a more specific search QF-Test allows limiting the search to specific attributes, node
types or specific states of nodes. Therefore you have to switch to the ’advanced’ mode
by clicking the ’Switch mode’ button in the toolbar of the search dialog.

2.3. Advanced editing 21

Figure 2.5: The advanced search dialog

By default QF-Test will search all attributes in all kinds of nodes for the requested string.

Use the ”In attribute” option to limit the search to a specific attribute.

The ”Node type” option allows to limit the search to nodes of a specific kind.

The option ”Scope of search operation” tells QF-Test where to search for the given
expression, below the selected node(s), in the current test suite or in all currently opened

2.3. Advanced editing 22

suites.

Activating options in ”Only nodes with the following states” limits the search to nodes
that have all of the activated states, e.g. a green mark and a breakpoint.

If ”Match whole attribute” is selected, a search for the word ”tree”, for example, will not
match an attribute value of ”treeNode”.

Regular expressions are explained in section 49.3(955).

To search for values of boolean attributes like Replay as ”hard” event(729), use ”true” orNote
”false” (no quotes). If you want to search for an empty value you have to check ”Match
whole attribute”.

If the search is successful, the resultant node is selected and a message in the status
line displays the name of the attribute that contains the value.

As already mentioned the searching process usually starts from the currently selected3.4+
node. In case you want to select other nodes during your search process you can
continue the previous search by using the ”Search continue” button.

Once you have closed the search dialog you can still continue the search pressing
�� ��F3 .

You can even trigger the same search from a new node pressing
�� ��Ctrl-G .

A very useful feature is the ability to quickly locate all Procedure call nodes that call a
given Procedure or all event nodes that refer to a given Component node, etc. Simply
select the entry Locate references... from the context menu of a node that can be
called or referred to. This will show a new frame showing all available references of it.
You can reach the node in the test suite via a double click at the row in the list.

2.3. Advanced editing 23

Figure 2.6: Result list for ’Locate references’

It is also possible to get a list of all found nodes via pressing the ”Show result list” button3.1+
in the search dialog. From this dialog you can then reach any single node in your test
suite.

Incremental text search

In addition to searching the tree, components containing text like terminal areas or re-3.1+
spective attributes in the details view can be searched independently by use of QF-Test’s
incremental search feature. This feature can be invoked either by selecting Search...
from the component’s context menu or by pressing

�� ��Ctrl-F when the component is se-
lected and owns the keyboard focus. Then the incremental search popup dialog appears
at the upper right corner of the respective component. The figure below shows an in-
cremental search for the terminal with highlighted search hits.

2.3. Advanced editing 24

Figure 2.7: Incremental search

The search can be limited to a certain part of the contained text by selecting the region
to be searched and invoking Search in selection... from the component’s context menu
or pressing

�� ��Ctrl-Shift-F .

Beside this, the way the incremental search works as well as the available options
should be self-explanatory.

2.3.2 Replacing

Once you understand how the scope of the replace operation differs from searching,
the replace dialog should be just as intuitive to use as the search dialog. When the
replace operation is in progress, you have a choice of replacing one match at a time
or all matches at once. To avoid unexpected results when selecting the latter, there
needs to be a way to limit the nodes that will possibly be affected. To that end, replace
operations can be limited to the currently selected nodes and their direct or indirect child

2.3. Advanced editing 25

nodes. For a replace operation that covers the whole tree, either select the root node or
choose the respective ”Scope of replace operation” option in the dialog.

Figure 2.8: The replace dialog

The options are identical to the ones for searching. When ”Match whole attribute” is
turned off, multiple replacements within one attribute are possible. When replacing ”a”

2.3. Advanced editing 26

with ”b” for example, ”banana” would change to ”bbnbnb”. Be sure to read section
49.3(955) about how to use regular expressions for replacing.

If the search is successful, the resultant node is selected and a confirmation dialog is
brought up that shows the target attribute and its value before and after the change.

Figure 2.9: The replace query dialog

It offers the following choices:

• When Replace is selected, the attribute’s value is changed and the search carries
on, showing the query again for the next match.

• Replace all means change this value and all the rest of the matches in one go
without asking again.

• Skip leaves this attribute unchanged. The search continues and the query dialog
is shown again in case of another match.

• Obviously Cancel ends the replace operation.

If you know what to expect you can skip the query entirely by selecting Replace all in the
replace dialog. After the attributes have been changed, the number of affected nodes is
shown in a message dialog.

After performing the actual replacement QF-Test will show a list of all touched nodes.3.1+
You can also open a list of all nodes, which will be touched before the actual replacement
pressing the ”Show result list” button in the replace dialog.

Whether values are replaced one by one or all at once also affects the way the undoNote
function will take these changes back. All changes of a Replace all operation are taken
back in one step, while single changes are undone one at a time.

2.3. Advanced editing 27

2.3.3 Complex searches and replace operations

Sometimes a simple search is not enough. Imagine, for example, that you want to set a3.3+
Timeout of 3000 milliseconds for all text checks on a certain component. You know the
component’s QF-Test ID, but if you search for that QF-Test ID you will also find events
and other kinds of checks referencing it. And if you search for the node text ’Check text’
you will find all Check text nodes, not just those for the given component.

Instead of providing several combinable levels of search criteria QF-Test offers complete
flexibility through its marks. First perform a search for your first criterion, e.g. the node
text and select ’Show result list’. In the resulting dialog select all entries in the table by
pressing

�� ��Ctrl-A , press ’Set mark’ to assign the blue mark to all result nodes and close
the dialog. You can now perform a second search or a replacement with the scope
limited to nodes with a given mark. In our example you would perform a replacement
of the empty string with ’3000’ on all Timeout attributes with the search scope set the all
nodes with the blue mark in the whole tree.

2.3.4 Multiple views

It is possible to open multiple views that show different parts of the same tree structure
simultaneously. This can be useful when managing large test suites or to compare the
attributes of different nodes.

Additional views are opened via the View→New window... menu item. The current
node will be the root node for the new view. Additional views are similar to the primary
views, but with a limited range of menus.

2.3.5 Hiding toolbar buttons

You can reduce the number of buttons shown in the toolbar by right-clicking the button
you want to hide and selecting Hide toolbar button from the popup menu.

In order to restore the original toolbar right-click it somewhere and select
Show all tooolbar buttons . In case you hid all toolbar buttons, please select
View→Show toolbar .

Chapter 3

Quickstart your application

2.0+
This chapter provides instructions on how to quickly set up your application as the SUT
(System Under Test).

The videoVideo

’The Quickstart Wizard Java’
https://www.qftest.com/en/yt/quickstart-wizard-java-42.html

shows how to work with the Quickstart Wizard for Java applications.

The video

’The Quickstart Wizard Web’
https://www.qftest.com/en/yt/quickstart-wizard-web-42.html

shows the Quickstart Wizard for web applications.

Quickstart Wizard for Android applications: Create a QF-Test setup sequence forAndroid
Android testing(234).

Quickstart Wizard for iOS applications: Create a QF-Test Setup sequence for iOSiOS
testing(255).

In order to make you application recognized by QF-Test as SUT it basically needs to be
started out of QF-Test. There are a number of special process nodes available within
the Insert→Process nodes to perform this task but the straight forward way is to use
the Quickstart Wizard as described below. For those with an aversion to wizard dialogs,
the manual way is explained at section 46.1(935).

A precondition for testing Java-based SUTs is that QF-Test can hook into the GUI toolkit:

For Swing/JavaFX or combined Swing/JavaFX and SWT applications QF-Test hooksSwing
into the Java’s JVM Tool Interface. Normally QF-Test can do this directly. Only for
some non-standard JDKs it may be necessary to instrument those first. See JRE
deinstrumentation(945) for details if necessary.

3.1. Setup sequence creation 29

For JavaFX applications and respective combinations the connection works exclusivelyJavaFX
via the QF-Test agent. Please ensure the option Connect via QF-Test agent(554) is acti-
vated.

For Eclipse/SWT-based applications, an instrumentation of the SWT library may be nec-SWT
essary. The Quickstart Wizard, which is described below, will automatically add the
necessary step to the setup sequence. For detailed technical information please see
section 47.2(946).

Web application testing does not require instrumentation but there are some constraintsWeb
to consider that are explained in chapter 14(208).

3.1 Setup sequence creation

With the Quickstart Wizard QF-Test offers a convenient utility for creating a startup se-
quence for your application.

You can open the Quickstart Wizard via the Extras→Quickstart Wizard... menu item or

the toolbar button. Please follow the steps which should be self explanatory.

3.1. Setup sequence creation 30

Figure 3.1: Quickstart Wizard

As result the Wizard delivers a startup sequence under the ”Extras”, as shown in the
following figure:

Figure 3.2: Startup sequence created by the Quickstart Wizard

3.2. Executing the setup sequence 31

The created setup sequence varies depending on the specific type of the application.
But all of them follow the same standard. At the beginning you will find a Set variable
node which specifies the name of the SUT client for QF-Test. This node is followed by a
Wait for client to connect node that checks whether its necessary to start the application.
The subsequent If evaluates the result of its predecessor and contains the start steps for
your application. The actual launch takes place in the start node which is specific to the
type of application. That node is followed by an other Wait for client to connect node which
ensures that QF-Test connects to your application during the startup procedure. (Details
about the different start node types and attributes can be found in section 46.1(935).)

For SWT-based applications an additional procedure call node for SWTSWT
instrumentation(946) is added.

The standard startup sequence for web includes some additional nodes for setting vari-Web
ables, initializing browser cache and cookie settings and possibly install a toolkit re-
solver. See chapter 14(208) for further information about starting a web based SUT.

3.2 Executing the setup sequence

The setup sequence can be executed directly after creation via selecting the green setup

sequence node in the tree and pressing ”Replay” toolbar button .

When executing the setup sequence your application should start up and the ”Start

recording” button in the QF-Test toolbar should become activated which indicates
that QF-Test is properly connected to the SUT.

Now you are able to record and replay your first test sequences as described in chapter
4(35). There is also a learning by doing tutorial available from the QF-Test help menu
which guides you through all features of QF-Test.

In case you are facing an error message or the red ”Start recording” button stays inac-
tive, please proceed with the following paragraph.

3.3 In case the client does not connect ...

If your application (or the browser window in case of web testing) doesn’t come up at
all:

• The error dialog QF-Test typically displays should provide a first indication.

• Please look for error messages in the terminal window. If there is no terminal
window visible in the bottom area of QF-Test, it can be activated through the menu

3.4. Program output and the Clients menu 32

item View→Terminal→Show . Additional information about program output can
be found in section 3.4(32).

• Be sure to double-check the attribute values in the setup sequence nodes are
correct. Possibly a typo has crept in somewhere. Details about the different start
node types and attributes can be found in section 46.1(935).

• As browser development cycles i.e. those of Firefox tend to shorten, be sureWeb
the installed browser is supported by the QF-Test version you are using. The
terminal output should show a respective error message. See section 1.1.3(4) for
the latest browser versions supported. Possibly you need to update QF-Test to
a later version or temporarily use another browser. See chapter 14(208) for further
information.

If the SUT gets visible but QF-Test is not able to connect to the client
(ClientNotConnectedException(901)):

• Please double-check the terminal output content (see also above) for possible
error messages.

• In case the case the red record button in the toolbar gets activated after the error
message occurred, the timeout value in the Wait for client to connect(709) node needs
to be increased.

• For an Eclipse/SWT application first make sure that you specified the correct ap-SWT
plication directory. You may want to take a look at the run log (see section 7.1(124))
to see if any warnings or errors were logged during execution of the Procedure
qfs.swt.instrument.setup.

• Check the run log in general for possible additional error indications (see section
7.1(124)).

After possibly having adapted your test suite or settings retry executing your setup se-
quence. If you are not getting any further you might want to consider trying a sample
test suite from the tutorial or you contact our support.

3.4 Program output and the Clients menu

The standard output and error streams of all processes started by QF-Test are captured
and stored in the run log under the node that represents the respective starter node. In
this QF-Test does not distinguish between SUT clients and arbitrary processes or shell
scripts started with a Start process(684) or Execute shell command(687) node.

3.5. An application started indirectly from an already connected SUT 33

The main window contains a shared terminal view that shows the output of all processes
started by a test that was run from this window. The View→Terminal sub-menu holds
items to configure whether this terminal is visible, whether the tree or the terminal should
use the are in the lower left corner, whether long lines are wrapped and whether it is
automatically scrolled to the end when new output arrives. Other items let you clear the
terminal or save its contents to a file. The maximum amount of text that the terminal
holds is configurable in the option Maximum size of shared terminal (kB)(501).

In addition to the shared terminal, for each active or recently terminated process there is
an individual terminal window that shows its output. These individual terminal windows
can be opened from the Clients menu. The shared terminal’s intention is to provide
visual feedback whenever new output arrives, while the individual terminals are better
suited for actually studying that output.

Active processes can also be stopped with the help of the Clients menu, either individ-
ually in the respective sub-menu or all at once with Clients→Stop all clients .

The number of terminated clients that are kept in the Clients menu is set with the option
Number of terminated clients in menu(499). If your processes generate lots of output and
you are low on memory you may want to reduce that number.

The Clients menu also serves well in case you are not sure which specific QF-TestNote
product you need to purchase. The GUI technologies used by your applications are
shown in ’[]’ next to the active client name. The example below shows two clients using
Java swing and web which suggests to buy a QF-Test/swing+web license.

Figure 3.3: GUI technology information

3.5 An application started indirectly from an already
connected SUT

If a second Java VM is started from an already connected SUT, QF-Test will recognize
this as an indirect connection attempt from a child process of the first SUT and automat-
ically assign an artificial client name to this new SUT. The name is created by appending
’:2’ to the client name of the parent SUT, signifying that this is the second process for

3.5. An application started indirectly from an already connected SUT 34

this client. Yet another Java VM started by either of these SUTs would get ’:3’ appended
to the original client name unless the second process was already terminated so the ’:2’
was again free for use.

To summarize, the sequence for connecting to an indirectly started SUT typically con-
sists of an event node that triggers something like a button click or menu selection,
causing the SUT to launch the second SUT, followed by a Wait for client to connect(709)

node for the ’:2’ extended client name.

Chapter 4

Capture and replay

Once the SUT is up and running under QF-Test, the next step is to record sequences of
events and play them back.

The videoVideo

’Capture and Replay’
https://www.qftest.com/en/yt/capture-replay-40.html

explains capturing and replaying of sequences.

The video

’Creating a test case’
https://www.qftest.com/en/yt/test case-40.html

shows how to create a test case.

Android
Recordings on Android or iOS applications will be done in a special recording window.iOS
For Android and iOS, actions on the SUT mentioned in this chapter refer to the record-
ing window. For more information about die recording window for Android please see
section 16.6(243), for iOS section 17.5(260).

4.1 Recording sequences

In order to record a sequence of events in the SUT, the SUT must have been run from
QF-Test (see chapter 3(28)) and the connection between QF-Test and the SUT must be
established. A visual indicator of this is the color of the record button which turns red
when it is enabled.

4.1. Recording sequences 36

Figure 4.1: Disabled and enabled Record button

To record a sequence, simply start recording be pressing the record button or se-
lecting Record→Start . Then switch to the SUT, execute a few commands, switch back

to QF-Test and stop the recording with the stop button or Record→Stop . The
recorded events will be added to the test suite, either directly at the position indicated
by the insertion marker(16) or as a new Sequence(577) under the Extras(588) node, depending
on the setting of the Insert recording at current selection(473) option. Pause the recording

with Record→Pause or the pause button if you need to execute some steps in the
SUT that should not be recorded and you don’t want to stop and restart the recording.

Recording mode can be started and stopped directly in the SUT by use of the Hotkey
for recording(473). Default key is

�� ��F11 .

Any Components(869) referred to by the newly recorded events are added automatically to
the Windows and components(881) node if they are not there already.

There are many options that influence the way QF-Test records events and how it treats
the components of the GUI. All of these are explained in detail in section 41.2(473) of the
reference manual. Once you are familiar with QF-Test you should take the time to skim
through it.

Here’s some general advice for recording:

• Record short sequences at a time.

• After recording, take a look at the sequence, try to understand what you got and
whether it represents the actions you took.

• Edit the sequence to remove unnecessary events, especially those at the begin-
ning and end caused by switching windows. QF-Test has excellent filters that
should catch nearly all of these, but some might remain and have to be removed
manually.

• Finally, try out the new sequence to see whether it replays OK. Then you can
cut/copy/paste as needed to integrate it into larger parts.

For SUT’s running on macOS QF-Test disables use of the screen menu bar and ac-Mac
tivates normal menu bar behavior like on other platforms. This is due to the fact that
QF-Test cannot fully access the screen menu bar which prevents proper capture/replay
of menu actions. In case the typical Mac screen menu bar behavior is necessary for any

4.2. Running tests 37

reason, this can be forced by adding the line qfs.apple.noScreenMenuBar=false
to the file qfconnect.properties that is located in QF-Test’s root directory. After
restarting the SUT the screen menu bar is supposed to work as normal on Mac.

For native Windows applications please also see section 15.4(218).Windows-
Tests

4.2 Running tests

To run some tests, select the node or nodes to execute and press
�� ��Return or the play

button or select Run→Start . QF-Test will mark each node with a small arrow as it
is executed and also show progress messages in the status bar. This can slow down
execution a little and can be turned off with the options Mark nodes during replay(495) and
Show replay messages in status line(495).

When the test is finished, the result is shown in the status bar. If things are fine you
should see ”No errors”, otherwise the number of warnings, errors and exceptions is
shown. Additionally, a message dialog is shown in case of errors or exceptions to make
sure you don’t miss these.

As for recording there are many options that influence the replay of tests. Some of these
are only for convenience while others have a major impact on the outcome of the tests.
Be sure to read section 41.3(493) some time to familiarize yourself with these.

To abort execution before the test is finished, press the stop button or select

Run→Stop . You can also suspend execution temporarily via the pause button or

by selecting Run→Pause . This will also enable the debugger (see chapter 7(123)). To
continue, press pause again.

While a test is run at full speed it can be tricky to stop or interrupt it, especially when
the mouse cursor is actually moved across the screen or the SUT’s windows are raised
on every event. To regain control, press the Hotkey for pausing test run (”Don’t Panic”
key)(494) (the default is

�� ��Alt-F12). This will pause all running tests immediately. To con-
tinue, press the same combination again.

While building a test suite you will often want to execute some sequences to get the
SUT to a point where you can continue recording. Sometimes you may want to skip
certain nodes at this stage because they don’t get you where you want, but you don’t
want to delete them or move them to some other place. In that case use the
Edit→Toggle disabled state menu item to disable the node(s). When you want to use

them again later you can re-enable them.

The current error state during replay as well as the final result is shown in the status
line at the bottom of the QF-Test main window. The visibility of this status line can be

4.3. Recording checks 38

controlled via View→Show status line .

In case Test set(566) or Test case(558) nodes (section 8.2(138) describes their usage) are exe-
cuted the status line also contains relevant result counters from the following list.

Counter Icon Description
Total number of test cases. This counter value starts with a ’>’ symbol in case there
are skipped test sets.
Number of test cases with exceptions.
Number of test cases with errors.
Number of test cases with expected errors. Expected to fail if...(564) marks a test case
expected to fail.
Number of successful test cases.
Number of skipped test cases. A test case is skipped when its (optional) Condition(563)

fails. This counter value starts with a ’>’ symbol in case there are skipped test sets.
Number of skipped test sets. A test set is skipped when its (optional) Condition(570)

fails.
Number of not implemented test cases. A test case is not implemented when it
doesn’t contain nodes that were executed during the test run.
Number of executed test cases.
Percent test cases passed.

Table 4.1: Test result counter in the status line

The final test result counts also appear in the report which can be created for any test
run. Reports are discussed in chapter 24(305).

The counter values above can also be accessed as variables(114) during the test run.Note
A TestRunListener(1140) can help to keep track of counter values and trigger dependent
actions.

4.3 Recording checks

Though it can be quite entertaining to record sequences and watch the magic dance
of the SUT as they are played back, the task at hand is to find out whether the SUT
actually works as expected. This is where checks(753) come into play. The most common
check, the Check text(754) node, reads the text displayed by a component, e.g. a text field,
and compares it to a given value. If the values differ, an error is signaled.

How checks work is explained in detail in the Reference manual(753). There is a range
available from simple text check to advance Check image(775) and even custom check
types(1126) can be implemented. Here we are going to concentrate on the most convenient
way to create checks, which is to record them.

4.4. Fetching data from the UI 39

While recording, the SUT is in record mode, which means that all events are col-

lected and sent to QF-Test. With the help of the check button or by selecting
Record→Check you can bring it into check mode, recognizable through the different

mouse cursor. In this mode, recording events is suspended. Instead, the mouse cursor
is tracked and the component under it is highlighted. When you click on the component,
a check for the component is recorded using the value that is currently displayed. To get
back to record mode, select the check button or menu item again.

There are different kinds of checks(753) that can be performed. Which kinds of checks
are applicable depends on the selected component. Some components don’t display
any text, so a Check text(754) node doesn’t make sense for, say, a scroll bar. Clicking on
a component with the right mouse button while in check mode brings up a menu of
applicable checks for this component. Select one of the items to create the respective
check node. Clicking with the left mouse button always records the default check, which
is the topmost one in the popup menu.

If you hold down the
�� ��Shift or

�� ��Ctrl key while clicking with the right mouse button, the
check menu will stay open after making a selection. That way, you can easily record
multiple kinds of checks for the same component.

Checks integrate well with events and you’ll soon develop a recording style a’la click,
click, type, click, check, click, click, check... Having to switch back and forth between
QF-Test and the SUT every time you want to create a check can be a real pain. That
is where the Hotkey for checks(474) option comes into play. It defines a key which toggles
the SUT between record mode and check mode. The default value is

�� ��F12 , but if this
key has some defined meaning for your application you can change it to whatever you
like. To record a sequence of interspersed events and checks, simply start recording,
switch to the SUT and record the sequence. Whenever you want to add some checks,
just press

�� ��F12 (or whatever you defined), record the checks, then switch back to record
mode by pressing

�� ��F12 again and continue. This way you can work with the SUT for the
whole sequence and need to switch back to QF-Test only to stop the recording.

One word of warning should be repeated: Don’t let this convenience tempt you into
recording extremely long sequences. When something changes that causes such a
sequence to fail you will be hard put to find out what went wrong and how to cope.

4.4 Fetching data from the UI

It is often necessary to read a value from the user interface of the SUT to use as input
for a test.

QF-Test offers a set of fetch nodes(786) for this task, available at Insert→Miscellaneous :

• Fetch text(786) to read the component or element text,

4.5. Recording components 40

• Fetch index(790) to read the element index,

• Fetch geometry(793) to read the component or element geometry.

The determined values are stored in a local or global variable which can be declared in
the fetch node.

Instead of inserting a fetch node by hand, it can be quicker to first record a mouse event
node on the desired component and then use the transform operation(17) to convert it into
the needed fetch node.

4.5 Recording components

As already described component information is automatically stored when recording
events or checks. However, there are situations where capturing of just components
proves useful.

To activate component recording mode you simply need to press the record components

button or select Record→Record components from the menu. Then switch to the
SUT window where you will notice that the component below the mouse cursor is now
highlighted.

Clicking with the left mouse button on a component will record the single component
while pushing the right button instead will pop up a menu with choices to record the
nested components as well or all components in the window. Multiple components can
be captured in this way. Then switch back to QF-Test and release the record com-

ponents button or deactivate Record→Record components . Now the recorded
component information is stored in shape of respective Component(869) nodes under the
Windows and components(881) node.

Component recording mode can be alternatively controlled by a configurable hotkey.
Default binding is

�� ��F11 , the option that configures it is Hotkey for components(481).

Pressing
�� ��F11 (default setting) in the SUT window starts component recording. Further

details can be found in the documentation for the option Hotkey for components(481).

Only one test suite at a time can receive the recorded components. If more than oneNote
test suite is open and each is shown in an individual window, i.e. workbench mode
is deactivated, either the test suite in which the recording is stopped (toolbar button
or menu) or - when using

�� ��F11 , the test suite that can be selected via the menu item
Record→Suite is receiver for recording will receive the components.

The component recording feature can also be used to quickly locate a component in-
dependent of whether it has been recorded before. When creating event or checks by
hand or changing the target component, the QF-Test component ID(727) attribute needs to

4.6. Recording of HTTP requests (GET/POST) 41

be specified. When a component is recorded, its QF-Test ID is saved in the clipboard
and can be pasted directly into the QF-Test component ID field with

�� ��Ctrl-V . You can
also jump directly to the Component node with

�� ��Shift-Ctrl-Backspace or by choosing the
Edit→Select next node menu item or clicking the respective toolbar button.

The context menu which appears when clicking with the right mouse button on a compo-
nent also contains an entry Show in Inspector which allows component inspection and

an entry Show methods which opens a dialog showing the methods of the UI element
(see section 5.12(96)).

Components play a central role in the structure of a test suite which is explained further
in chapter 5(42).

4.6 Recording of HTTP requests (GET/POST)
Web

In order to record a (GET/POST) request sent by the SUT, the SUT must have been
launched from QF-Test (see chapter 3(28)) and the connection between QF-Test and the
SUT must be established.

While recording, the SUT is in record mode, which means that all events are collected
and sent to QF-Test. By selecting Record→Record HTTP Requests you can bring
it into request recording mode. In contrast to Recording sequences(35) all GET/POST-
request send by the web browser are saved as http-request nodes in this special record-
ing mode. To get back to record mode, select the menu item again.

In section Web options(528) the ability to change the type of the recorded request is de-
scribed. By default Browser HTTP request(854) is recorded. This Request type is likely used
to automate large web form inputs, the use of separate input nodes will be avoided.
The form data will be submitted within the browser, so that the response will be shown
as well. At this point the test execution could be continued. In opposition to this the
Server HTTP request(848) will be directly submitted through QF-Test without the need of a
running browser. The response is also only available in QF-Test and a eventually run-
ning browser will not be affected.

All attributes of an accordingly recorded request node as well as the parametrization of
requests are explained in detail in the HTTP Requests(848) section of the reference part
of this manual.

Chapter 5

Components

Though they often go unnoticed, at least until the first
ComponentNotFoundException(896) occurs, the Component(869) nodes are the heart of
a test suite, since stable component recognition is the central challenge of a good GUI
testing tool. QF-Test takes care of it most of the time, but some special situations
require manual definitions or interventions. Thus it is important to understand
components and their handling in QF-Test and this chapter aims to explain the
fundamentals.

Videos
The videoVideo

’Component recognition’
https://www.qftest.com/en/yt/component-recognition.html

first explains the criteria for component recognition, then (starting at min 13:07)
the use of generic components using regular expressions, followed by generic
components using variables in component recognition attributes.

There are two videos available explaining in detail how to deal with a
ComponentNotFoundException:

• ’ComponentNotFoundException - Simple
case’

https://www.qftest.com/en/yt/componentnotfoundexception-simple-40.html

• ’ComponentNotFoundException - Complex
case’

https://www.qftest.com/en/yt/componentnotfoundexception-complex-40.html

The video

Components 43

’Dealing with the explosion of complexity in web test automation’
https://www.qftest.com/en/yt/web-test-automation-40.html

gives you a good idea of how QF-Test handles a deeply nested DOM structure.

Live recording of the special webinar
’Component recognition’
https://www.qftest.com/en/yt/component-recognition-51.html

.

GUI actions and components Ac-
tions by the end-user on the Components of a GUI(44) are transformed into events by
QF-Test. Every event has a target component. For a mouse click this is the compo-
nent under the mouse cursor, for a key press it is the component that has keyboard
focus. When an event is recorded by QF-Test, additional information about the target
component is recorded as well, so that the event can later be replayed for the same
component.

Recognition
Component recognition is one of the most complex part of QF-Test. The reason is the
need to allow for some degree of change. QF-Test is a tool designed for regression
testing, so when a new version of the SUT is tested, tests should continue to run,
ideally unchanged. So when the GUI of the SUT changes, QF-Test needs to adapt. If,
for example, the ”OK” and ”Cancel” buttons were moved from the bottom of the detail
view to its top, QF-Test would still be able to replay events for these buttons correctly.
The extent to which QF-Test is able to adapt depends on the available recognition
criteria. In this area software developers often can, with relatively low effort, make a
great contribution to the creation of robust regression tests.

The following criteria are available for component recognition:

• Class(56), correlates with the component’s function

• Name(58), based on the Component identifiers(59)

• Feature(63), a piece of text belonging to the component

• Extra features(66), further recognition features like a description or tooltip

• Index(69)

• Geometry(69)

• Component hierarchy(69)

These criteria figure into recognition with varying importance. Especially important are
a component’s class and Component identifiers(59). With the latter, developers can
make a great contribution to test stability (see How to achieve robust component
recognition(49)). For more information, see Weighting of recognition features for
recorded components(948).

5.1. Components of a GUI 44

For native Windows applkations please also refer to section 15.5(219).Windows-
Tests

Storing recognition information
Information about recognition can be stored by QF-Test either in a Component node(70)

or directly in the event nodes as a SmartID(72). In Component nodes versus SmartID(46)

you will learn which option is preferrable for which use case.

By default, QF-Test will record Component nodes.

Child elements and nested components
There are some components that QF-Test addresses relative to a parent component.
Among these are table cells, list entries, tree nodes, button icons, or a checkbox inside
a table cell.

QF-Test has special ways of addressing these components. This topic is explained in
detail in Sub-items: Addressing relative to a parent component(82).

Also, QF-Test offers the ability to define Scope(80) to limit actions (clicks, text entry,
checks) to components contained within.

5.1 Components of a GUI

The graphical user interface (GUI) of an application consists of one or more windows
which hold a number of components. These components are nested in a hierarchical
structure. Components that hold other components are called containers. As QF-Test
is itself a complex application, its main window will serve well as an example:

5.1. Components of a GUI 45

Figure 5.1: Components of a GUI

The window contains a menu bar which holds the menus for QF-Test. Below that is
the toolbar with its toolbar buttons. The main area employs a split pane to separate
the tree view from the details. The tree view consists of a label (”Test suite”) and the
tree itself. The detail view contains a complex hierarchy of various components like
text fields, buttons, a table, etc. Actually there are many more components that are not
obvious. The tree, for example, is nested in a scroll pane which will show scroll bars if
the tree grows beyond the visible area. Also, various kinds of panes mainly serve as
containers and background for other components, like the region that contains the ”OK”
and ”Cancel” buttons in the detail view.

Unless explicitly stated otherwise, the term ”component” in this manual refers to ele-
ments of a GUI, regardless of what the individual components are called in the respec-
tive GUI technology.

5.2. Component nodes versus SmartID 46

5.2 Component nodes versus SmartID

Regognition criteria can be linked to events in tests in two different ways. With the clas-
sic method, the criteria are stored as attributes of a Component(869) node (see Component
node(70)). These are then referenced in the tests via their QF-Test component ID. Alterna-
tively, GUI elements can be addressed directly by the recognition criteria via SmartID(72).
Components are not necessary in that case.

SmartIDs and classic recorded Component nodes can be used alternatingly, and even
combined when necessary. The following points may help you decide whether to use
SmartIDs or record components.

• Improved readability of tests(46)

• Test-driven development(47)

• Keyword-driven testing(47)

• Stability of recognition(48)

• Maintainability(48)

• Performance(49)

5.2.1 Improved readability of tests

SmartIDs offer advantages over recorded Component nodes in the following situation:

The referenced GUI components should be directly recognizable in event and check
steps. If the Component identifiers(59) of the components are cryptic, but usable descrip-
tions are available, SmartIDs have the advantage.

Figure 5.2: Readability of SmartIDs

5.2. Component nodes versus SmartID 47

Figure 5.3: Readability of identifiers

The readability of a test can also be improved in procedures, if description-based Smar-
tIDs can be used instead of cryptic identifiers.

SmartIDs also can increase readability for fields with the same recognition criteria but
differently labeled container panels. In the following example, the SmartIDs #Shipping
address@#Last name and #Billing address@#Last name could be used.

Figure 5.4: Readability of SmartIDs in panels with description

5.2.2 Test-driven development

With test driven development, the big advantage offered by SmartIDs is that no
Components need to be created. Additionally, in test driven development Component
identifiers(59) are often defined in the technical design and can then be used for test
creation. For example, if the component identifier is btnOK, the component can be
referenced via the SmartID #btnOK.

5.2.3 Keyword-driven testing

Keyword-driven tests are implemented on a technical level with procedure calls and pa-
rameters. This way, the test creator does not record any components and is dependent

5.2. Component nodes versus SmartID 48

on visual information from the GUI for identifying components. This could be the label
of the component or its function (class). In a SmartID, these possibilities for recognition
can also be combined with each other and with an index.

5.2.4 Stability of recognition

The stability of recognition is equally good with recorded components and SmartIDs if
the SmartID uses the name, if possible in combination with the class. At it’s core, stability
of recognition depends on the probability of change of the used criteria. If, for example,
the label of a component is stable across versions of an application, the recognition via
a label-based SmartID (Feature(63) or qfs:label* variants(66)) will be stable as well.

Recorded Component nodes use a predefined algorithm for recognition. It gives different
importance to individual recognition criteria. Class, name, and hierarchy have the high-
est priority. If no name is present, hierarchy, label, index, and geometry (in descending
importance) are combined into a probability. That probability is the basis for deciding if
a GUI element is the wanted component.

This algorithm has proven very good for most usage scenarios. However, there are
cases in which subordinate recognition criteria (like the label) offer greater stability than
the higher-weighted criteria. With recorded Component nodes, we could intervene via a
resolver, see The resolvers module(1075). However, the strengths of the SmartID get
to shine here, because it can specifically target a stable recognition criterium (or even a
combination of multiple criteria).

This is the case when, for example, the label is more stable than the Component
identifiers(59).

SmartIDs also have advantages when there is a big chance of changes to the compo-
nent hierarchy during version changes (or even just during application start) or if recog-
nition features of parent components change. SmartIDs don’t consider the component
hierarchy by default.

5.2.5 Maintainability

Regarding the maintainability, recorded Component nodes have the upper hand, because
recognition criteria are stored centrally in the node, and later changes only need to be
performed in this one place.

With SmartIDs however, recognition criteria are stored decentrally. It is possible to per-
form changes across tests via the powerful search-and-replace feature. For SmartIDs
with the same recognition criteria for different components, manual tweaking may still
be necessary.

5.3. How to achieve robust component recognition 49

5.2.6 Performance

SmartIDs that use Component identifiers(59) can keep up well with a Component node
performance-wise, because the recognized Names are indexed.

However, if the SmartID uses the label (Feature(63) or qfs:label* variants(66)) or other
Extra features(66), performance will not be as good as with recorded Component nodes,
since the GUI elements are not filtered by Class name beforehand and all GUI elements
with matching classes must be searched.

5.2.7 Combining Component nodes and SmartIDs

Recorded Component nodes can be combined with SmartIDs. You can find details
about this in Sub-items: Addressing relative to a parent component(82) and Component
QF-Test ID as SmartID(80).

Recorded components can be used to overlay the SmartID syntax by setting their
QF-Test ID(870) to a SmartID including prefix ”#”. This allows simple, data-driven or pre-
generated tests to be created with SmartID and only at neuralgic points to define indi-
vidual components more specifically without having to adapt the tests or procedures for
this.

5.3 How to achieve robust component recognition

The most important feature of a GUI test tool is the recognition of the graphical com-
ponents. QF-Test offers a lot of configuration options for this. This section presents an
overview over the most common strategies and settings to make component recognition
as stable as possible.

You should define a component recognition strategy for your project before starting toNote
implement tests in QF-Test. Otherwise, test maintenance can create larger expenses.

The recognition of components in the SUT during test playback is very complex. The
challenge lies in the changes the interface of the SUT can go through all the time even
during normal use. Windows are opened and closed or varied in size, changing the po-
sition and size of components within. Menus and combo boxes are opened and closed,
components are added or removed, made visible or inisible, activated or disabled. In ad-
dition, the application under test itself will develop over time, which will reflect in changes
to its interface. All these changes must be handled flexibly by QF-Test to be able to
match components as reliably as possible.

In many cases, QF-Test can manage this with the default settings. QF-Test uses an
intelligent, probability-based algorithm to achieve a stable and fault tolerant component

5.3. How to achieve robust component recognition 50

recognition. It assesses the attributes described in The following criteria are available
for component recognition: 5(43) and weights them. However, if no good recognition
attributes are available, even the best algorithm will struggle. For this case, there are
possiblilites for configuration and optimization which are described in Opportunities for
optimization(54).

The first question is whether the default settings are already sufficient, so:

5.3.1 How to judge robust component recognition

This section is intended to enable you to assess whether the current component recog-
nition will, in all likelihood, be robust.

The following are important elements of robust component recognition:

• Class(56) of the component

• Name(58)

• label (Feature(63) or qfs:label* variants(66))

• moderate hierarchy depth of the component tree

In most cases, the class and the name are the most robust criteria for recognition. (In
rare cases, however, they change from one version of the application to the next. We
consider this messy case in Opportunities for optimization(54), item 2.) Usually the label
of the component also rarely changes and is thus also well suited. Detailed information
on all the detection features can be found in Recognition criteria(56).

With the class, QF-Test tries to derive which functionality a component has from the
class used by the developer. Based on this generic class, QF-Test optimizes the inclu-
sion and provides function-specific checks (for example, checking an entire row for a
table).

First, let’s show you how to quickly see if generic classes have been detected and if
names or labels are present based on the recorded Component(869) nodes.

5.3. How to achieve robust component recognition 51

Figure 5.5: Component tree 1

The class is the black text of the Component nodes. If the class starts with an uppercase
letter followed by a lowercase letter, it is generally one of the Generic classes(1242), for
example Button. For browser elements, if the class consists only of uppercase letters,
QF-Test could not determine the functionality. In the example HTML and BODY.

Whether names or labels are present can be seen from the brown texts. This is the
QF-Test component ID, which allows the following conclusions to be drawn:

• If the class does not show up in the QF-Test ID, it means that either a Name(58) is
present (in the example, CalculatorPanel and CalculatedPrice) or, if no
generic class was recognized, a label (Feature(63) or qfs:label* variants(66)) is
present. In the example, CarConfigWeb.

• If the QF-Test ID starts with the class, no Name(58) could be determined and the
following part is the label of the component (Feature(63) or qfs:label* variants(66)).
In the example labelTotal and buttonOK.

• If neither name nor label are found, the QF-Test ID repeats the class in lowercase
letters. In the example html.

• If multiple components would be assigned the same QF-Test ID with the described
algorithm, an ongoing number will be appended. In the example buttonOK2

A certain hierarchy for components is helpful for recognition. Only deep nestings areVideo
problematic. For component recognition, only few hierarchy levels are actually relevant.
The others can be ignored. The video

’Dealing with the explosion of complexity in web test automation’
https://www.qftest.com/en/yt/web-test-automation-40.html

visualizes the problem of deep nestings - and also the solutions. The example above
only has a shallow hierarchy depth. This is optimal.

The component tree in the example above was created with the following settings in theNote

section Record→Components :

5.3. How to achieve robust component recognition 52

• Prepend QF-Test ID of window parent to component QF-Test ID(486) disabled, which
corresponds to the default setting.

• Prepend parent QF-Test ID to component QF-Test ID(487) set to Never, which also
corresponds to the default setting.

Access these settings via the menu item Edit→Settings

As an alternative to evaluating the QF-Test ID in the component tree you can get a list
of all components with their names via the QF-Test search. To do this, in the search
dialog, set In Attribute to Name and Node type to Component and click on Show
Result List.

If you record something, the components you interact with will automatically be
recorded. To record all components at once for analysis, choose
Record→Record components . Then right-click in the GUI and select Whole

window. (After the analysis it makes sense to delete the components to avoid
unnecessary ballast.)

Here are two more example component trees with evaluation of how robust the compo-
nent recognition is.

Example 1

Figure 5.6: Stable component recognition - Example 1

5.3. How to achieve robust component recognition 53

Positive: Generic classes(1242) are recognized: MenuBar, TabPanel, Panel, Label,
and TextField.

Positive: Names were determined for the text fields marked green, identifiable by the
QF-Test ID (brown text) not starting with the class, for example BasePrice.

Positive: For the text fields and buttons marked yellow, no names were determined,
identifiable by the QF-Test ID (brown text) starting with the class (textfield, button).
But the second part of the QF-Test ID shows that at least a label was found.

Not important: the labels don’t have names. However, they are rarely relevant for testing.

Not important: the containers ’HTML’ and ’BODY’ don’t have a generic class. They could
be mapped to ’Panel’. In this case, this would neither improve recognition nor unlock
additional functionality in QF-Test (such as additional checks for check recording).

Positive: No superfluous containers except for BODY.

Example 2

Figure 5.7: Stable component recognition - Example 2

Positive: Names or labels could be determined for test-relevant components, identifiable
by the QF-Test ID (brown text) not starting with the class, for example BasePrice and

5.3. How to achieve robust component recognition 54

DiscountValue_input.

Negative: Generic classes were only recognized for few components. A component
mapping with a CustomWebResolver is missing here, see Improving component
recognition with a CustomWebResolver(1004).

Negative: Superfluous hierarchy levels. The DIV, TR TD, CENTER, and TABLE com-
ponents should be mapped to Panel (see The Install CustomWebResolver node(1008)) or
ignored (see Install CustomWebResolver node – Syntax(1009), parameter ignoreTags).

5.3.2 Opportunities for optimization

If generic classes and names are available for the relevant components, you can assume
that component detection is robust in the vast majority of cases and skip the rest of this
section.

If there are problems with recognition, there are two fundamentally different cases to
consider:

Is the component displayed (in time)?
This case is unrelated to component recognition itself. It occurs if QF-Test is too

fast for the application, so to speak. In this case, you should explicitly wait for the
appearance of the component in your test case. Find more information at Timing
synchronisation(90).

Is the displayed component recognized?
There are several options here:

Web: Assignment of generic classes to GUI element classes
For web applications, please first perform component assignment as

described in The Install CustomWebResolver node(1008). If this does not lead to
sufficient stability, then continue reading in this section.

Unstable Component Identifiers
Component identifiers(59) have been assigned, but they are not stable across

application versions. In this case, it is better to remove the identifiers using
resolvers and work with the remaining detection criteria if stable identifiers
cannot be set by the developers.
In the case of web tests, a corresponding setting in CWR parameter ’custo-
mIdAttributes’ (see Install CustomWebResolver node – Syntax(1009)) can help.

No component identifiers
No Component identifiers(59) has been assigned and the other criteria are

not sufficiently stable. Here it is also often worthwhile to contact
development and explain to them the relevance of component identifiers for
regression tests - or to convince the person who is responsible for

5.3. How to achieve robust component recognition 55

development and testing in terms of budget that a small amount of additional
work in development for entering the identifiers can mean a significant
reduction in effort in the test department.
If this is not possible, there may be other stable recognition criteria which QF-
Test does not use by default. These can be announced via a name resolver
(see section 54.1.7(1082)).

Component identifiers contain stable parts
Only parts of the Component identifiers(59) are stable. If a computer-readable
schema is available, this may be a case for a name resolver (see section
54.1.7(1082)). For a web application, this can also be defined via the CWR
configuration category ’autoIdPatterns’ (see Install CustomWebResolver node
– Syntax(1009)).

The components have labels wich QF-Test does not recognize out of the box
There is no name and the default QF-Test algorithm does not detect a

feature or extra feature ’qfs:label’, even though there are possible candidates
available. In this case you can announce the labels through a
FeatureResolver (see section 54.1.10(1086)) or ExtraFeatureResolver (see
section 54.1.11(1087)).
Web components sometimes have an attribute which can be used as a la-
bel. This can be announced through the CustomWebResolver category ’at-
tributesToQftFeature’ (see Install CustomWebResolver node – Syntax(1009)).

Parts of the feature or extra feature ’qfs:label’ are stable
In this case you can either use regular expressions directly in the Component
node or in the SmartIDs. But the solution could also be a FeatureResolver
(see section 54.1.10(1086)) or ExtraFeatureResolver (see section 54.1.11(1087)).

Parent components are unstable
The component itself is stable, but one of its parent containers is not stable.

Here, regular expressions or resolvers for the affected containers can help. If
all test-relevant components have names, the option Name override mode
(record)(484) in section Record→Components→Name override mode can
also be set to ”Override everything”.
The use of SmartIDs is also an option here.

Additional or missing parent components
The component itself is stable, but its containing hierarchy is not stable

because containers can appear or disappear. If all test-relevant components
have names, the option Name override mode (record)(484) in section
Record→Components→Name override mode can be set to ”Override

everything”.
Alternatively, the component can be moved up in the component tree hierar-
chy, so it is no longer influenced by the unstable containers.

5.4. Recognition criteria 56

The use of SmartIDs is an option here as well.

Component structure or index
The attribute Class index(874) plays a subordinate role, but comes to effect if

the component recognition must do without name and feature or the extra
feature ’qfs:label’. If the Class index is unstable as well, it can be deleted so
the geometry comes to effect. In this case the window size of the application
to be tested should always be set to the same value after lauch (see
Component event(740)).

5.4 Recognition criteria

5.4.1 Class

The class of a component is a very important attribute as it describes the type of the
recorded component. Once QF-Test records a button, it will only look for a button on
replay, not for a table or a tree. Thus the component class conveniently serves to parti-
tion the components of a GUI. This improves performance and reliability of component
recognition, but also helps you associate the component information recorded by QF-
Test with the actual component in the GUI.

Besides its role in component identification, the class of a component is also important
for registering various kinds of resolvers that can have great influence on the way QF-
Test handles components. Resolvers are explained in detail in section 54.1.7(1082).

The Name is used here for generating the QF-Test component ID. Examples for this can
be found in How to judge robust component recognition(50).

In a SmartID(72) components can also be directly addressed via their Names, without
recording a Component node(70).

The influence of the class on the QF-Test ID(870) of the component is described below,
usage as SmartID in section 5.6(72).

Generic classes

Each UI toolkit usially defines its own system-specific classes for components like
Buttons or Tables. In case of Buttons, that definition could be javax.swing.JButton
for Java Swing, or org.eclipse.swt.widgets.Button for Java SWT, or
javafx.scene.control.ButtonBase For JavaFX, or INPUT:SUBMIT for web
applications. In order to allow your tests to run independently of the utilised concrete
technology QF-Test unifies those classes via so-called generic classes, for example all
buttons are simply called Button now.

5.4. Recognition criteria 57

You can find a detailed description of generic classes in chapter 61(1242). In addition to the
generic class, systen specific classes are recorded as Extra features(871), but with the sta-
tus ”ignore”. In case of recognition problems because of too many similiar components,
these can be enabled to sharpen recognition, even if detracting from flexibility.

Swing
Even if the class was extended, the generic class will be recorded. Additionally, it shouldJavaFX
be mentioned that this concept allows QF-Test to easily create tests with obfuscated
classes without having to change the default settings. During replay, QF-Test compares
the recorded Class name attribute of the component with each class of the object in the
SUT. Therefore, QF-Test can handle class name changes as long as the base type
remains the same.

HTML is a very flexible language to describe content and structure of a website. ThereWeb
is only a minimum of quasi-standards like INPUT:SUBMIT, for which you can always
expect the same functionality and which can therefore be assigned to a QF-Test class
by default. The development of web applications usually happens via toolkits which use
their own standards. QF-Test includes class mappings for a range of commonly used
toolkits, see Special support for various web frameworks(1047). If the developers of the
application extended a toolkit or used a custom one, it will be necessary to announce
the class mapping to QF-Test. This is described in Improving component recognition
with a CustomWebResolver(1004).

If QF-Test can assign a component a generic class, this will gain the following advan-
tages for test creation and execution:

Independence from concrete technical classes
With generic classes, a certain independence from the concrete technical

classes is established. This concept allows you to create tests independent of the
concrete technology.

Improved component recognition
If the functionality of the component is known, the most suitable recognition

criteria can be stored.

Example button: The button label is the first choice for the Feature and the extra
feature ’qfs:label’.

Example text field: It does not make sense to use the text value for recognition.
Instead, QF-Test searches for a label nearby and stores this in the extra feature
’qfs:label’.

The generic class itself also is a differentiation criterium. This is especially notice-
able in web applications, where most components will be recorded with the class
DIV, matching their HTML tag by default.

Optimal mouse position during replay
The generic class also influences the optimal mouse position during event replay.

5.4. Recognition criteria 58

Example button: The mouse click is ideally placed in the middle of the button.

Example text field: The mouse click is ideally placed in the same place where the
tester clicked during recording, so text can be inserted in exactly the same place
if needed.

Class-specific checks
In addition, QF-Test offers additional class-specific checks during recording. For

example, text fields can be checked for their editable state. Check items(765)

however only make sense for lists, tables or trees.

5.4.2 Name

In case the developers have assigned Component identifiers(59) to a component, QF-Test
will recognize this and use it, if suitable, for the attribute Name(871).

If a value for Name(871) was found, it will also be used for generating the QF-Test ID(870) of
the component. Examples for this can be found in How to achieve robust component
recognition(49).

The value of the Name attribute is also the first choice during recording of SmartID(72)s.

The reason for the tremendous impact of names is the fact that they make component
recognition reliable over time. Obviously, locating a component that has a unique name
assigned is trivial. Without the help of a name, QF-Test uses lots of different kinds of
information to locate a component. The algorithm is fault-tolerant and configurable and
has been fine-tuned with excellent results. However, every other kind of information
besides the name is subject to change as the SUT evolves. At some time, when the
changes are significant or small changes have accumulated, component recognition
will fail and manual intervention will be required to update the test suite.

Another aspect of names is that they make testing of multi-lingual applications indepen-
dent of the current language because the name is internal to the application and does
not need to be translated.

Test automation can be improved tremendously if the developers of the SUT have ei-
ther planned ahead or are willing to help by defining names for at least some of the
components of the SUT. Such names have two effects: They make it easier for QF-Test
to locate components even after significant changes were made to the SUT and they
are highly visible in the test suite because they serve as the basis for the QF-Test IDs
QF-Test assigns to components. The latter should not be underestimated, especially for
components without inherent features like text fields. Nodes that insert text into com-
ponents called ”textName”, ”textAddress” or ”textAccount” are far more readable and
maintainable than similar nodes for ”text”, ”text2” or ”text3”. Indeed, coordinated naming
of components is one of the most important factors for the efficiency of test automation
and the return of investment on QF-Test. If development or management is reluctant to

5.4. Recognition criteria 59

spend the little effort required to set names, please try to have them read this chapter of
the manual.

If developers used another consistent scheme for assigning identifiers which QF-Test
does not recognize out of the box, please take a look at Influencing the ’Name’ attribute
by implementing a NameResolver(62).

When determining distinct Names, the options Name override mode (replay)(509) and
Name override mode (record)(484) can be set to ”Override everything”, which makes the
component recognition independent from the component hierarchy. Because of name
caching, this will gain maximum performance.

To simplify assigning of identifiers, QF-Test offers a feature to suggest identifiers for
components whose testing would benefit from it. Read more about this in Hotkey for
components(481).

Changes to identifiers in the application under test should be avoided as much as pos-Note
sible, as this undermines component recognition and can mean a lot of rework in the
tests. Please note that if changes do occur, they should be made in the Name(871) at-
tribute of the component and not in the QF-Test ID(870) attribute, which is only used to
reference the component in the tests! Another possible difficulty can be that the name
change occurs directly in the test in the reference to the component, for example when
a mouse click occurs in the QF-Test component ID(727) attribute. The test then fails with an
UnresolvedComponentIdException (903).

Component identifiers

Component identifiers are called differently in the different UI technologies. In the man-
ual, the term ’name’ is also used for them. In addition, the criteria for whether and how
the identifiers are transferred to the ’name’ attribute are slightly different depending on
the technology.

The following is valid for the default settings, especially of Name override mode
(replay)(509) and Name override mode (record)(484) (default value: ”Hierarchical
resolution”). The use of resolvers could change the described behavior as well.

Java Swing/AWT
The component identifier is called ’Name’ here. If set, it will be transferred to the

Name attribute. If there are duplicate component identifiers inside a container,
QF-Test will create the Extra feature(871) qfs:matchindex with the appropriate
index for the duplicates.

All AWT and Swing components are derived from the AWT class Component.
That is why their setName method is the standard for Swing SUTs. Thanks to this
standard, many developers make use of it even without considering test automa-
tion, which is a great help.

5.4. Recognition criteria 60

JavaFX
The component identifier is called ’ID’, here. If set, it will be transferred to the

Name attribute. If there are duplicate component identifiers inside a container,
QF-Test will create the Extra feature(871) qfs:matchindex with the appropriate
index for the duplicates.

For JavaFX, setId is used to assign names to components (here called ”nodes”).
Alternatively, IDs can be set in FXML via the attribute fx:id. Although IDs of
nodes are supposed to be unique, this is not enforced.

Java SWT
The component identifier is also called ’Name’, here. If set, it will be transferred

to the Name attribute. If there are duplicate component identifiers inside a
container, QF-Test will create the Extra feature(871) qfs:matchindex with the
appropriate index for the duplicates.

Unfortunately SWT has no inherent concept for naming components. An
accepted standard convention is to use the method setData(String key,
Object value) with the String ”name” as the key and the designated name as
the value. If present, QF-Test will retrieve that data and use it as the name for the
component. Obviously, with no default naming standard, very few SWT
applications today have names in place, including Eclipse itself. Fortunately
QF-Test can derive names for the major components of Eclipse/RCP based
applications from the underlying models with good results - provided that IDs
were specified for those models. See the Automatic component names for
Eclipse/RCP applications(485) option for more details.

Web
The natural candidate for naming the DOM nodes of a web application is the ’id’

attribute of a DOM node - not to be confused with the QF-Test ID attribute of
QF-Test’s Component nodes. Unfortunately the HTML standard does not enforce
IDs to be unique. Besides, ’id’ attributes are a double-edged sword because they
can play a major role in the internal JavaScript operations of a web application.
Thus there is a good chance that ’id’ attributes are defined, but they cannot be
defined as freely as the names in a Swing, JavaFX or SWT application. Worse,
many DHTML and Ajax frameworks need to generate ’id’ attributes automatically,
which can make them unsuited for naming. The option Use ID attribute as
name(528) determines whether QF-Test uses ’id’ attributes as names.

Fortunately, component identifiers can be realized via different attributes of the GUI
element. Mostly it is the attribute ’id’, sometimes also ’name’ - but other attributes
can be used as well.

The option Use ID attribute as name(528) determines whether QF-Test uses ’id’
attributes for names or not. Please keep in mind that the option Eliminate all
numerals from ’ID’ attributes(529) can also cause originally unique identifiers to not

5.4. Recognition criteria 61

be unique anymore after the deletion of the numbers. When checking if the re-
solved Name is unique, the component’s parent containers will be considered
when judging uniqueness if the options Name override mode (replay)(509) and Name
override mode (record)(484) are set to the default value ”Hierarchical resolution”.

The automatically generated ’id’ attributes sometimes contain a static part which
can be used as identifier. This can be configured through the CWR category
autoIdPatterns, see Install CustomWebResolver node – Syntax(1009). Also, this
procedure can be used with the customIdAttributes parameter to use any
other HTML attribute as a component identifier.

In case of web applications that use a UI toolkit supported by QF-Test, you can
look at section 51.2.2(1049) to learn more about setting unique identifiers for each
toolkit.

Win
The component identifier is called ’AutomationId’ here. If set, it will be transferred
to the Name attribute. If there are duplicate component identifiers inside a
container, QF-Test will create an Extra feature(871) named qfs:matchindex and
an appropriate index for the duplicates.

Android
The component identifier is called ’ID’, here. It will only be transferred to the

Name attribute if it is not a trivial class name (see Android - list of trivial
component identifiers(952)). If there are duplicate component identifiers inside a
container, QF-Test will create the Extra feature(871) qfs:matchindex with the
appropriate value for the duplicates.

About setting identifiers

There is one critical requirement for identifiers: They must not change over time, not
from one version of the SUT to another, not from one invocation of the SUT to the
next and not while the SUT executes, for example when a component is destroyed and
later created anew. Once an identifier is set it must be persistent. Unfortunately there
is no scheme for setting identifiers automatically that fulfills this requirement. Such
schemes typically create identifiers based on the class of a component and an incre-
menting counter and invariably fail because the result depends on the order of creation
of the components. Because identifiers play such a central role in component identifi-
cation, non-persistent identifiers, specifically automatically generated ones, can cause
a lot of trouble. If development cannot be convinced to replace them with a consistent
scheme or at least drop them, such identifiers can be suppressed with the help of a
NameResolver as described in section 54.1.7(1082).

QF-Test does not require ubiquitous use of identifiers. In fact, over-generous use can
even be counter-productive because QF-Test also has a concept for components being

5.4. Recognition criteria 62

”interesting” or not. Components that are not considered interesting are abstracted away
so they can cause no problem if they change. Typical examples for such components
are panels used solely for layout. If a component has a non-trivial identifier QF-Test will
always consider it interesting, so naming trivial components can cause failures if they
are removed from the component hierarchy in a later version.

Global uniqueness of identifiers is also not required. Each class of components has its
own namespace, so there is no conflict if a button and a text field have the same iden-
tifier. Besides, only the identifiers of components contained within the same window
should be unique because this gives the highest tolerance to change. If your compo-
nent identifiers are unique on a per-window basis, set the options Name override mode
(replay)(509) and Name override mode (record)(484) to ”Override everything”. If identifiers
are not unique per window but identically named components are at least located inside
differently named ancestors, ”Hierarchical resolution” is the next best choice for those
options.

Two questions remain: Which components should have identifiers assigned and which
identifiers to use? As a rule of thumb, all components that a user directly interacts with
should have an identifier, for example buttons, menus, text fields, etc. Components
that are not created directly, but are automatically generated as children of complex
components don’t need an identifier, for example the scroll bars of a JScrollPane, or
the list of a JComboBox. The component itself should have an identifier, however.

If components were not named in the first place and development is only willing to
spend as little effort as possible to assign identifiers to help with test automation, a
good strategy is to assign identifiers to windows, complex components like trees and
tables, and to panels that comprise a number of components representing a kind of
form. As long as the structure and geometry of the components within such forms
is relatively consistent, this will result in a good compromise for component recognition
and useful QF-Test ID attributes. Individual components causing trouble due to changing
attributes can either be named by development when identified or taken care of with a
NameResolver.

Influencing the ’Name’ attribute by implementing a NameResolver

In GUI testing projects you can face a lot of interesting naming concepts. Sometimes
the components in an application have no names, but the testers know an algorithm
how to name them reliably. Sometimes existing names change from time to time or are
completely dynamic, for example you can get a name ’button1’ after the first recording
and after the second recording you get ’button2’. Another situation could be that the
current version of the application is part of the name of a dialog window.

Sometimes the tester knows an algorithm for setting unique Namen. In such cases
you should take a closer look at The NameResolver Interface(1082) in the chapter The

5.4. Recognition criteria 63

resolvers module(1075).

A NameResolver can be used to change or remove names set by developers for the
QF-Test perspective. They are only removed for QF-Test not from the real source code.

You can think about utilizing NameResolvers in following cases:

• The SUT has dynamically changing names.

• You know a method to set the names uniquely.

• You want to map names to other names (for example due to new versions or for
testing other languages.)

• You want to tune the names of components, for example to remove some parts
and get nicer QF-Test component IDs in QF-Test.

If you can achieve per-window uniqueness of names with the help of a NameResolver
you can also think about setting the options Name override mode (replay)(509) and Name
override mode (record)(484) to ”Override everything”.

Whenever possible it is preferable that developers set the names directly in their sourceNote
code as they best know the context of that component. Implementing a NameResolver
can become an excruciating task if the developers change the content of the GUI a lot.

NameResolvers are described in detail in section 54.1.7(1082).

5.4.3 Feature

The Feature attribute stores, roughly said, a text that is useful for recognition and is
directly connected to the component itself. This can be either the text of the component
(for example the label on a button), a programmatically assigned identifier or label of a
component (for example CheckBox, RadioButton, TextField), a title (Window(858), ’Dialog’,
’TitledPanel’), or for a Web page(864) the URL.

Frequently, the value of the Feature is identical to the Extra feature(871) qfs:label. This
is because the label of the component is stored in qfs:label and this is often the
text that is directly connected to the component. The redundancy still makes sense,
since a status can be set for the extra feature: ’Ignore’, ’Should match’, or ’Must match’.
The Feature implicitly always has the status ’Should match’. For backwards compatibility
reasons it cannot be replaced by qfs:label.

If no Name(58) can be determined, the Feature is used for generating the QF-Test compo-
nent ID. Examples for this can be found in How to judge robust component recognition(50).

Components can also be addressed directly in a SmartID(72) via the Feature without
recording a Component node(70).

5.4. Recognition criteria 64

Using regular expressions for working with dynamic window titles

The VideoVideo

’Component recognition’
https://www.qftest.com/en/yt/component-recognition.html

shows the use of regular expressions with window titles starting from minute 13:07.

In a lot of applications the developers do not use unique names and QF-Test keeps
recording the same components again and again in different places. Playback with
previously recorded components may still work, unless the window geometry changes
significantly.

In this case it is very likely that the title of the main window changes frequently, for
example to display a version string, a user name, a file name or some other variable
information. If you want to keep your tests working and prevent recording multiple vari-
ants of this window and all its components, you have to select the respective Window
node and edit its Feature attribute to replace the dynamic parts of the title with a regular
expression. Be sure to check ’Use regexp’. Now your tests should work again.

Here you can see the use of a regular expression for a component of the CarConfigura-
tor. Its Feature attribute has to start with ’Edit’ followed by an optional dynamic part:

Figure 5.8: Using a regular expression in the Feature attribute

5.4. Recognition criteria 65

QF-Test uses regular expressions in many places. You can find detailed information in
section 49.3(955) to learn more about how to use them.

Feature for web components

For web components, the Feature is determined according to the following logic:

• HTML elements of class Frame or Document use the URL as Feature attribute.

• If none of the following special cases apply, the id attribute of the HTML element
is used, if it exists and is sufficiently unique. Otherwise, the inner text of the HTML
element, truncated if necessary, is used as Feature attribute.

• Special cases:

HTML tag name Value of the Feature attribute
TEXT Text of the HTML element, truncated if necessary
A Text of the HTML element (truncated if neces-

sary), otherwise the window title or the URL
FIELDSET Text of a contained HTML element with tag name

”LEGEND”
FORM Value of the ”name” attribute
IMG Value of the ”alt” attribute, otherwise ”src”, other-

wise part of the URL
INPUT Value of the ”name” attribute. For radio buttons

with identical names, the value of the attribute
”name” with the value of the ”value” attribute ap-
pended

BUTTON Value of the ”name” attribute, otherwise text of the
HTML element, truncated if necessary

LABEL Text of the HTML element, truncated if necessary
SELECT Value of the ”name” attribute
OPTION If the option OPT_WEB_USE_OPTION_LABEL is

set, value of the ”label” attribute, otherwise the
text of the HTML element, truncated if necessary

OPTGROUP Value of the ”label” attribute
IFRAME Value of the ”id” attribute, otherwise ”name”, oth-

erwise ”src”

Table 5.1: Feature attribute special cases for web components

In rare special cases, the Feature attribute may also receive a value which is not de-
scribed by the logic above.

5.4. Recognition criteria 66

5.4.4 Extra features

The table Extra features(871) stores various information useful for the recognition of the
component. In the chapter about Extra features(871) you will find a list of the default en-
tries. But you can also add your own via an ExtraFeatureResolver (see section
54.1.11(1087)).

Some of the additional features are recorded preventatively and are not usually used for
component recognition. This mostly concerns information about the component class,
which QF-Test uses to derive the Generic classes(56). By default, they have the status
”Ignore”. This can be changed if the original value is of interest in special cases.

Among the Extra features, the qfs:label* variants are interesting for recognition.

qfs:label* variants

For component recognition labels are very important. There are a number of different
types such as the text of the component itself, for example with a button. Or a label
component programmatically assigned to another component using labelFor for ex-
ample. Then there are label components close the component, a tooltip or even an icon
description.

Up to QF-Test version 6 the best label is saved in the extra feature qfs:label.

From QF-Test version 7.0 all labels identified for a certain component will be stored in7.0+
the extra features, starting with qfs:label and a string showing the type, for example
qfs:labelText for the text of a button or qfs:labelLeft for the label left of a text
field. The advantage of the specific qfs:label* types is replay performance on the
one hand, because QF-Test can search directly for the specific label, and flexibility on
the other hand.

When you want to use the new algorithm for the extra feature qfs:label on existingNote
component nodes please change the name to qfs:labelBest, telling QF-Test to look
for the best of the available labels. You will find more information about the transition in
the chapter The ExtraFeatureResolver Interface(1087).

The following table shows the available positional labels:

qfs:labelTopleft qfs:labelTop -
qfs:labelLeft the component qfs:labelRight
- qfs:labelBottom -

Table 5.2: qfs:label* positional variants

The following list shows the available qfs:label* types and the qualifier to be used

5.4. Recognition criteria 67

when you want the address the component directly via SmartID(72). Descriptions are
below the list.

The entries in the column ”Category” correspond to the terms used in the section
”qfs:label” in Generic classes(1242).

qfs:label variant SmartID qualifier Category
qfs:labelText #text= Own text
qfs:labelFor #for= Associated label
qfs:labelLeft #left= Label close to it
qfs:labelTop #top= Label close to it
qfs:labelTopleft #topleft= Label close to it
qfs:labelRight #right= Label close to it
qfs:labelBottom #bottom= Label close to it
qfs:labelInherited #inherited= Label close to it
qfs:labelTooltip #tooltip= Tooltip
qfs:labelImage #image= Description of icon
qfs:labelTitle #title= Title
qfs:labelPlaceholder #placeholder= Prompt

Table 5.3: qfs:label* variants

qfs:labelText
The text of the component itself.

qfs:labelFor
Text of a label assinged to the component in the code. For example via
labelFor with web applications.

qfs:labelLeft
The text of a ’Label’ component to the left of the component.

qfs:labelTop
The text of a ’Label’ component above the component.

qfs:labelTopleft
The text of a ’Label’ component top left of the component.

qfs:labelRight
The text of a ’Label’ component to the right of the component.

qfs:labelBottom
The text of a ’Label’ component beneath the component.

5.4. Recognition criteria 68

qfs:labelInherited
The text of a ’Label’ component for a different component. Example: ”Street:

Main road 11”, street name and number are split into separate TextFields. The
field for street number here receives ”qfs:labelInherited” with the value ”Street:”.

qfs:labelTooltip
The tooltip of the component itself.

qfs:labelImage
The name of the icon belonging to the component.

qfs:labelTitle
The title of the component, for example of a Window or a titled panel of the

component class ”Panel:titledPanel”.

qfs:labelPlaceholder
Only web applications. The placeholder showing when no text has been entered

by the user.

The influence of the extra feature qfs:label* variant representing Best label(68) on the
QF-Test component ID is described in Generating the component QF-Test ID(950).

For information about switching from the old to the new algorithm please refer to The
ExtraFeatureResolver Interface(1087).

Best label

When analyzing a component QF-Test looks for different types of labels which might be
used for the component. The labels found will be saved in the Extra features table, the
names starting with qfs:label (see table 5.3(67)). The one with the best ranking (best
label) will get the status ”Should match”, the others ”Ignore”. The order of the entries in
above table rouhly represents the ranking for most component classes. The exact order
can be found in the section ”qfs:label*” of the properties of the Generic classes(1242). Dis-
tance and overlapping also have an influence of the ranking with qfs:label* variants
of the category ”Label close to it”.

The value of the label ranking highest will additionally be stored as an extra feature with
the name qfs:labelBest and the state ”Ignore”. In a SmartID this extra feature can
be referenced by the qualifier qlabel. See also SmartID syntax for Extra features(76).

qfs:text

qfs:text contains the text of the component itself. For text fields or PDF components,
this is an additional information which could not be used for component recognition
without an additional resolver up until QF-Test version 5.3.

5.4. Recognition criteria 69

value

For certain HTML elements like checkboxes and radio buttons, value will contain theWeb
value of the HTML attribute of the same name, as long as it is distinct. The value
attribute does not reflect the currently selected value or even the selection state of the
element, but the static value which would be transferred if the element is selected.

5.4.5 Index

The index of a component can also be used for recognition. However, you need to
differentiate between the Class index(874) of a Component node(70) and the index used in a
SmartID(72): The first always refers to GUI elements of this Class name in reference to the
parent component. In the case of SmartIDs, the index refers to the eligible components
for the specified SmartID (see SmartID with index(78)).

5.4.6 Geometry

Geometry only has a small part in component recognition if other criteria are available. It
also is possible for a component to neither have a name, nor a label or usable extra fea-
tures or index. If then even an application-specific resolver (see section 54.1(1075)) cannot
provide any recognition criteria, the recognition will rely on the component class (which
is always available), the component hierarchy, and position and size of the component.

If in this case you take care that the window sizes during replay are the same as during
recording (see Component event(740)), the component recognition should be stable. How-
ever, the modification effort for version changes of the application can be somewhat
higher, since position changes of components must be explicitly traced.

5.4.7 Component hierarchy

The nesting is used in Component event(740) for recognition as well.

With Component nodes, the containers of a component are recorded as well. Whether
they should be used for recognition with a present Name attribute can be controlled with
the options Name override mode (replay)(509) and Name override mode (record)(484). The
best setting for each is described in About setting identifiers(61).

Component Nodes can be moved from deep nestings to higher-level nodes in the com-
ponent tree, as long as this flattening of the component hierarchy does not affect recog-
nition. Sometimes this approach can even lead to better recognition stability, especially
if the recognition criteria for the parent nodes are unstable, or if parent components do

5.5. Component node 70

not always exist (for example scroll panels that are inserted into the GUI hierarchy only
as needed).

With a SmartID(72), the component hierarchy can also be used for recognition. Here,
the to be used component (or even multiple components) is explicitly specified in the
SmartID. More information can be found in SmartID syntax for component hierarchies(78).

Via Scope(80), the search area for components can be limited to a certain level of the
hierarchy during replay.

5.5 Component node

When Component(869) nodes are used in place of SmartID(72)s QF-Test stores the recogni-
tion criteria of the recorded components in Window(858) and Component(869) nodes, whose
hierarchical order matches the structure in the GUI of the SUT. These nodes are located
below the Windows and components(881) node. The following image shows a section of the
Component nodes that are part of the QF-Test main window:

Figure 5.9: Component hierarchy of a Swing SUT

In the detail area of a Component(869) node, the Recognition criteria(56) are stored. In
addition, it contains the QF-Test ID attribute. This is the reference ID for all nodes in the
tests that refer to that component.

5.5. Component node 71

Figure 5.10: Component node

Each node in a test suite has a QF-Test ID(870) attribute, which does not have any special
meaning and is managed automatically for most nodes. For Component nodes on the
other hand, the QF-Test ID has an important functionality. Other nodes with a target
component, like events or checks, have the attribute QF-Test component ID, which refers
to the QF-Test ID of the Component. This indirect reference of GUI elements is very
useful: If the interface of the SUT changes in a way that QF-Test cannot automatically
compensate for, only the Component nodes of the unrecognized components need to be

5.6. SmartID 72

adjusted. Then, the test will run again.

It is very important to understand that the QF-Test ID of a Component is only an artificial
concept for the internal use in QF-Test, not to be confused with the attribute Name, which
serves to identify the component in the SUT, which will be explained further in the next
section. The actual value of the QF-Test ID is completely irrelevant and has no relation
to the GUI of the SUT. The only important thing is that the QF-Test ID is unique and that
other nodes correctly refer to it. On the other hand, the QF-Test ID of the Component
node is displayed in the tree view, and not only for the Component itself, but even for
events and other nodes that refer to it. That is why Components should have expressive
QF-Test IDs that indicate the actual component in the GUI.

When QF-Test creates a Component, it has to automatically assign it a QF-Test ID. It
does its best to construct a meaningful identifier from the available information. Details
about this can be found in Generating the component QF-Test ID(950). Should a generated
QF-Test ID not be to your liking, you can change it. If you choose a value that is already
taken QF-Test will output a warning. If you have already recorded events referring to this
component, QF-Test offers to automatically adjust their QF-Test component ID attribute.
This automatic mechanism does not work for references with variables in the QF-Test
component ID attribute.

A frequent mistake is to change the attribute QF-Test component ID of an event insteadNote
of the QF-Test ID itself. This destroys the connection between event and its target com-
ponent, leading to an UnresolvedComponentIdException(903). So, you should only
do this if you actually want to change the target component.

Frequently, tests are assembled from existing procedures. For this it is often helpful
to use the process described in Recording components(40). The QF-Test component ID
recorded this way will be stored in the operating system clipboard to be easily inserted
into the corresponding procedure parameter.

Using Recording components(40) you can also first create the entire component structure
of the SUT to get an overview and assign sensible QF-Test IDs. During recordings,
theses QF-Test IDs will then be used.

5.6 SmartID

SmartIDs enable simple and flexible recognition of components based directly on the6.0+
ID without storing recognition criteria in a separate place. This noticeably slims down
the recorded component tree in ”Windows and Components”. When using SmartIDs
only, the component tree is not used anymore at all. However, you have to consider the
price of this flexibility and ease and the possible - depending on the situtation - impact
on performance and maintainability.

In February 2024, a special webinar took place about SmartID. Here you can find theVideo

5.6. SmartID 73

special webinar video recording
https://qftest.com/en/yt/smartid-special-webinar.html

available on our QF-Test YouTube channel.

SmartIDs use the same recognition criteria which are stored during classic component
recognition in a Component node(70). The difference is that, of all the possible recognition
criteria, one or multiple are explicitly selected and entered in place of the reference to
a recorded Component, for example, directly in the attribute QF-Test component ID(727) of a
mouse click node.

The goal of SmartIDs is to slim down the component tree - which is useful, but not at
all costs. The idea is to keep simple things simple, but if addressing a component gets
difficult, Component(869) nodes are preferable. As an alternative you can handle issues of
uniqueness or performance via the scope concept as shown in Scope(80).

The SmartID is characterized by a leading #. The simplest version of a SmartID is either
the name or the label of a component with a prefixed #. For example, #username to
select a component with the name username or #User name if User name is the
label of the component.

Typically, the SmartID consists of #, followed by the class of the component delimited
by a colon. When the SmartID value is a label, a qualifier and = come after the colon,
then the value of the SmartID. For example #TextField:left=username.

The qualifier denotes the type of the SmartID value. When replaying a SmartID without
qualifier the option Priority for recording SmartIDs with qualifier(522) sets the priority for
the recognition criteria. When recording, based on the setting of the option Always
record qualifier for SmartID(521), either no identifier, or the first identifier found based on
the defined prioritization will be recorded. The following qualifier exist:

• name: Name(58), see as well SmartID syntax for Name(75).

• feature: Feature(63), see as well SmartID syntax for Feature(76).

• label: Feature(63) is a special form, accepting feature or one of the
qfs:label* variants.

• The names of the Extra features(66), respectively their short forms, for example
qlabel for Best label(68). See as well SmartID syntax for Extra features(76).

Specifying the class and the qualifier help with readability and performance. The op-
tion Always record class for SmartID(521) influences whether the component class will be
recorded. The option only has effect on components where the class belongs to one of
the Generic classes(1242). With other classes it is mandatory, for example #DIV:compid.

The SmartID takes the place ot the QF-Test component ID, for example in the
QF-Test component ID(727) attribute of event or check nodes. It can, just like the QF-Test

5.6. SmartID 74

component ID, be stored in variables, passed in parameters, or used in scripts. For
complex components like tables, lists or trees, the SmartID can also replace the
QF-Test component ID. The index describing the child element remains unchanged.
Following a SmartID, a child component can be addressed either via another SmartID
or an XPath, see Addressing via XPath and/or CSS selectors(87).

SmartIDs can be used with all client technologies.

As with generic components you need to consider that updating a component is not
as comfortable as with a Component node(70). However, QF-Test provides a powerful
”Search and Replace” feature, which can also be used to bulk-modify SmartIDs.

For a brief introduction to SmartID, also read our blog post SmartID - The next genera-Note
tion of component recognition .

5.6.1 Use cases for SmartIDs

The application areas are generally the same as those of Generic components(81). Smar-
tIDs mostly replace generic components and are easier to use.

Readability
When directly recording test cases, the use of SmartIDs can make recorded

event and check nodes more readable. Especially if the recorded component
names are cryptic and stable labels are available, it makes sense to change the
recording order of recognition criteria to ”First label, then name” by setting the
option Priority for recording SmartIDs with qualifier(522) to label,name.

Ignoring the component hierarchy
Some applications have deeply nested component hierarchies. SmartIDs make it
easy to reduce the component tree, which is especially helpful if the hierarchy is
not stable across versions. (Until now, Generic components(81) were used in these
cases. This is still possible, even in parallel to SmartIDs.)

Test-driven development
For test-driven development, SmartIDs offer the big advantage of not having to

create any Component node(70) nodes. In addition, Component identifiers(59) are
often defined in the technical design during test-driven development. These can
then be used for test creation.

Keyword-based tests
Keyword-based tests are implemented via procedure calls and parameters. The

test creator does not record components and depends on visual information from
the GUI to identify components. This could be the component label or its function
(class). Further information can be found in Keyword-driven testing with
QF-Test(385).

5.6. SmartID 75

Integration with other testing tools
When controlling test execution in QF-Test via other testing tools like Robot

Framework, the recognition criteria can be specified directly via SmartIDs.

5.6.2 SmartID syntax for Class name

The Class(56) is specified in the SmartID directly after the # and followed by a :, for
example #Button:.

You do not need to specify the class in the SmartID when you address a component typ-
ically used in tests. It is sufficient to specify the Component identifiers(59) or a component
label (either Feature(63) or one of the qfs:label* variants(66)), for example #btnOK,
where ”btnOK” is the identifier of the button, or #Save, where ”Save” is the label of the
Button. It makes the handling of the SmartID easier. However, to a certain extent at
the expense of performance, as without a specified class QF-Test has to check more
candidates for matches.

Because of better performance QF-Test records the class with the SmartID by default.
If you want to suppress it, please set the option Always record class for SmartID(521) to
’false’.

chapter 61(1242) documents the properties for each class, including where you have to
specify the class with a SmartID. Any class not mentioned in the chapter has to be
specified in the SmartID, too. Example: #DIV:addresses where ”addresses” is the
Name of the DIV element in a web application.

Panels with a label are a special case, being useful for nested SmartIDs (see
section 5.6.7(78)) or scopes (see section 5.7(80)). For this reason the class type
Panel:TitledPanel belongs to the SmartID classes and does not need to be
explicitly specified.

If you use a predefined class type in addition to the generic class, you can write this
combination as usual, for example #Button:ComboBoxButton:. You can find the
prefedined class types in Generic classes(1242). For your own class types any internal
colons must be escaped via \, for example #Panel\:myPanel:.

You can find more information about the combination possibilities in section 48.3(950). .

5.6.3 SmartID syntax for Name

A Name(58) can be specified in the SmartID directly after the #, for example
#txtUsername. If the class of the component belongs to the Generic classes(1242), just
stating the name is sufficient. Otherwise, the Class(56) must be prefaced, for example
#DIV:txtUsername.

5.6. SmartID 76

The name can contain SmartID-specific special characters , but they must be escaped
with a prefixed \.
To force component recognition to refer to the Name(58), the SmartID can be prefixed
with Name=, for example #Name=txtUsername. Upper/lower casing does not matter
for Name=.

You can find more information about the combination possibilities in section 48.3(950) .

5.6.4 SmartID syntax for Feature

The recognition criterium Feature(63) can be specified in the SmartID directly after the
#, for example #User name. If the class of the component belongs to the Generic
classes(1242), just stating the name is sufficient. Otherwise, the Class(56) must be prefaced,
for example #DIV:User name.

The feature can contain SmartID-specific special characters , but they must be escaped
with a prefixed \.
To force component recognition to refer to the Feature(63), the SmartID can be prefixed
with Feature=, for example #Feature=User name. Upper/lower casing does not
matter for Feature=.

You can find more information about the combination possibilities in section 48.3(950) .

5.6.5 SmartID syntax for Extra features

Recognition criteria from the group of Extra features(66) are also available for SmartIDs.
They can be referenced via qualifiers inserted before the SmartID value. An equal
sign = separates the qualifier and the SmartID. For all Extra features the name of the
extra feature corresponds to the qualifier. They are case-sensitive. The SmartID value
corresponds to the value of the extra Feature, also case-sensitive.

Examples:

• The SmartID #module=module1 references a component with an extra feature
named module and the value module1.

• The SmartID #my\:foo=Any\&thing references a component with an extra fea-
ture named my:foo and the value Any&thing.

Short forms exist for the qualifiers for qfs:label* variants. They will be explained
further down in the chapter.

5.6. SmartID 77

SmartID specific special characters ”:”, ”@”, ”&” und ”%” (see SmartIDs - special
characters(951)) in the value, the qualifier or the class name of the SmartID have to be
escaped with a prefixed \.
You can find more information about the combination possibilities in section 48.3(950) .

Extra feature qfs:label
qfs:label* variants(66) representing the labels of a component have prominant

role for component recognition. When a component has labels use can use either
the Best label(68) or a specific label. The advantage of a specific label is
performance at replay, because QF-Test knows which label to go for and does not
have to check all possibilities. When you want to reference a specific label you
need to write the hash tag, # then the qualifier, i.e. the short form of the name of
the Extra feature (see qfs:label* variants(67)), followed by ”=” and the SmartID
value, for example #left=First name. You can address the best label directly
after the hash tag or via the qualifier qlabel=. When you write #label=, the
value of the SmartID can either refer to the Feature or one of the qfs:label*
variants. The qualifiers are not case-sensitive. SmartIDs without a qualifier, for
example #First name will be evaluated following the priority set via the option
Priority for recording SmartIDs with qualifier(522), by default Name - Feature - ’Best
label’.

Beispiele:

• #left=First name - The label to the left of the component has to be ”First
name”.

• #qlabel=First name - The Best label(68) for the component has to be ”First
name”.

• #label=First name - Either the Best label(68) for the component or the Fea-
ture has to be ”First name”.

• #First name - Either the name or the Best label(68) for the component or the
Feature has to be ”First name”.

Extra features qfs:text and text
The extra features qfs:text and text have a special status as well. Both can

be addressed via the qualifier text=. If you want to explicitly use qfs:text you
can use qtext=.

Examples: #text=Anna, #qtext=Benno

Looking closely, with the qualifier #text= QF-Test will first look for the Extra featureNote
#qfs:labelText=, then for qfs:text and text. As the latter two have a spe-
cial use with text components for which nor #qfs:labelText= will be recorded,
there won’t hardly be any conficts.

5.6. SmartID 78

If you want to use the extra features qfs:text and text without the prefix
#text= you need to set the option Priority for recording SmartIDs with qualifier(522)

accordingly, for example to ”name,feature,qlabel,text”.

Extra Feature qfs:type
The extra feature qfs:type denotes the type of a class. If a type is not

predefined by QF-Test (see Generic classes(1242)) any colons contained within
must be escaped via \.

5.6.6 SmartID with index

All SmartIDs can be equipped with an index in case multiple components match the
same SmartID. For this, the technical order of the components in the hierarchy counts.
This does not have to be the same as the visual order. The count of the index starts
at 0. The index is specified in between angled brackets. If no index is given, 0 is used
implicitly.

Examples: #Name<2>, #TextField:<2>

Special cases

For components of the class Label, the standard order does not apply. Because they
are mostly used as label for other component classes and are stored there in the feature
or extra feature ”qfs:label”, components of the class Label are treated as subordi-
nate. Label components must be addressed explicitly with the prefixed class Label:,
for example #Label:First Name.

You can find information about the SmartID syntax in general in section 48.3(950).

5.6.7 SmartID syntax for component hierarchies

The Component hierarchy(69) can also be used with SmartIDs for recognition. As divider
between hierarchy levels, @ is used.

Examples:

Component inside container
The SmartID #Customer information@#Name references a component with

the SmartID #Name in a parent component (like a TitledPanel) with the
SmartID #Customer information.

Component inside ”normal” component
Sometimes, components like a Button will not have any good recognition criteria

5.6. SmartID 79

themselves but can be addressed well via their parent component. A
typical example is the Button for expanding the list of a combo box:
#ComboBoxSmartID@#Button:

Component inside Sub-Element
Links or buttons inside list oder table elements can be addressed with nested

SmartIDs: #ListSmartID&22@#Link:<1> Here, the part before ”@”
addresses a list element, #Link:<1> addresses the second link inside.

5.6.8 Recording and replaying SmartIDs

To record SmartIDs instead of component notes, please activate the option SmartID
recording(521) or simply check the menu item Recording→SmartID recording .

When recording SmartIDs, by default QF-Test first checks if a Name(58) is present. If
it is the case, it will be used for the SmartID. If not, QF-Test will search for a label (in
Feature(63) or Extra features(66)). Using the option Priority for recording SmartIDs with
qualifier(522) the criteria and their order can be changed. If the determined SmartID is
valid for multiple components, QF-Test will try to create a nested SmartID (see also
Component hierarchy(69)), otherwise, an index will be appended.

For many cases recording SmartIDs is straightforward. However, depending on theNote
target component and the information available it may happen that no SmartID can be
recorded so that a classic Component node(70) node gets recorded instead. This is the
case if, for example, the GUI element cannot be assigned a generic class or if QF-Test
can determine neither a Name(58) nor a Feature(63) nor the extra feature qfs:label*
variants(66).

By default the generic class is prefixed to the recorded SmartID. This not only improves
readability, it also has a significant effect on replay performance. This can be turned off
via the option Always record class for SmartID(521). Please note that the ’Label’ or ’Panel’
prefixes are always recorded to ensure correct replay.

Replaying nodes with SmartIDs is no different than with recorded components. Both
variants can be used inside the same test case. SmartIDs can also be used in com-
bination with recorded components to address descendant components. The exam-
ple recordedList&10@#Button: illustrates the combination of the QF-Test ID of a
recorded list with an Index and the SmartID of the Button contained inside the list ele-
ment.

5.7. Scope 80

5.6.9 Component QF-Test ID as SmartID

It is possible to set the QF-Test ID of a recorded Component to a SmartID icluding prefixed
#. This can be used to essentially reroute this SmartID and perform the recognition
via the classic recognition criteria of the recorded component. Recording individual
components makes the most sense if the SmartID gets long and cumbersome, has
bad performance, or is hard to make unique. The SmartID indicator # can be used for
consistency’s sake, but it does not have to be.

5.7 Scope

A scope can be used to narrow the search area for components. This is useful to make6.0+
component references unique or to improve the readability of a test. Example: There
are three panels with address data with identically labeled text fields. The scope can
now be set to one of the panels. Now the specified SmartIDs refer exclusively to the
fields in this panel.

Scope can also be used to speed up component detection under certain circumstances,
especially for windows or web pages that contain a large number of components. An
example of this is web applications that load all GUI elements with the status ”invisible”
from the start, and only make the relevant ones visible. Here it can be useful to use the
scope to limit component detection to at least the visible window.

The scope is set in the comment of a node, via the SmartID or even the QF-Test ID
of the recorded component with prefixed @scope, for example @scope #myDialog.
If the scope should apply to multiple event or check nodes, the scope is set in the
comments of a node (for example Sequence, Test step, or Test case) which contains these
nodes directly or indirectly via procedure calls.

The scope currently active can be referenced via a SmartID consisting just of the hash
symbol #.

If a component is not part of the scope, a ComponentNotFoundException will oc-
cur. Scopes can be bypassed when needed by inserting the doctag @noscope in
the comments of the respective event or check node or by inserting noscope: at the
start of the SmartID. For example, its possible to click a button ”Save” via the SmartID
#noscope:Save, even though the button is outside of the scope set for the sequence
in which the click event is located (see section 48.3(950)).

Scopes can be nested, whereby the inner scope must lie in the outer scope and fur-
ther restrict it. This, too, can be bypassed with the doctag @noscope. To do this, the
doctags @noscope and @scope NEWSCOPE are specified in the comments of the node
whose components lie in a scope outside the current one (NEWSCOPE denotes the
new scope). The order of the doctags does not matter.

5.8. Generic components 81

The scope always refers only to the respective nodes and nodes executed within it.
Therefore the nodes of a procedure called from inside a scope must either be inside this
scope or be marked with #noscope:... or doctag @noscope.

Scopes can be set via SmartIDs or via the QF-Test ID of a recorded Component. Still, they
are only respected when referencing a component via SmartID. Referencing a recorded
Component will always ignore the current scope.

5.8 Generic components

Before the introduction of the SmartID(72) in QF-Test Version 6.0, generic components
were the pattern of choice for avoiding recording components. With SmartIDs, this goal
can be achieved easier and more flexibly. Still, the concept of generic components is
described here for backwards compatibility.

A typical use case is the testing of localized applications.

Another situation could be the use of a GUI framework during development. This gener-
ates, for example, a lot of similar dialogs which differ by only a few components. But you
must re-record them for each dialog, for example global navigation buttons, because
they are located inside a new window each time.

With generic components, you use variables in the component properties or simply
delete non-dynamic parts of them.

The following is a general approach for generalizing components:

1. Record some components you want to generalize and compare them.

2. Create a new generic component with ’generic’ in the QF-Test ID so you can find it
again later.

3. Remove all attributes you do not want to use for recognition from this generic
component.

4. Define the recognition criterium, like ’name’, ’feature’ or ’index’.

5. Place a variable in this attribute, for example $(name).

6. To avoid false positives, deactivate geometry recognition by placing a ’-’ in the ’X’
and ’Y’ attributes.

7. Specify ’@generic’ in the Comment attribute so this component is not inadvertently
removed by the ’Remove unused components’ action.

8. Create a procedure for accessing this generic component and use the variable
from before as procedure parameter.

5.9. Sub-items: Addressing relative to a parent component 82

Generic components are very useful for replay of tests, but QF-Test does not use themNote
for recording. It always records concrete components and you need to manually replace
these with generic components afterwards.

5.9 Sub-items: Addressing relative to a parent compo-
nent

In QF-Test it is possible to address components in relation to a parent component. This
is most interesting if the child component can only be unequivocally addressed in com-
bination with its parent. There are various usage scenarios for this and also various
ways to implement.

Addressing via index
With tables, lists, and trees it makes sense to use an index for sub-items. The

main component is specified via the QF-Test component ID or a SmartID. The
index for the sub-item is appended.

Examples: listid@Entry, #Table@Column Heading&5

If the main component is addressed via a SmartID, tabs in a TabPanel or list
items of a ComboBox can be referenced simplified.

Examples #Tab:Tab1, #Item:EntryX

More information can be found in Addressing via index(84).

Addressing sub-items via SmartID
SmartIDs can be attached to the QF-Test component ID or to the SmartID

identifying the parent component. As divider between parent and child
component, @ is used. The nesting can also be multi-level. The individual
components can also be given an index.

Examples: #Dialog:@#OK, comboboxid@#Button:,
#Table:&0&0@#CheckBox:.

Addressing sub-items via QPath
A QPath can be used simliarly to the attached SmartID, but is not as powerful as

it by far. A QPath can be attached to a QF-Test component ID. As divider, @ is
used. The QF-Test component ID can also be given an index.

Examples: buttonid@:Icon, tableid&0&0@:CheckBox

More information can be found in Addressing via QPath(86).

Addressing sub-items via XPath and CSS selectors
With web applications, an XPath and/or a CSS-Selektor can also be appended toWeb

5.9. Sub-items: Addressing relative to a parent component 83

a QF-Test component ID or a SmartID. As divider @:xpath= or @:css= is used.
The QF-Test component ID can also be given an index.

Example: genericDocument@:xpath=${quoteitem:$(xpath)}

More information can be found in Addressing via XPath and/or CSS selectors(87).

Scope
The parent component can also be specified via a scope, see Scope(80).

Recording sub-items as nodes
In the case of tables, lists and trees it can also make sense to record the

sub-item as Item(875) node. It depends on the situation if a sub-item is addressed
via index or if it makes more sense to record it. You can use both methods as
preferred and even combine them. The rule of thumb is that an Item node is
better for components with few, constant elements, like columns of a table or tabs
in a tab panel. The syntax is preferrable if QF-Test variables are used in indexes
or if the names of elements vary or are editable. The option Sub-item type(489)

determines if QF-Test creates Item nodes during recording or uses the QF-Test ID
syntax. With the default setting ”Intelligent”, QF-Test follows the rules above.

More information about recording sub-items can be found in Addressing via Items
nodes(88).

Possible combinations
Note: In the following listing, the SmartID of the parent component may already

consist of nested references.

5.9. Sub-items: Addressing relative to a parent component 84

Reference of the
parent component

Reference
of the child
component

Example

QF-Test component
ID

Index list item with text index: listid@Entry

SmartID Index table cell with numeric indexes: #Table:&0&2
QF-Test component
ID

SmartID Icon in button: buttonid@#Icon:

SmartID SmartID Text field in dialog: #Dialog:@#TextField:
SmartID with index SmartID Button in table cell: #Table:&0&2@#Button:
QF-Test component
ID with index

SmartID Button in table cell: tableID&0&2@#Button:

QF-Test component
ID with index

QPath Button in table cell: tableID&0&2@:Button

QF-Test component
ID with or without
index

XPath and/or
CSS selector

genericHtml@:css=${quoteitem:$(css)}

SmartID with or
without index

XPath and/or
CSS selector

#genericDocument@:xpath=${quoteitem:$(xpath)}

Scopes SmartID Scope as doctag in a Test step, SmartID in check node

Table 5.4: Addressing sub-items

5.9.1 Addressing via index

The sub-item is described using a special syntax. The QF-Test component ID which is
used in the test consists of the QF-Test ID or the SmartID of the complex component
(tree, table, etc.), followed by a special separator and the index of the sub-item. The
kind of separator determines if the index is numeric, textual, or a regular expression
(see section 49.3(955)):

Separator Index format
@ Text index
& Numeric index
% Regular expression

Table 5.5: Separator and index format for accessing sub-items

To access a table cell with the Primary index and the Secondary index, simply append
another separator, followed by the second index. The two indices can be different types.

With trees the index consists of the path of tree nodes leading to the node you want to

5.9. Sub-items: Addressing relative to a parent component 85

address. The nodes are separated by a valid index separator, followed by ”/”. When a
separator holds for more than one tree node in a row, you do not need to repeat it before
each ”/”.

The special meaning of the separators ’@’, ’&’ and ’%’ makes them special charactersNote
which must be escaped if they appear in the index itself. More about the topic can be
found in Quoting and escaping special characters(958).

Negative index
In most cases you can use a negative index to start the count from the end.

SmartIDs: Easy indexes for TabPanels and lists
With SmartIDs, tabs in tab panels can be addressed according to above syntax,

for example via #TabPanel:@Tab1, where Tab1 is the name of the tab.
Alternatively, the shortcut #Tab:Tab1 can be used. If no other component has
the SmartID #Tab1, the tab can even be addressed by #Tab1.

List entries can be addressed according to above syntax via #List:@EntryX.
As a shortcut, #Item:EntryX is possible, too, or just #EntryX when no other
component on the page has the SmartID EntryX. The shortcuts can also be
applied to drop down lists of combo boxes.

Both shortcuts are very comfortable, but the high flexibility has its price in perfor-
mance. How much it is depends on a number of factors, so the decision between
comfort and performance must be made on a case-by-case basis.

Examples

5.9. Sub-items: Addressing relative to a parent component 86

Component Index Comment
Table @Name&5 Table cell in the sixth row and the column with the title

”Name”.
Full QF-Test ID of the component: tableid@Name&5

List &0 Numeric index: first entry in a list.
Full SmartID: #List:&0

List @Europe Text index: list entry with the text ”Europe”.
Full SmartID:
Default syntax: #List:@Europe
Shortcut 1 (alternative): #Item:Europe
Shortcut 2 (alternative) when no other component has the
SmartID Europe: #Europe

Tree @/root/b1/b1-2/leaf Text index: tree path addressing all nodes via their text.
Full QF-Test ID of the component:
treeid@/root/b1/b1-2/leaf

Tree &/0/5/1/3/ Numeric index: tree path addressing all nodes via the nu-
meric index.
Full SmartID: #Tree:&/0/5/1/3/

Tree %/W.*/A.* Regular expressions for the tree nodes.
Tree &/0@/Ast1%/B.* Mixed indices: numeric index for the first, text index for the

second and regular expression for the third node.
Table &-1&-1 Negative indices: bottom row, right-most column.
TabPanel @Tab1 Text index: addressed via the tab label.

Full SmartID:
Default syntax: #TabPanel:@Tab1
Shortcut 1 (alternative): #Tab:@Tab1
Shortcut 2 (alternative) when no other component has the
same SmartID: #Tab1

Table 5.6: Indices for sub item

5.9.2 Addressing via QPath

Each QF-Test component ID attribute in an event or check node (with or without sub-item)
can be appended one or more indexes in the form of @:ClassName<idx>, whereby
<idx> is optional. This instructs QF-Test to first determine the target component (and
if needed the sub-item) for the part of the QF-Test component ID attribute in front of the
@: and then to search for visible components of class ClassName within. If <idx> is
specified, this is interpreted as 0-based index of the list of visible candidates. No <idx>
is equivalent to <0>.

The QPath syntax expects a generic class after the @:. An overview over generic
classes can be found in chapter 61(1242). If the component cannot be recorded with a
generic class, the QPath must contain the complete class name. In JavaFX for exam-

5.9. Sub-items: Addressing relative to a parent component 87

ple, some of them are called ImageView, VBox, GridPane, or BorderPane.

The following example references the second ImageView on the third position of a list:
panelSecond.list&3@:javafx.scene.image.ImageView<1>

5.9.3 Addressing via XPath and/or CSS selectors
Web

XPath and CSS selectors are standardised formats for addressing elements in4.1+
web browsers. (Official specifications: www.w3.org/TR/xpath and
www.w3.org/TR/css3-selectors).

QF-Test supports addressing components via XPaths and CSS selectors for web ele-
ments, to allow for easier migration of existing web tests of other tools into QF-Test.

There are already a lot of tutorials on the internet on how to address elements with
CSS selectors (for example w3schools CSS Selector Reference) and with XPaths (for
example w3schools XPath Syntax). Because of this, the peculiarities of these ways of
addressing components are not described here.

Use in the QF-Test ID

Assuming that a web component is to be recognized in QF-Test using the XPath
”$(xpath)” or a CSS selector ”$(css)”, this can be done in several ways. The
easiest/fastest way is usually to specify the XPath or the CSS selector in the
QF-Test component ID(727) attribute of any event node. The following syntax is used for
this:

genericHtml@:xpath=${quoteitem:$(xpath)}
genericHtml@:css=${quoteitem:$(css)}

Or to the same effect:

genericDocument@:xpath=${quoteitem:$(xpath)}
genericDocument@:css=${quoteitem:$(css)}

The syntax can be nested as needed. For example, you can use:

genericDocument@:xpath=${quoteitem:$(xpath)}@:css=${quoteitem:$(css)}

to direct QF-Test to first search for a component using an XPath and then search for a
child component using a CSS selector.

Please note that the @:xpath/@:css syntax understandably expects the givenNote
XPath/CSS statement to return a single component. Using an XPath which returns a
number (for example count(.//input[@id!=’Google’])) or a boolean (for
example nilled($in-xml//child[1])) can lead to unexpected behavior.

Use in scripts

5.9. Sub-items: Addressing relative to a parent component 88

The rc module in SUT scripts also allows to find web components via XPath or CSS
selectors.

com = rc.getComponent("genericHtml") # or rc.getComponent("genericDocument")
res = com.getByXPath(rc.getStr("xpath")) # find subcomponent via xpath
res = com.getByCSS(rc.getStr("css")) # find subcomponent via css
res = com.getAllByXPath(rc.getStr("xpath")) # find all subcomponent via xpath
res = com.getAllByCSS(rc.getStr("css")) # find all subcomponent via css

Example 5.1: Finding components by XPath or CSS selectors in scripts

To use an XPath which does not return any component(s), please use the callJS
method:

node = rc.getComponent('genericDocument')
print node.callJS("""return document.evaluate("count(.//input[@id='Google'])",

document, null, 0, null).numberValue;""")

Example 5.2: Executing an XPath statement which does not return a component

Use in component nodes

Inside a component node QF-Test can also be instructed to use an XPath or CSS se-
lector for component recognition. To do this, specify a recognition criterium like the
following in ”Extra features”:

Status must match
Regexp No
Negate No
Name qfs:item
Value @:xpath=${quoteitem:$(xpath)} oder @:css=${quoteitem:$(css)}

Figure 5.11: Extra feature attribute for component recognition via XPath or CSS selec-
tor.

5.9.4 Addressing via Items nodes

An Item is defined by two things: The component it belongs to and an index inside
the component. The parent node of the Item defines the component. The index can
be either a number or a text. Numeric indexes start with 0. For example, in a JList
component the element with index 1 corresponds to the second list entry. For trees,

5.9. Sub-items: Addressing relative to a parent component 89

simple numeric indexes are almost useless, since by opening and closing branches, the
indexes of all nodes below are changed.

A text index defines an element by the text it displays in the interface. a list item called
”Entry1” in a JList component would be recorded with the text index ”Entry1”. The
textual representation is more flexible than the numeric one, but can cause problems if
the displayed texts of the elements in a component are not unique. In these cases, the
first matching element is selected. A text index can also be a regular expression (see
section 49.3(955)). In this case, the first element matching the expression is selected.

The option Sub-item format(488) determines which format is used during element record-
ing.

Almost all kinds of Item have only one index. This is not sufficient for the cell of a JTable
component, since tables are two-dimensional structures. Two indexes are needed to
exactly describe a cell. The first, the Primary index(876), determines the table column, the
second, the Secondary index(876), the row.

Figure 5.12: An Item for a table cell

Tree nodes also occupy a special position. As described above, the hierarchical struc-
ture cannot be easily mapped to a linear structure. In addition, tree nodes with the same
names often occur in trees. If, on the other hand, the direct and indirect parent nodes

5.10. Troubleshooting component recognition problems 90

are included in the name, uniqueness can usually be achieved.

QF-Test uses a special syntax to represent tree nodes. An index starting with a ’/’
character is interpreted as a path index. Just think of a file system: The file named
”/tmp/file1” can either be represented flat as ”file1”, which can lead to conflicts with other
files named ”file1” in other directories. Alternatively, the full and unique path ”/tmp/file1”
can be used. QF-Test also supports numeric indexes with this syntax: A numeric index
of the form ”/2/3” denotes the fourth child node of the third child node of the root node. A
combined form to address the third node in the ”tmp” node using ”/tmp/2”, for example,
is currently not possible.

This special syntax makes ’/’ a special character for Items in a tree component. If thisNote
character appears in a name itself, it therefore must be escaped. More about this topic
can be found in section 49.5(958).

Everything said in section 5.5(70) about the QF-Test ID attribute of Components also applies
to the QF-Test ID(876) attribute of an Item. This attribute must be unique and is referenced
by events and checks.

When QF-Test automatically assigns the QF-Test ID of an Item, it creates it by taking the
QF-Test ID of the Component of the parent node and appending the index (or indexes).
This kind of QF-Test ID is normally well readable and understandable. Unfortunately, it
also is the source of a frequent misunderstanding: If you want to change the index of
a recorded Item to refer to another element, you must not change the attribute QF-Test
component ID of the node which refers to it. Instead you must change the Primary index
of the Item node.

5.10 Troubleshooting component recognition
problems

5.10.1 Timing synchronisation

If you get exceptions because a component was not found, one of the reasons may
be that you did not wait for the component long enough. A mouse click has a certain
default waiting time, but this is not always sufficient. Therefore you should check if there
are enough synchronization points, like Wait for component to appear or Check nodes with
waiting times to only execute the test steps if the SUT is really ready for it.

• A Wait for component to appear node can be used when a new component appears.
The maximum wait time (in milliseconds) is set in Timeout.

• A Check node is used to wait for a state change of components. The maximum
wait time (in milliseconds) is set in Timeout here as well.

5.10. Troubleshooting component recognition problems 91

• Sometimes it is also necessary to loop, waiting for the state change and, if not
already done, performing an action, for example, clicking a ”Refresh” button.

• You can also wait for the number of rows in a table to change in a loop.

• Many applications use indicators that symbolize waiting times, for example
progress bars or ”egg timers”. Here you can wait first for the component to
appear and then for it to disappear.

The maximum wait time is set in the Timeout attributes. As soon as the desired applica-
tion state is reached, QF-Test continues execution. These waiting times can therefore
be chosen generously.

You should only change the option for default waiting times (section 41.3.6(514)) if gener-
ally longer waiting times make sense across your whole application.

As a last resort you can also use with a fixed delay. When the attribute Delay before/afterNote
is set, QF-Test will wait the entire given time. Delay before/after should therefore only be
used if there is no state change detectable by QF-Test in the application which QF-Test
could wait for.

5.10.2 Recognition

If your SUT changes in a way that makes it impossible for QF-Test to find a component
again, your test will fail with a ComponentNotFoundException(896). This should not
be confused with an UnresolvedComponentIdException(903), which can be caused
by removing a Component node from the test suite or by changing the attribute QF-Test
component ID of an Event node to a non-existing QF-Test ID.

There are two videos that comprehensively explain how to handle aVideo
ComponentNotFoundException:

• ’ComponentNotFoundException - Simple
case’

https://www.qftest.com/en/yt/componentnotfoundexception-simple-40.html

• ’ComponentNotFoundException - Complex
case’

https://www.qftest.com/en/yt/componentnotfoundexception-complex-40.html

When run into an ComponentNotFoundException, run the test again with the test
debugger enabled so that the test stops and you can examine the node that caused
the problem. This is where it pays to have QF-Test ID attributes that are meaningful,
because you need to understand which component the test was trying to address. If

5.10. Troubleshooting component recognition problems 92

you can’t make any sense of what the node in question is supposed to be, disable it and
see if the test goes through without it. It could be a spurious effect that was not filtered
during the recording and that does not contribute anything to the actual test. Basically,
your tests should always be reduced to the minimum number of nodes that can be used
to achieve the desired effect.

If the node must be preserved, next take a look at the SUT to see if the target component
is currently visible. If not, you will need to adjust your test accordingly to handle this
situation. If the component is visible, use the screenshot in the log to verify that this
was the case at the time of the failure and try executing the failed node again as a
single step. If execution now works you have a timing problem which you can solve by
including a Wait for component to appear(818) node, a Check node with Timeout, or another
waiting action (see Timing synchronisation(90)).

If the component is visible and the replay continuously fails, the reason is a change in
the component or one of its parents. Now you must determine what changed and where.
For this, record a new click on the component and compare the new and old Component
node in the hierarchy below Windows and components(881).

You can jump directly from the Event node to the associated Component by pressingNote �� ��Ctrl-W or by selecting Find component from the context menu. You can use�� ��Ctrl-Backspace or Edit→Select previous node to jump back again. A smart move is

to denote the Components to be compared using markers with Edit→Mark to easily
find them again.

The crux is where the hierarchy of the two nodes branches. If they are located under
different Window nodes, the difference is in the respective Windows themselves. Other-
wise, there is a common predecessor just above the branch. The crucial difference is
then found in the respective nodes directly below this common predecessor. When you
have found the place of divergence, compare the attributes of the respective nodes from
top to bottom and look for differences.

You can use View→New window... to open another QF-Test window and place theNote
detail views of both nodes next to each other.

The only differences that will always lead to an error during recognition are changes to
the attributes Class name or Name. Differences to Feature, structure or geomertry can
usually be compensated for, provided they do not accumulate.

A change to the Class name should seldomly happen when using Generic classes(1242).
Using generic classes offers a range of advantages, but in the case of web applica-
tions it is sometimes only introduced after creating first tests (see Improving component
recognition with a CustomWebResolver(1004)). In this case you must adapt the Class
name attribute of the already created Component nodes to this change.

The Component identifiers(59) can change, too. If the change seems to be on purpose,
for example correcting a grammatical error, you can adjust the Name attribute accord-

5.11. Component tree maintenance 93

ingly. More probably it is an automatically generated Component identifiers(59) which
could change again at any time. Here it can make sense as well to discuss the issue
with the developers and find a solution on the development side. Otherwise, for web
applications the Name can be influenced by Install CustomWebResolver node – Syntax(1009)

via the catagories autoIdPatterns and customIdAttributes. In all technologies
the Name can be influenced using a NameResolver as described in section 54.1.7(1082).
It can be suppressed entirely or reduced to the relevant parts.

Changes to the attribute Feature are not unusual, especially for Window nodes. There,
the Feature corresponds to the title of the window. Combined with a significant change
to geometry, this can cause the recognition to fail. This can be fixed by adjusting the
Feature attribute to the new circumstances, or - preferably - by using a regular expression
(see section 49.3(955)) which covers all variants.

Depending on the type and scope of the changes, there are two basic options for cor-
rection:

• Adjust the attributes of the old node and remove the newly recorded nodes. If the
changes to the SUT were small enough and the component recognition still works,
changes can also be performed automatically via the QF-Test feature Update
Components(94).

• Keep the new nodes and remove the old ones. For this you first must make sure
that all nodes that refer to the old components are updated to the new QF-Test ID.
This can be achieved with a little trick: Change the QF-Test ID of the old Component
node to the QF-Test ID of the new one. QF-Test will initially complain that the
QF-Test ID is not unique, which you can ignore, and then will offer to update all
references, which you need to confirm with ”Yes”. Then, you can remove the old
node.

The automatic adjustment of references in other test suite only works if they belongNote
to the same project or if the attribute Dependencies (reverse includes)(557) of the Test
suite node is set correctly.

5.11 Component tree maintenance

During the course of test creation, some unused components can collect in the compo-
nent tree. From time to time you can Clean up the component tree(94). On the other hand,
recognition characteristics can change because of changes in the application interface.
Before changes accumulate across multiple interface changes and break recognition, it
makes sense to Update Components(94) in the affected windows and dialogs.

5.11. Component tree maintenance 94

5.11.1 Clean up the component tree

Each time a sequence is recorded, new nodes are created for the components which
are not yet part of the test suite. If the sequence is deleted later, theses Components
remain which gives Components a certain tendency to accumulate.

The context menu for Window and Component nodes has two entries called
Mark unused components... and Remove unused components , which mark or

remove entirely those Components which no other node in this test suite refers to.

Be careful if you use variables in QF-Test component ID attributes since the automatic
mechanism does not resolve them.

If Components from other test suites are referenced, these should be part of the same
project or the attribute Dependencies (reverse includes)(557) of the Test suite must be set cor-
rectly.

5.11.2 Update Components

It is almost unavoidable that components of the SUT change with time. As described,
this is not a big problem as long as identifiers were consequently used, since QF-Test
can then handle almost every kind of change.

Without identifiers, changes will accumulate with time and can reach a point at which
the recognition fails. To avoid this problem, you should adjust the Components in QF-Test
to the current SUT from time to time. This can be done with the help of the menu entry
Update component(s) which you can find in the context menu of any node below the

Windows and components(881) node.

This feature can change a lot of information at once, so it can be difficult to judge ifNote
everything went well or if a component was recognized wrongly. You should always
create a backup copy before updating lots of components. You should also proceed
Window by Window and make sure that the components you want to update are visible
in the SUT (excluding menu entries). After every step make sure that the tests still run
cleanly.

Provided there is a connection to the SUT the following dialog will appear when using
this function:

5.11. Component tree maintenance 95

Figure 5.13: Update components dialog

If you are connected to multiple SUT clients you need to select one for the update.

Decide if you only want to update the selected Components themselves or their child
nodes as well.

You can also include components that are not currently visible in the SUT. This is most
useful for menu entries.

The QF-Test ID(870) of an updated node is retained if ”Keep QF-Test ID of original node”
is selected. Otherwise, the node is given a QF-Test ID generated by QF-Test, if mean-
ingful information is available. Other nodes that refer to this QF-Test ID are automati-
cally adjusted. QF-Test also checks dependencies in the test suites that belong to the
same project or that are listed in the attribute Dependencies (reverse includes)(557) of the
Test suite(555) node. These test suites are automatically loaded and indirect dependencies
are also resolved.

In this case, the modified test suites are automatically opened so that the changes canNote
be saved or undone.

After confirming with ”OK”, QF-Test will attempt to find the affected components in the
SUT and collect current information. Components which cannot be found are skipped.
Then the Component nodes are adjusted to the current structure of the SUT GUI, which
can also result in nodes being moved.

For large hierarchies of components, this extremely complex operation can take someNote
time, up to a few minutes in extreme cases.

This feature is most useful if identifiers are used for the first time in the SUT. If you have
already created some tests before convincing developers to assign identifiers, you can

5.12. Inspecting components 96

use this to apply these identifiers to your Components and at the same time adjust the
QF-Test IDs. This works best if you can get a version of the SUT which is identical to the
previous version except for the identifiers.

Very important note: Updating whole windows or hierarchies of components above aNote
certain size often leads to an attempt to update components that are not present or
invisible at that moment. In such a case it is very important to prevent false positive
hits for these components. You can do this by temporarily setting the ’... bonus’ and ’...
penalty’ options for recognition (section 41.3.4(509)). In particular, set the ’Feature penalty’
to a value below the ’Minimum probability’ value, for example to 49, if you otherwise use
the default values. Do not forget to restore the original values afterwards.

If you need to change the setting of the Name override mode (replay)(509) and Name
override mode (record)(484) options, for example because component identifiers have
turned out to be ambiguous, first change only the option for recording. When the update
is finished, follow up the option for playback accordingly.

5.12 Inspecting components
3.1+

Sometimes it is useful to get extra information about the components saved in the sec-
tion Windows and components(881) or to view the saved information interacting directly with
the application.

It is particularly relevant when mapping components of web applications. This should
be done before starting to write tests, as described in Improving component recognition
with a CustomWebResolver(1004). The UI inspector can be used to examine the UI
elements, currently for Android and web applications.

When working with scripts, it is sometimes helpful to be able to display a list of the
methods of a GUI element.

5.12.1 Show methods

Every GUI object has certain (public) methods and fields which can be accessed in a
SUT script(673) as soon as it has access to the object (see section 11.3.4(176)). To display
these, select the Show methods for component... from the context menu of a node
below the Windows and components(881) branch or right-click the component itself in com-
ponent recording mode (see section 4.5(40)).

The methods and fields that are displayed for HTML elements in a browser cannot beWeb
used directly with the object returned by rc.getComponent(). They are JavaScript
methods and properties that must be embedded in callJS (see section 54.10(1171)).

5.12. Inspecting components 97

5.12.2 UI Inspector
7.0+

The UI inspector shows the component hierarchy of the client and the properties of
every component. This can be useful to resolve component recognition problems. Fur-
thermore, it also makes it easier to set up resolvers thanks to the information displayed
in the detailed view.

In April 2024, a special webinar took place about this topic. Here you can find theVideo

special webinar video recording
https://qftest.com/en/yt/uiinspector-special-webinar.html

available on our QF-Test YouTube channel.

The UI Inspector is available for Android and Web applications. As of QF-Test version
7.1, Windows and Swing/AWT are also supported and from version 7.1.3, FX is also
supported.

The node representation in the component tree will already give an overview of the most
important information. If the class name (section 5.4.1(56)) is written in blue, the compo-
nent will be considered as interesting. This in turn will determine whether a Component(869)

node will be created for the component. In case a generic class (see chapter 61(1242)) can
be determined, the generic class will be represented in bold. Furthermore the original
class will be added in brackets. By default, all generic classes will be regarded as inter-
esting. Invisible components will be displayed in grey.

5.12. Inspecting components 98

Figure 5.14: UI Inspector

5.12. Inspecting components 99

Opening the inspector

In order to open the UI inspector you have the following possibilities:

• Via the menu Clients→Show inspector .

• Via the menu entry Show inspector in the context menu upon component record-
ing.

• Via the context menu Show inspector of any Component node or any node con-
taining a QF-Test component ID or a SmartID(72).

• Directly from the SUT via (configurable) keyboard shortcuts. By default�� ��Umschalt-Strg-F11 for Windows/Linux and
�� ��-F11 for Mac. See section

C.2(1346).

• Via the button Inspector in the Install CustomWebResolver(842) node.Web

• In the recording window via the crosshairs-button in the toolbar, see QF-TestAndroid
Android recording window(244).

UI Inspector toolbar

The buttons in the toolbar have the following meaning:

Select a component to inspect it. During component selection, the
record- and check functionality of QF-Test is deactivated. Furthermore
actions will not be forwarded to the SUT. That way the information in
the UI inspector can be analysed via mouse clicks.

Navigating in the component tree. Together with inspector mode
the history function also gets activated, thus remembering selections
made in the UI inspector and the client, which makes it possible to
jump forward and backwards in the component tree.

Refresh component tree. Updating is required when components have
changed or an resolver has been installed.

Show invisible components in the component tree. Components with
visible childs will always be displayed.

Show geometry information in the component tree.

UI Inspector details

5.12. Inspecting components 100

The UI inspector view gives an overview of the most important properties of a compo-
nent. The view is divided into three sections:

General
This section covers the basic properties of a component, for example its

class.

Figure 5.15: General information

Engine-related
The engine-related details cover additional technical information of a

component. The information shown differs depending on the technology
used.
For web applications it is information about the DOM element, for exampleWeb
the HTML tag, HTML attributes and the readable text.

Figure 5.16: Web-specific information

For Android applications information concerning the content description, re-Android
source ID, package name as well as information about the window type and
its arrangement is shown.

5.12. Inspecting components 101

Figure 5.17: Android-specific information

In Windows applications, the information pertains to the Automation ElementWindows-
Tests and includes the most important UI Automation properties. Detailed descrip-

tions of this information can be found in section 54.12.1(1188).

Figure 5.18: Windows-specific information

In Swing applications, the UI inspector contains information about the SwingSwing
component and its key accessible properties as well as the name, tooltip, and
client properties.

Figure 5.19: Swing-specific information

In FX applications, the UI inspector contains information about the FX com-JavaFX
ponent and its key accessible properties as well as the id, style, tooltip, and
client properties.

5.12. Inspecting components 102

Figure 5.20: FX-specific information

In SWT applications, the UI inspector contains information about the swt wid-JavaFX
get such as data, tooltip, font, visibility, and enabled status.

Figure 5.21: SWT-specific information

QF-Test specific
The information shown in this section relates to the Component node(70) node.
The information can be used to verify whether a resolver works as expected.

5.12. Inspecting components 103

Figure 5.22: QF-Test specific information

The detail view can also show information about two different components
next to each other, making it easy to compare them. So right click one com-
ponent in the hierarchy tree and choose Compare from the context menu.

Via Reset comparison in the context menu or via the ’Close’ button in the
detail view you can leave the comparison mode again.

Chapter 6

Variables

There is a briefVideo

overview video
https://www.qftest.com/en/yt/variables.html

available covering the most important aspects of variable handling in QF-Test.

Variables are the primary means to add flexibility to a test suite. Though they are used
mainly as parameters for Procedures(627), they are also useful in many other cases.

Variables can be used in all attributes with text input fields. Many checkboxes can be

converted to text input through the button at the top left. Then you can insert a
boolean value either directly or via a variable.

6.1 Variable references

There are multiple ways to reference variables:

6.1.1 Referencing simple variables

$(variable name) returns the string value of a variable.

If the value is not a string but is evaluated as part of a string or the result is used as text,
the text representation of the value is used instead.

6.1. Variable references 105

6.1.2 Referencing group variables

${group:name} accesses a variable in a variable group. Use it to access variables
in a group which contains data from an external source (see External data(113)). Some
groups, like qftest, env and system, are always defined and have special meanings
(see Special groups(114)).

Again, depending on context, the text representation of the variable value may be re-
turned, regardless of its type.

6.1.3 Referencing variables in scripts and script expressions

Accessing QF-Test variables in scripts and Script expressions(171) (for example
$[Jython expression] or the Condition of an If(647) node) is described in
Variables(173).

The run context methods rc.get*
There are multiple methods in the run context module for accessing variables like
rc.get*, such as rc.getStr, rc.getInt, rc.getNum, rc.getBool or
rc.getObj. A detailed description of all these methods is given in Run context
API(963).

The run context property rc.vars
The run context includes the Map-like object rc.vars for easy access to the

current values of QF-Test variables. Designed as an alternative to
rc.getObj(’name’), it lets you write rc.vars.name instead. When you use
this expression to assign a value, it has the same effect of setting a local variable
as rc.setLocal.

The run context property rc.groups
Similar to rc.vars, you can use rc.groups to access group

variables: Instead of rc.getObj(’group’,’name’) or
rc.getObj(’qftest’,’dir.version’) you can use
rc.groups.group.name or rc.groups.qftest.dir.version. When you
use this expression to assign a value, it has the same effect of setting a value in a
group as rc.setGroupObject. Note that elements in special groups may not
allow write access. In that case, a ReadOnlyPropertyException(899) is thrown.

$(variable name) and ${group:name} in Jython scripts
In Jython scripts and script expressions, QF-Test variables can technically be

referenced with the same syntax as in normal nodes. Since the Jython script is a
string, the text value of the variable is directly embedded into the Jython code
during expansion.

6.2. Variable lookup 106

This way of referencing is not recommended. If the variable value contains items
like backslashes (\) or line breaks, it can lead to unintended results.

6.2 Variable lookup

To understand the reasons of why and how variables are defined in multiple places, you
first have to learn about how the values of variables are determined.

Each variable definition is placed on one of two stacks of so-called bindings. One stack
is used for direct definitions and one for fallback bindings or default values. When the
value of a variable is requested, for example via $(...), QF-Test first searches the
stack of direct bindings from top to bottom, then the stack of fallbacks, also top-down.
The first value found is used. If there is no binding at all for a name, an
UnboundVariableException(899) is thrown unless you use the special syntax
${default:varname:defaultvalue} to provide a default value for this case as
described in Special groups(114).

Topmost bindings
(highest precedence)
...
Bottommost bindings
(lowest precedence)

Topmost bindings
(highest precedence)
...
Bottommost bindings
(lowest precedence)

Primary stack(Direct bindings) Secondary stack(Default values)

Figure 6.1: Direct and fallback bindings

The mechanism supports recursive or self-referencing variable definitions.
For example, setting a variable named classpath to the value
some/path/archive.jar:$(classpath) will extend a binding for
classpath with lower precedence. If no such binding exists, a
RecursiveVariableException(899) is thrown.

6.3 Defining variables

Variables can be defined in various places.

Variable definition tables
Two-column Tables(17) are used, for example, in a Procedure call(630) to define the

6.3. Defining variables 107

parameter names and values to be passed, or in a Procedure(627) node to set
default values. In each row, one variable with a name and a value can be defined.
In many other nodes, like Test suite(555), Test set(566) and Test case(558), variables can be
defined in tables, as well.

Procedure return values
A Procedure can return a value. It will be assigned to the variable with the name

given in the Procedure call node Variable for return value(631) attribute. The called
procedure can control the type of the returned object via the attribute
Explicit object type(634) of the Return(633) node.

Check results
One possible result handling in a check node is to assign the result to a variable

named in the attribute Variable for result, for example in a Boolean check(759) node.

Return values of capture nodes
Capture nodes like Fetch text(786) assign the received value to a variable named in

the attribute Variable name.

Set variable nodes
Variables can also be defined through Set variable(814) nodes. The attribute

Explicit object type(816) sets the type of the returned object.

Script nodes
Variables can be set in scripts via the methods rc.setLocal, rc.setGlobal,
rc.setLocalJson etc. These can then be used in QF-Test nodes.
setGroupObject can be used to set variables in a variable group. For more
information, see Scripting(168) and Run context API(963).

Option dialog
Variables can be set and changed in the options dialog section ”Variables” (see

Variables(552)). This is especially useful for global, system and command line
variables.

6.4. Variable levels 108

Figure 6.2: Definition of system variables in the options dialog

6.4 Variable levels

Variables can be declared on different levels. There is the foundational difference in
evaluation order of variable definitions between the primary and secondary stack. Both
stacks then each have more fixed levels.

6.4.1 Primary stack

For the primary stack, the following order applies:

Local test case variables

Local test case variables are located in the upper part of the primary stack. When a
node is entered during test execution, the defined variables (but not the fallback values!)
are placed on top of the stack and removed again when leaving the stack.

For each node that has a variable definition table, a separate level is created on the pri-
mary stack, and the variables defined in the table placed there. Variables from local (not
global!) assignments are added or updated in one of the existing levels, for example the
return value of a procedure, the result variable of a check or capture node or variables

6.4. Variable levels 109

created via Set variable or script nodes. The variable is added/updated in the level of the
topmost procedure node, or if not available, of the test case node – if the variable does
not already exist in a higher level (e.g. sequence, test step, loop, if node). In that case,
the value of the variable is updated in that higher level.

To define local variables, the attribute Local variable must be enabled in the respec-
tive node. This can be preconfigured in the QF-Test options (see Variables(552)). In
scripts, local variables are set with the methods rc.setLocal, rc.setLocalJson or
rc.vars.name = value (see Run context API(963)).

Global variables

If the attribute Local variable is not active in nodes that can define variables, these vari-
ables are created on the level of global variables. In scripts, global variables are set with
the methods rc.setGlobal or rc.setGlobalJson (see Run context API(963)).

A global variable can also be created despite Local variable being set if no context isNote
available for local variables. This is the case, for example, if a node is executed directly
from the ’Extras’ node.

A global variable remains unchanged until it is explicitly updated or cleared or QF-Test
is quit. That means that global variables ”survive” individual test runs. They serve to
exchange values between independent test cases or procedures. Keep in mind that
global variables must be defined by running the test before they can be referenced.

If you want to modify global variables without running a test, you can do this either
through the debug mode (see Displaying variables in debug mode – Example(110)) or the
option dialog section ”Variables”.

To clear any global variables before a test run, use the menu entry
Run→Clear global variables . If QF-Test is running in batch mode (see Starting

QF-Test(12)) global variables are cleared before running any test passed through the
command line argument -test <n>|<ID>(928).

Command line argument variables

Command line argument variables can be set when launching QF-Test. These are
ranked above variables defined in the Test suite(555) node. On the command line the vari-
ables are set via the argument -variable <name>=<value>(929), see Command line
arguments and exit codes(908).

6.5. Displaying variables in debug mode – Example 110

Test suite node variables

Variables on this level of the stack are defined in the Test suite node of the current test
suite. Typically, these variables are valid for all tests of the suite and can be overridden
via the command line during a batch run if needed. A typical example is the choice of
browser for running a web application that should differ between interactive test devel-
opment and batch execution.

6.4.2 Seconday stack

The following order applies to the secondary stack:

Fallback values

When entering a node for which fallback values are defined, these are placed on top of
the secondary stack. When a node from another test suite is called, the variables of the
Test suite node of the original test suite are removed from the primary stack and placed
on top of the secondary stack. When leaving the node (respectively the test suite), the
variables are again removed from the secondary stack and, in the case of a test suite,
moved to the primary stack into the respective level.

Entries are only placed on the secondary stack if fallback values were definied for a
node or the originating test suite has variable definitions in its Test suite node.

System-specific variables

Here, path names and JDK- or OS-specific values or similar can be defined. This set of
definitions is always located at the bottom of the secondary stack and therefore has the
lowest binding priority.

System-specific variables are set in the option dialog section ”Variables”. They are
stored in the system configuration file together with other system options.

6.5 Displaying variables in debug mode – Example

Consider the following example:

6.5. Displaying variables in debug mode – Example 111

Figure 6.3: Variable example

The Sequence ”Login” contains a Procedure call of the Procedure ”login” which expects
two parameters: user and password. The Parameter default values of the Procedure
are user=username and password=pwd. The Procedure call overrides these with
user=myname and password=mypassword.

The ”login” Procedure itself contains Procedure calls of other Procedures. Here, no param-
eters are passed. The procedures ”setUser” and ”setPassword” have one entry each in
Parameter default values.

The following figure shows the overview of variable definitions when executing the pro-
cedure”setUser”.

Figure 6.4: Variable definitions

Let’s take a closer look at the individual rows of the table:

1. Procedure setUser: No variables defined.

6.6. Data types of variables 112

2. Procedure call setUser: No variables are passed because it is not required (differ-
ent from e.g. Java). When checking the variable definitions, QF-Test goes through
the table from top to bottom - regardless of procedure or test case borders. As
soon as a variable with the matching name is found, the corresponding value is
used.

3. Procedure login: No variables defined.

4. Procedure call login: Two variables are defined in this procedure call. The row was
selected, so you can see the defined variables and their values on the right. At the
current execution point of the test, the variable ”name” will be used next. Since the
first ocurrence of a variable with that name is in this row, the corresponding value
”myName” will be used.

5. Sequence Login: No variables defined.

6. Test case Test: No variables defined.

7. Global variables: The variable ”client” was defined in the Dependency node, be-
cause it is needed in all test cases that interact with the application under test.
Global variables remain unchanged until they are explicitly updated or cleared.

8. Command line: Three variables were defined on the command line. One of them
is the name of the browser that should be used for the current test run.

9. Test suite: The name of the browser stored here would be used as a fallback if no
other browser was defined in the rows above.

10. Secondary stack: Signals the end of the primary stack and the beginning of the
secondary stack below.

11. Procedure setUser: A default value for the variable ”name” is stored here. It would
be used if no variable of that name existed in the rows above.

12. Procedure login: Here default values for ”name” and ”password” are stored, as
well. They would be used if no variables with those names existed in the rows
above.

13. System: No variables defined.

6.6 Data types of variables

With a few exceptions, all attribute fields in QF-Test nodes interpret entered values as
plain text. Those exceptions are the conditions of If(647), Test case(558) and Test set(566) nodes,
as well as script code attributes which expect valid expressions of a specific syntax.

6.7. External data 113

Since the attributes are usually interpreted as text, a special syntax is needed to access
variables or for calculations and string manipulations (see Variable references(104) and
Script expressions(171)).

In script nodes, all data types that are available in their scripting language can be used
independently of QF-Test. Inside the script interpreters, the data objects of any script
can be used, see Variables(173). However, these will not show up in the variable stack of
QF-Test and are not visible in the debug-mode variable definitions table or logged in the
run log.

You can use the run context methods rc.setLocal and rc.setGlobal to put a vari-
able from a script onto the QF-Test variable stack. This way, QF-Test variables can be
assigned strings, but also values with other data types. To set non-string values in a
Set variable(814) node you can use Script expressions(171) in the attribute Default value, or
you can enter the text representation of the value there and set the desired object type
in Explicit object type(816).

To access these variables, various methods are available. For QF-Test nodes, these
are described in Variable references(104). For scripts and script expressions, methods are
described in Variables(173), and special ones for Jython scripts in Jython Variables(181).

A detailed description of all run context methods can be found in Run context API(963).

6.6.1 JSON data

Data is often provided as JSON objects when working with HTTP requests or WebAPI.
If you want to serialize such an object, which means to convert it into a JSON string
and store it in a QF-Test variable, you can use the methods rc.setLocalJson() and
rc.setGlobalJson() of the run context (see Run context API(963)) in a script node.

If you want to convert a JSON string into a JSON object, you can use rc.getJson()
in a script node (see Run context API(963)).

JSON objects can be modified and handled with the methods described in The JSON
module(994).

6.7 External data

You can access external data via Load properties(834), Excel data file(615), Database(610),
CSV data file(620) and Load resources(831) nodes. These assign a set of definitions to a
group name. You can access the value of a resource or property via the description
name with the syntax ${group:name}.

You can also access external data in a Data driver(603) via Excel data file(615), Database(610) and

6.8. Special groups 114

CSV data file(620). In that case however, no group is created. Instead, a loop iteration is
generated for each row of data, in which the values of the data set are bound to QF-Test
variables named according to the data column titles. They can be accessed via the
syntax $(column title).

When run in batch mode (see Starting QF-Test(12)) QF-Test clears the resources and
properties before the execution of each test given with the -test <n>|<ID>(928)

command line argument. In interactive mode, QF-Test keeps them around to
ease building a suite, but for a true trial run you should clear them via the
Run→Clear resources and properties menu first.

6.8 Special groups

The following variable groups are always available. Their values can be accessed via
the syntax $(group name:variable name), or rc.groups.group.variable in
scripts.

system
The group system gives access to the system properties of the Java VM

(for programmers: java.lang.System.getProperties()), e.g.
${system:user.home} for the user’s home directory or
${system:java.class.path} for the class path with which QF-Test was
started. Which names are defined in the group system depends on the utilised
JDK.
The group always refers to the VM QF-Test was started with, because variable
expansion takes place there.

env
On operating systems which support environment variables like PATH, TMP or
JAVA_HOME (practically all systems QF-Test runs on), these environment
variables can be accessed with the help of the group env.

decrypt
Via the decrypt group you can temporarily decrypt a string for the further9.0+

usage in QF-Test, e.g. for text field inputs, API tokens or database passwords. In
the run log, QF-Test will replace the expanded value by the placeholder ***. A
value in a Set variable(814) step can be encrypted by right-clicking and selecting
Encrypt text from the popup menu.

For specific values in QF-Test steps the run log always contains the final value.Note
Please inspect the final run log before sharing it. Also pay attention to the remarks
for the Salt for crypting passwords(496) option.

6.8. Special groups 115

default
You can specify a default value for a variable with the group default. The3.4+

syntax is ${default:varname:defaultvalue}. This is extremely useful for
things like generic components or in almost every place where there is a
reasonable default for a variable because the default value is then tightly coupled
with the use of the variable and doesn’t have to be specified at Sequence or test
suite level. Of course you should only use this syntax if the variable lookup in
question is more or less unique. If you are using the same variable with the same
default in different places it is preferable to use normal syntax and explicitly set
the default, so that the default for all values can be changed in a single place.

as
Like in a Set variable(814) oder Return(633) step it is possible to change the typ of an9.0+

object using the as group. The syntax is ${as:type:value}, whereas it is
possible to reference values from variables in value using $(...). Valid values
for type are: string, str, boolean, number, object, pattern, int,
integer, long, float, double, cmdline, and json.

id
The group id can be used to reference QF-Test component IDs. Values in this3.1+

group simply expand to themselves, i.e. ”${id:whatever}” expands to ”whatever”.
Though QF-Test component IDs can be referenced without the help of this group,
its use increases the readability of tests. Most notably however, QF-Test
component ID references in this group will be updated automatically in case the
referenced target component gets moved or its QF-Test ID changed.

idlocal
The group idlocal is similar to the id group but includes the path to the4.2.3+

current test suite, i.e. ”${idlocal:x}” expands to ”path/to/current/suite/suite.qft#x”.
This enforces use of the component referenced in the suite that is current at the
time of expansion, irrespective of whether there is a component with the same
%attId; in the target suite of a procedure call.

quoteitem
Via the quoteitem group you can conveniently escape special characters like4.0+

’@’, ’&’ and ’%’ in the name of a textual sub-item index to prevent it from being
treated as several items, e.g. ”${quoteitem:user@host.org}” will result in
”user\@host.org”.

quoteregex, quoteregexp
The group quoteregex with its alias quoteregexp can be used to escape4.0+

characters with special meaning in Regular expressions(955). This is often useful
when building regular expressions dynamically or when referencing subitems with
special characters in their name by a regular expression index, e.g.

6.8. Special groups 116

”componentid%${quoteregex:foo(baa)}.*” allows you to address the first
occurrence of items beginning with ’foo(baa)’.

quotesmartid
The quotesmartid group is similar to quoteitem. In addition to the item6.0.1+

syntax special characters ’@’, ’&’ and ’%’ it also escapes the characters ’:’, ’=’, ’<’
and ’>’ that have special meaning in SmartIDs, e.g. ”${quotesmartid:Name: A &
B}” will result in ”Name\: A \& B”.

qftest
The special group named qftest provides miscellaneous values that may be

useful during a test run. The following tables list the values currently defined.

Name Meaning
32 or 32bit No longer relevant because support for 32bit Java for QF-

Test was dropped in version 8.0
true if QF-Test is running in a 32bit Java VM - which is not
the same as running on a 32bit Operating System - false
otherwise.

64 or 64bit No longer relevant because support for 32bit Java for QF-
Test was dropped in version 8.0
true if QF-Test is running in a 64bit Java VM, false other-
wise.

batch true if QF-Test is running in batch mode, false for interac-
tive mode.

client.baseEngineName.<name> The base name of the primary engine of the client started
with the Client(682) attribute set to <name>, e.g. fx.

client.browser.<name> The name/type of the browser of the client started with
the Client(690) attribute set to <name>, e.g. safari. Only
available for Web clients.

client.connectionMode.<name> The name of the connection mode of the client started
with the Client(690) attribute set to <name>. Possible
values are qfdriver, cdpdriver, webdriver, and
embedded. Only available for Web clients.

client.engine.<name> The primary engine of the client started with the Client(682)

attribute set to <name>. The result consists of the base
name of the engine and a numerical index, e.g. fx0.

client.engineNames.<name> A list of all connected engines of the client started with the
Client(682) attribute set to <name>, e.g.[fx0, web_fx0].

client.exitCode.<name> The exit-code of the last process started with the Client(682)

attribute set to <name>. In case the process is still alive
the result is the empty string.

client.deviceName.<name> A name for the (emulated) device started with the
Client(702) attribute set to <name>. Only available for An-
droid clients after instrumentation, for emulated devices
equal to the AVD name.

6.8. Special groups 117

client.deviceType.<name> The type of the (emulated) device started with the
Client(702) attribute set to <name>. Can be emulator for
an emulation and device for a connected real device.
Only available for Android clients after instrumentation.

client.mainVersion.<name> The main version of the browser or device operating sys-
tem of the client started with the Client(690) attribute set to
<name>, e.g. 121. Only available for Web clients after
first browser open and for Android clients after instrumen-
tation.

client.output.<name> The output of the last process started with the Client(682)

attribute set to <name>. The maximum size for buffered
output is defined by the option Maximum size of client
terminal (kB)(499).

client.SDKVersion.<name> The SDK version of the device operating system of the
client started with the Client(702) attribute set to <name>,
e.g. 121. Only available for Android clients after instru-
mentation.

client.stdOut.<name> The output on the standard output stream (stdout) of
the last process (started with the Client(682) attribute set
to <name>). The maximum size for buffered output is
defined by the option Maximum size of client terminal
(kB)(499).

client.stdErr.<name> The output on the standard error stream (stderr) of the
last process (started with the Client(682) attribute set to
<name>). The maximum size for buffered output is
defined by the option Maximum size of client terminal
(kB)(499).

client.version.<name> The version of the browser or device operating system
of the client started with the Client(690) attribute set to
<name>, e.g. 121.10.2967.10. Only available for Web
clients after first browser open and for Android clients after
instrumentation.

clients A list of the names of all active process clients, separated
by a newline.

clients.all A list of the names of all process clients, separated by a
newline. This includes live clients as well as the recent
dead clients similar to those listed in the ”Clients” menu.

count.exceptions Number of exceptions in the current test run.
count.errors Number of errors in the current test run.
count.warnings Number of warnings in the current test run.
count.testCases Total number of total test cases (run and skipped) in the

current test run.
count.testCases.exception Number of test cases with exceptions in the current test

run.
count.testCases.error Number of test cases with errors in the current test run.

6.8. Special groups 118

count.testCases.expectedToFail Number of test cases expected to fail in the current test
run.

count.testCases.ok Number of successful test cases in the current test run.
count.testCases.ok.percentage Percentage of successful test cases in the current test

run.
count.testCases.skipped Number of skipped test cases in the current test run.
count.testCases.notImplemented Number of not implemented test cases in the current test

run.
count.testCases.run Number of run test cases in the current test run.
count.testSets.skipped Number of skipped test sets in the current test run.
dir.cache Cache directory of QF-Test
dir.groovy Directory of Groovy
dir.javascript Directory of JavaScript
dir.jython Directory of Jython
dir.log Log directory of QF-Test
dir.plugin Plugin directory of QF-Test
dir.root Root directory of QF-Test
dir.runlog Run log directory of QF-Test
dir.system System-specific configuration directory of QF-Test.
dir.user User-specific configuration directory of QF-Test
dir.version Version-specific directory of QF-Test
engine.<componentId> Retrieves the GUI engine responsible for the given com-

ponent (see GUI engines(933)).
language The language in which QF-Test displays its graphical user

interface.
license The path to the license file
systemCfg The path to the system configuration file
userCfg The path to the user specific configuration file
executable The qftest executable matching the currently running

QF-Test version, including the full path to its bin directory
and with .exe appended on Windows. Useful if you need
to run QF-Test from QF-Test for example to call a daemon
or create reports.

isInRerun ”true”, if current execution is in rerun mode, ”false” other-
wise, see Rerunning failing nodes immediately(329).

isInRerunFromLog ”true”, if test run has been re-started from run log, ”false”
otherwise, see Triggering rerun from a run log(326).

java Standard Java program (javaw under Windows, java
under Linux) or the explicit Java argument if QF-Test is
started with -java <executable> (deprecated)(914)

java.mainVersion The major version of the JRE that QF-Test currently runs
on, using 8 for Java 1.8 so the result is something like 8,
11 or 17.

6.8. Special groups 119

java.subVersion The sub-version of the JRE that QF-Test currently runs
on. For Java 8 the sub-version taken from after the ’_’,
so for java.version 1.8.0_302 this results in 302. For Java
9 or higher this is the minor version, e.g. 9 in case of
java.version 11.0.9.

linux ”true” under Linux, ”false” otherwise
macOS ”true” under macOS, ”false” otherwise
os.fullVersion The whole version of the operating system
os.mainVersion The main version of the operating system, e.g. ”10” for

Windows 10
os.name The name of the operating system
os.version The version of the operating system. In some cases that’s

not the whole one then you should use os.fullversion
instead.

project.dir The directory to the current project. This variable is not
defined in case the current test suite is not part of a
project.

rerunCounter Number of current rerun attempt, default is 0, for details
see Rerunning failing nodes immediately(329).

return The most recent value returned from a Procedure(627)

through a Return(633) node.
runID The runid of the current test run. See Reports(306) for fur-

ther information about the runid.
screen.height Screen height in pixels
screen.width Screen width in pixels
skipNode This magic value is not for the casual user. It causes

QF-Test to skip execution of the current node. Its pri-
mary use is as the value for a variable defined in the
Text(736) attribute of a Text input(734) node which also has
its Clear target component first(736) attribute set. An empty
value would clear the field whereas $_{qftest:skipnode}
leaves the field unchanged. But skipnode is also appli-
cable for fine-grained execution control by placing a vari-
able in the comment of a node and selectively passing
$_{qftest:skipnode} to that variable. Please note that you
almost always want to use lazy syntax ’$_’ with this vari-
able. Otherwise its expansion as the parameter in a Pro-
cedure call node would cause skipping the whole call.

suite.dir Directory of the current suite
suite.file As string, the file name of the current suite without direc-

tory. If accessed as Object, the File object of the current
suite.

suite.path File name of the current suite including directory
suite.name Get the name of the current test suite.
testCase.name The name of the current Test case, empty if no Test case is

currently being executed.

6.8. Special groups 120

testCase.id The QF-Test ID of the current Test case, empty if no Test
case is currently being executed.

testCase.qName The qualified name of the current Test case, including the
names of its parent Test sets. Empty if no Test case is cur-
rently being executed.

testCase.reportName The expanded report name of the current Test case, empty
if no Test case is currently being executed.

testCase.splitLogName The qualified name of the current Test case converted to
a filename, including the names of its parent Test sets as
directories. Empty if no Test case is currently being exe-
cuted.

testSet.name The name of the current Test set, empty if no Test set is
currently being executed.

testSet.id The QF-Test ID of the current Test set, empty if no Test set
is currently being executed.

testSet.qName The qualified name of the current Test set, including the
names of its parent Test sets. Empty if no Test set is cur-
rently being executed.

testSet.reportName The expanded report name of the current Test set, empty
if no Test set is currently being executed.

testSet.splitLogName The qualified name of the current Test set converted to a
filename, including the names of its parent Test sets as di-
rectories. Empty if no Test set is currently being executed.

testStep.name The name of the current Test step, empty if no Test step is
currently being executed.

testStep.qName The qualified name of the current Test step, including the
names of its parent Test steps, but not including Test cases or
Test sets. Empty if no Test step is currently being executed.

testStep.reportName The expanded report name of the current Test step, empty
if no Test step is currently being executed.

thread The index of the current thread. Always 0 ex-
cept if QF-Test is started with the argument
-threads <number>(929).

threads The number of parallel threads. Always 1 ex-
cept if QF-Test is started with the argument
-threads <number>(929).

version QF-Test version
version.build QF-Test build number
windows ”true” under Windows, ”false” otherwise

Table 6.1: Definitions in the special group qftest

6.9. Immediate and lazy binding 121

6.9 Immediate and lazy binding
3.0+

There is a very subtle issue in using QF-Test variables that requires further explanation:

When a new set of variable bindings is pushed on one of the variable stacks, there are
two possibilities for handling variable references in the value of a binding, for example
when the variable named ’x’ is bound to the value ’$(y)’. The value ’$(y)’ can be stored
literally, in which case it will be expanded some time in the future when ’$(x)’ is refer-
enced somewhere, or it can be expanded immediately, so that the value of the variable
’y’ is bound instead. The first approach is called ’lazy’ or ’late binding’, the second
approach ’immediate binding’.

The difference, of course, is the time and thus the context in which a variable is ex-
panded. In most cases there is no difference at all, but there are situations where it is
essential to use either lazy or immediate binding. Consider the following two examples:

A utility test suite contains a procedure for starting the SUT with different JDK versions.
The variable ’jdk’ is passed as a parameter to this procedure. For ease of use, the author
of the test suite defines some additional useful variables at test suite level, for example a
variable for the java executable named ’javabin’ with the value ’/opt/java/$(jdk)/bin/java’.
At the time ’javabin’ is bound in the test suite variables, ’jdk’ may be undefined, so
immediate binding would cause an exception. But even if ’jdk’ were bound to some
value, immediate binding would not have the desired effect, because the java executable
is supposed to be the one from the JDK defined later by passing the parameter ’jdk’ to
a procedure. Thus lazy binding is the method of choice here.

Imagine another utility test suite with a procedure to copy a file. Two parameters called
’source’ and ’dest’ specify the source file and destination directory. The caller of the
procedure wants to copy a file called ’data.csv’ from the same directory as the call-
ing test suite to some other place. The natural idea is to bind the variable ’source’
to the value ’${qftest:suite.dir}/data.csv’ in the procedure call. With immediate binding,
’${qftest:suite.dir}’ will indeed expand to the directory in which the calling suite resides.
However, if lazy binding were used, the actual expansion would take place inside the
procedure. In that case, ’${qftest:suite.dir}’ would expand to the directory of the utility
suite, which most likely is not what the caller intended.

In versions of QF-Test up to and including 2.2 all variable expansion was lazy. As the
examples above show, both variants are sometimes necessary. Since immediate bind-
ing is more intuitive it is now the default. This can be changed with the option When
binding variables, expand values immediately(552). The option Fall back to lazy binding
if immediate binding fails(552) complements this and helps to ease migration of old test
suites to the use of Immediate Binding. The warnings issued in this context help locat-
ing the few spots where you should use explicit lazy binding as described below. Except
for very rare cases where lazy binding is required but immediate binding also works so
that the fallback is not triggered, all tests should work out of the box.

6.9. Immediate and lazy binding 122

In the few cases where it makes a difference whether a variable is expanded immediately
or lazily, the expansion of choice can be selected individually, independent of the setting
of the above option, by using an alternative variable syntax. For immediate binding use
’$!’ instead of just ’$’. Lazy binding is selected with ’$_’. For example, to define a
variable at test suite level that specifies a file located in this test suite’s directory, use
’$!{qftest:suite.dir}/somefile’. If immediate binding is the default and you require lazy
binding as in the ’jdk’ example above, use ’$_(jdk)’.

With lazy binding the order of variable or parameter definitions in a node or a data driverNote
did not matter because nothing was expanded during the binding stage. With immediate
bindings, variables are expanded top-to-bottom or, in a data driver, left-to-right. This
means that if you define x=1 and y=$(x) it will work, with y being set to 1, if x is defined
first. If y is defined first the definition will either fail or trigger the lazy definition fallback
described above.

Chapter 7

Problem analysis and debugging

The whole point of creating automated tests is to uncover problems in the SUT. There-
fore we can justifiably expect the tests to fail occasionally.

After the execution of a test has finished, a message will appear in the status line that
will hopefully say ”No errors”. If something went wrong, the numbers of warnings, errors
and exceptions that occurred is shown. Additionally an error dialog may pop up. In that
case you will need to find out what went wrong.

For some problems the cause may be obvious, but very often it is not. First and fore-
most in this case is the need to determine whether the test failed due to a bug in the
SUT or whether the SUT behaved correctly but the logic of the tests was wrong. The
dilemma here is that any potential problem in the SUT must be duly reported as soon as
possible, yet every false bug report is a waste of time and will cause resentment among
the developers. Therefore, each problem needs to be thoroughly analyzed and every
alleged bug in the SUT should ideally be reproducible before a report is submitted.

QF-Test supports testers in this crucial task in two ways. A detailed log is created
for each test run that holds all the relevant information for post mortem error analysis,
including screenshots taken at the time that an error occurred. The integrated test
debugger helps with analyzing and understanding the flow of control and information
during a test run.

The videoVideo

’Error analysis’
https://www.qftest.com/en/yt/error-analysis-40-html

shows a brief example for error handling.

7.1. The run log 124

7.1 The run log

During test replay QF-Test creates a run log that records everything that is going on.
The run logs for recent tests are accessible from the Run menu, the current or most

recent run log can also be opened by typing
�� ��Ctrl-L or the respective button in the

toolbar. See section 7.1.7(130) for information about options influencing run log creation.

The structure of a run log is similar to that of a test suite, but there are subtle differences.
Nodes are added to the run log when they are executed. Setup(595) and Cleanup(598) nodes,
for example, are typically executed more than once, in which case multiple copies will
be recored in the run log as shown below:

Test suite Run log

Figure 7.1: A simple test and its run log

A run log is the essential resource for determining what went wrong in a test, where
it went wrong and maybe even get an idea about why it went wrong. Therefore the
emphasis is on completeness of information rather than readability and a run log should
not be confused with a report or summary. Report generation is covered in chapter
24(305).

In addition to the nodes copied from the test suite, a run log contains failure information,
optional annotations, various kinds of messages as well as information about variable
expansion and run-time behavior.

The information gathered from a long test run accumulates and can eat up enormous
amounts of memory and QF-Test has several means to cope with that. The best one,
which is also the default, is to create split run logs as described in section 7.1.6(129). The
resulting *.qzp files in ZIP format not only preserve memory on disk - partial run logs
can be saved during test execution and removed from memory to free up necessary
space. The same applies when processing logs, e.g. for report creation. The older op-

7.1. The run log 125

tion Create compact run log(549) as well as the alternative file formats *.qrz and *.qrl
add flexibility but are mostly retained for compatibility reasons.

7.1.1 Error states

There are three kinds of failures differing in the level of severity:

Warnings
Warnings indicate problems that are typically not serious, but might lead to

trouble in the future and may need looking at. For example, QF-Test issues a
warning, if the best match for a component barely meets the requirements and
differs in some significant way.

Errors
Errors are considered to be serious defects that require closer inspection. They

indicate that the SUT does not fulfill some requirement. A typical cause for an
error is a mismatch in a Check text(754) node.

Exceptions
Exceptions are the most serious kinds of errors. An exception is thrown when a

situation occurs in which QF-Test cannot simply continue with the execution of
the test. Most exceptions indicate problems with the logic of the test, though they
can just as well be caused by the SUT. A ComponentNotFoundException(896),
for example, is thrown when no component in the SUT matches the intended
target for an event. A list of all possible exceptions is available in chapter 43(896).

Each node of a run log has an associated state which can be one of normal, warning,
error or exception. This state is visually represented by a frame around the node’s icon
which is orange for warning, red for error and bold red for exception.

7.1. The run log 126

Figure 7.2: Error states in a run log

As shown in the (somewhat reduced) screenshot above, error states propagate from
bottom to top. The exception state takes precedence over the error state, which in turn
overrides warning. The most severe kind of error that propagates to the top of the tree
determines the final result of a test and QF-Test’s exit code when run in batch mode
(see section 44.3(931)).

If necessary, the propagation of errors can be restricted for all kinds of Sequence(577)

nodes with the help of the Maximum error level(578) attribute. This can be useful for se-
quences which are known to contain errors that should not be taken into account just
yet. Exceptions can be handled with the help of the Try(658) and Catch(661) nodes. The
Maximum error level(663) attribute of the Catch node determines the state to propagate for
a caught exception.

7.1.2 Navigating the run log tree

All of the basic editing methods for a run log are similar to those for a test suite. One
significant difference is that can neither add or remove any nodes nor edit the attributes
of the nodes copied from the test suite. You can add annotations though, for example to
document the reason for an error if it is known.

The first question to answer when looking at a run log is ”What happened”?

The Button, or Edit→Find next error ,
�� ��Ctrl-N for short, moves the selection to the

next place at which an error actually occurred.

7.1. The run log 127

Respectively, or Edit→Find previous error (
�� ��Ctrl-P) moves backwards.

The option Skip suppressed errors(541) determines whether to ignore errors
that didn’t propagate up to the root node. There’s a menu item shortcut
Edit→Skip suppressed errors to quickly toggle the latter option.

The next question might be ”Where did this happen?”.

Though a run log is similar in many ways to a test suite, the connection isn’t always
obvious. The function Edit→Find node in test suite (

�� ��Ctrl-T) will take you to the exact
node in the test suite that is represented by the selected node in the run log, always
provided that the test suite can be located and hasn’t changed in a way that prevents
this. If the run log is loaded from a file, the corresponding test suite may not be located
at the same place as when the test was executed. If the test suite cannot be found, a
dialog will pop up that lets you select a different file. In case you select a wrong file or
some other test suite is found instead of the one the run log was created from, you may
end up at some totally different node, or none at all. In that case you can use the menu
item Edit→Locate corresponding test suite to explicitly change the test suite.

If you want to set the link between the file path of the executed test suite and the file
path where you develop the test suite permanently you can do so in the options menu
for the log-file as explained in Directory map for test suites(551).

7.1.3 Run-time behavior

QF-Test tracks the start time and the time spent for each node executed during a test,
the latter in two forms: ’Real time spent’ is the wall time elapsed between entry and
exit of the respective node. It includes explicit delays introduced in nodes via the ’Delay
before/after’ attribute, user interrupts when debugging tests or other overhead like taking
screenshots. The actual time spent testing is collected in the ’Duration’ attribute, making
it a better indicator for the performance of the SUT.

To get a better understanding of the run-time behavior of a test run you can

activate display of duration indicators via the toolbar button , the menu
View→Show relative duration indicators or the option Show relative duration

indicators(540). A colored bar is shown for each node with the length based on the
percentage of time spent in the node relative to the time of its parent node. Bottlenecks
in the performance of a test run can be located by drilling down into the nodes with the
longest bars:

7.1. The run log 128

Figure 7.3: Display of duration indicators in the run log

Via the option Duration indicator kind(540) or the sub-menu
View→Duration indicator kind the display can be toggled to show the relative duration,

real time or both. The latter is especially helpful but takes a bit of getting used to.

7.1.4 Showing return values

If the option Show return values of procedures(541) is active (in a run log also accessible
via the View menu), return values of Procedures(627) are displayed in the tree after the
respective Procedure call(630) node.

7.1.5 Accepting values of failed checks as good

A noteworthy feature of QF-Test’s run log is the ability to quickly accept the actual val-
ues of a failed Check node as good. When QF-Test logs a failed Check it includes the
complete current state of the Check node’s target component in the SUT. This is much
more useful than the failure message alone, which, for example, might just tell you that
a table column has 10 rows instead of the expected 9, but not what its contents are.

If you are analyzing a failed Check and see that the value in the SUT was actually correct
and the expected value stored in the test suite wrong, you can press

�� ��Ctrl-U or select
Update check node with current data from the context menu to accept the data from

the failed Check as the new correct value for the Check node.

7.1. The run log 129

Warning: QF-Test currently doesn’t preserve regular expressions in Check text(754) or
Check items(765) nodes, they will simply get overwritten.

7.1.6 Split run logs
3.0+

Run logs for long-running tests can get very large and consume an enormous amount
of memory, even more so in case many screenshots are kept. Compact run logs can
help, but not enough to make tests that run for days on end possible without turning off
the run log entirely. The best way to overcome the memory problem are split run logs.

For split run logs, whenever a certain part of a test has finished, QF-Test takes the run
log for that part, removes it from the main run log, saves it to a separate file and replaces
it with a single node that references that file. The partial logs are complete run logs in
themselves and can be viewed and archived independently, though normally they are
accessed through the main run log. When navigating the main run log or when creating
reports, QF-Test transparently loads the partial run logs from the separate files as re-
quired and removes them from memory when no longer needed. This makes it possible
to navigate huge run logs while still retaining a relatively small memory footprint. Of
course operations like searching or report creation that need to traverse the whole run
log become slower, but jumping from error to error remains quite fast and loading the
main run log is sped up drastically.

There are two ways for storing a main run log and its partial logs: All combined together
in a single ZIP file with the extension .qzp or with the partial logs in a separate directory.
The latter is named after the main run log with the extension .qrl or .qrz removed
and the suffix _logs appended. Inside a .qzp ZIP file the same layout is used so that
it is possible to zip or unzip files manually without breaking the internal references in the
run log. This compatibility is also the reason why by default partial logs inside the ZIP
are are stored compressed with the extension .qrz. This is slightly less efficient than
storing uncompressed .qrl files, but that way a .qzp run log can be unzipped without
its overall size exploding.

To make use of split run logs you can explicitly define points at which a run log is bro-
ken and split into parts. This is done via the Name for separate run log(605) attribute of
Data driver(603), Test case(558), Test set(566), Test call(572) or Test step(580) nodes. When used with a
Data driver, the logs for each iteration are saved separately, in the other cases the node
with the Name for separate run log attribute is split off. Otherwise partial run logs are split
off automatically when they reach a certain size. This functionality can be configured
via the option Minimum size for automatic splitting (kB)(543).

When working with split run logs it is advisable to turn Create compact run log(549) off, in
order to keep all details in the run log. This will consume a bit more disc space, but is
very helpful when analyzing errors.

Split run logs are also very handy for tracking the progress of a test in batch mode. In

7.1. The run log 130

that context it is extremely useful that the file names for the partial logs can be created
using the same placeholders as when specifying the name of the main run log on the
command line. In particular the error state of the partial log can be made part of its
filename. Please see the documentation for the attribute Name for separate run log(605) for
details.

7.1.7 Run log options

There are several options affecting the creation of run logs and their content. Among
others, you can choose whether to create compact or detailed run logs, whether to log
screenshots of the whole screen and/or the client windows or whether to suppress run
logs altogether. All options are explained in detail in section 41.11(538).

7.1.8 Creating a test suite from the run log
3.3+

If several people are involved in the test development process, it might be useful to
generate a test suite from the run log directly. The generated test suite could be used
to reproduce a test run on-the-fly without having the entire structure of test suites.

You can create a test suite from the run log via performing a right mouse click at any
node in the run log and selecting Create test suite from the context menu.

QF-Test creates a new file containing all executed steps of the respective tests under
Extras(588) as well as the used components.

QF-Test only adds the executed steps to the new test suite. Variables will be expandedNote
immediately, so you can only see their value in the new file. Organizational nodes like
procedures or control structures will not become created.

You have to set a couple of options in order to get this feature properly working (Under
Run log -> Content):

• Create compact run log(549) needs to be switched off.

• Log variable expansion(547) needs to be switched on.

• Log parent nodes of components(547) needs to be switched on.

If you have access to all test suites, you can use also use information from them for
creating the new one. Therefore select Create test suite from existing structure from
the context menu. In contrast to the approach described above, it is not required to
switch on the option Log parent nodes of components(547).

7.2. The debugger 131

7.1.9 Merging run logs
4.1+

During test development you might face the requirement, that you have a run log with
the test results for your test-cycle. But in several cases you might need to rerun one
test case which was failing due to subtle reasons during the previous test run. Once
that rerun has taken place you would like to update your test-report to have that new
execution in that test-report instead the previous one. For this purpose it’s possible to
merge run logs via command line.

A typical merge command looks like this:

qftest -batch -mergelogs -mergelogs.mode=replace
-mergelogs.masterlog full_log.qzp
-mergelogs.resultlog newresult_log.qzp rerun.qzp

Example 7.1: Sample call of merging run logs for update

The command above takes the result of the rerun from the run log rerun.qzp,
searches for the test case in the run log full_log.qzp and store the updated run log
to newresult_log.qzp. If you set the parameter mergelogs.mode to merge the
new test cases will be added to the existing structure and the original test cases will
remain in the run log.

Another case might be to add run logs of several test runs into one large run log in order
to get a more readable report. This kind of merging is also implemented and can be
achieved by another command line call like this:

qftest -batch -mergelogs -mergelogs.mode=append
-mergelogs.resultlog newresult_log.qzp run1.qzp run2.qzp

Example 7.2: Sample call of merging run logs for adding

The call above takes the run logs run1.qzp and run2.qzp and creates a run log
newresult_log.qzp which contains the results from both run logs. In this mode the
parameter mergelogs.masterlog is optional. If the parameter is set, the correspond-
ing run log will be used as a root for a resulting run log.

7.2 The debugger

As in any development environment, at some point the need will arise to debug problems
introduced into a test suite which cannot readily be solved by a straight-forward analysis
of the elements and structure of the suite. To this end, QF-Test includes an intuitive

7.2. The debugger 132

debugger. Those of you familiar with debugging programs in Java or other programming
languages will find this debugger similar in function and usefulness.

7.2.1 Entering the debugger

The QF-Test debugger can be started directly by selecting a node (or some nodes) to

execute and pressing the step-in or step-over buttons, or by using the menu
operations Debugger→Step in and Debugger→Step over or the keyboard shortcuts�� ��F7 and

�� ��F8 . See section 7.2.3(133) for a detailed explanation of these operations.

If you are running tests on your test suite and use the play button to start execution (see
section 4.2(37)), the debugger will normally not be entered. However, the debugger will
be activated automatically when any one of the following occur:

• A user-defined breakpoint is reached (see section 7.2.4(134) on turning on/off break-
points).

• Execution is interrupted manually by pressing the pause button or
�� ��F9 or selecting

the Run→Pause menu item.

• A caught or uncaught exception is thrown, an error happens or a warning is logged
and the respective option to break under that condition is set (see option Automatic
breaks(537)).

When the debugger suspends execution of the test, the node about to be executed will
be shown with a colored frame around its icon that reflects the cause for the break. If the
debugger is stopped due to manual intervention, a user breakpoint or when stepping,
the frame will be black. When stopping due to a warning, error or exception the frame
will be orange, red or thick red respectively, exactly like the error indicators in the run
log.

When the debugger is entered due to a warning, error or exception it will move executionNote
back to the beginning of the node that caused it, giving you a chance to fix the cause
of the problem and re-execute that node. If this is undesirable or impossible you can
simply skip the node (see section 7.2.3(133)).

In the default workbench mode the debugger will be integrated into the normal test suite
view. For non-workbench mode please refer to The debugger window(135).

7.2.2 Displaying the current variable values

In debugging mode the Variables(104) and their values for the current point of test execu-
tion will be displayed in the lower part of the test suite window. The list has two parts: the

7.2. The debugger 133

primary (top part) and the fallback variable stacks. Variables with the same name can
be bound by any number of nodes. The value actually used in the test is determined by
the order of the nodes, top-down. This means when several nodes bind variables with
the same name the value of the one which is furthest up the list will be used.

A single click on a node brings up its variable bindings in the right half of the variable
display. There, the variable values can be edited, new variables can be added or existing
ones removed. These changes immediately affect the current test run, but are of a
temporary nature. They are not propagated to the nodes in which the variables were
bound in the first place. The variable value is always a String after editing. You can
double-click on the node in the variable definitions list to quickly navigate to the node in
its associated test suite to set the value permanently.

The variable values are strings by default. In case a variable has a different type you
will see it surrounded by brackets before the actual value. When you edit a value in the
variable definitions list please be aware it will automatically be transformed to a string -
recognizable by the parenthesis indicating the type having disappered.

For the primary stack all nodes are shown, even if they are not binding any variables,
for the secundary stack only the nodes binding variables.

With the option View→Terminal→Prefer tree over terminal you can control whether
variables definitions will fill the whole bottom part of the test suite window or only the
right part below the node details.

7.2.3 Debugger commands

Most of the debugger commands are similar to those of any other debugger. However,
some additional commands are included that deal with special situations.

Step-wise debugging of a test suite is available through three operations:

• The step-in button (
�� ��F7 , Debugger→Step in) executes the currently selected

node and will set the execution mark to the next deepest node, regardless of how
deep that node may lie in the node structure. This operation is useful, for example,
to step into and debug a Procedure or Sequence.

• The step-over button (
�� ��F8 , Debugger→Step over) executes the currently se-

lected node as well as any child nodes that lie under it and then sets the execution
mark to the next node at the same level. This is helpful for being able to execute
an entire Procedure or Sequence without stepping through each step individually.

• The step-out button (
�� ��Ctrl-F7 , Debugger→Step out) executes the currently

selected node as well as any other nodes at the same level (including any child

7.2. The debugger 134

nodes of these nodes) and then sets the execution mark to the next node at the
next higher level. This type of operation is useful when, for example, you are
debugging a Procedure or Sequence and don’t want to step through the rest of the
nodes in it. By simply using step-out, you can execute the rest of the nodes and
return.

The skip functions expand the QF-Test debugger in a powerful way which is not typically
possible for a debugger in a standard programming environment. In short, they allow
you to jump over one or more nodes without having to execute those nodes at all.

• The skip-over button (
�� ��Shift-F9 , Debugger→Skip over) jumps over the current

node without executing it, moving the execution mark to the next node.

• The skip-out button (
�� ��Ctrl-F9 , Debugger→Skip out) ends the execution of the

current Procedure or Sequence and jumps to the next node at the next higher level.

Even more powerful is the ability to continue the test run at any arbitrary node, even
in a completely different test suite. QF-Test will keep as much of the current execution
context as possible, including variable bindings. The closer the new target location is to
the current point of execution, the more information can be salvaged.

You can switch execution to a different node by pressing
�� ��Ctrl-, or by selecting the menu

item Run→Continue execution from here or the respective item in the context menu.
When you do so, execution will not continue immediately, only the next node to be
executed will change. You can continue the test as usual by single-stepping or resuming
the test run.

The following additional commands are available:

• The rethrow-exception button (Debugger→Rethrow exception) is only active
when the debugger was entered due to an exception. It lets you rethrow the ex-
ception to be handled by the test suite just as if the debugger had never caught it
in the first place.

• The locate-current-node button (Debugger→Locate current node) quickly
moves the selection in the tree-view to the node that is about to be executed. It is
a useful shortcut in case you get lost while moving around the test suite.

7.2.4 Manipulating breakpoints

Setting a breakpoint on a node will tell the debugger to suspend execution just before it
enters that node. Breakpoints are displayed in the tree-view by prepending ”(B)” to the
name of a node.

7.2. The debugger 135

Breakpoints can be set or removed individually with
�� ��Ctrl-F8 or with the

Debugger→Breakpoint on/off menu item. After finishing a debugging session you can

use Debugger→Clear all breakpoints to remove any breakpoints that might have been
left hanging around. This command will remove all breakpoints from all test suites.

Breakpoints are transient and will not be saved with the test suite.Note

7.2.5 The debugger window

When you are not working in workbench mode (Activate workbench view(463))
the debugger has to be run in a dedicated debugger window by selecting
Debugger→Show debugger window once the debugger has been entered.

The debugger can be run either from within the normal test suite view, or by opening
a dedicated debugger window by selecting Debugger→Show debugger window once
the debugger has been entered.

You can also cause the debugger window to open automatically whenever the debugger
is entered by setting the option Always open debugger window(537) in the global options
dialog or under the Debugger→Options menu. If you open or close the debugger
window explicitly, this is considered a ”manual override” and this option will be ignored
for the rest of the test run.

The debugger window is similar to a normal test suite window. You can select nodes
and edit their attributes, but you cannot delete or insert nodes, there are no file oper-
ations and no recorder. For the more complex operations you can quickly jump from
the debugger window to the same node in the respective test suite window by pressing�� ��Ctrl-T or selecting Find node in test suite from the Edit menu or the context menu.

Chapter 8

Organizing the test suite

Creating useful, reliable tests requires more than just recording sequences and playing
them back. You can fill a test suite with lots of sequences in a short time, but you are
bound to lose track of what you’ve got sooner or later if you do not organize your tests
in some logical structure. QF-Test provides you with a number of structure elements to
achieve this.

Before you start recording sequences and put them into a structure make sure that you

• You have a good idea of what you are testing.

• You are testing the right thing.

• Your tests are reliable and repeatable.

• Your tests are easy to maintain.

• The results of your tests are conclusive.

The essential prerequisite of getting the components right has been discussed in
chapter 5(42). Here we are going to concentrate on structuring the actual test sets, test
cases, test steps, sequences, events, checks, etc.

8.1. Test suite structure 137

8.1 Test suite structure

Figure 8.1: Test suite structure

QF-Test provides structure elements on different levels:

The QF-Test files for saving the tests and components in the file directory. These can
be bundled in projects.

The Test suite has a set structure starting with the testing section that can hold any
number of Test set(566) nodes, which in turn can have any number of Test case(558) nodes or
more Test sets.

Next comes the Procedures(627) section, where you can place any number of Procedure(627)

nodes. QF-Test provides Package(635) nodes as structure element in this section. A pack-
age node can hold any number of procedure nodes or more package nodes.

After that you will find the Extras(588) where you place any type of node and try out tests
before moving them to the testing section.

The last section, Windows and components(881), is reserved for the components referenced

8.2. Test set and Test case nodes 138

by the tests.

QF-Test provides a number of structure elements for the tests themselves like Test case
and Test set nodes as well as Setup and Cleanup nodes for setting up the preconditions
for the tests, cleaning up after the test and error handling.

8.2 Test set and Test case nodes

8.2.1 Test management with Test set and Test case nodes
2.0+

The Test set(566) and Test case(558) nodes provide a small-scale, pragmatic form of test man-
agement right inside QF-Test. Their main feature is the smart dependency management
described in Dependency nodes(145) that allows Test cases to be implemented completely
independent from each other. With properly written Dependencies(589), cleanup of the SUT
for previously executed tests is handled automatically along with the setup for the next
test and all error handling.

8.2.2 Concept

Conceptually a Test case node represents a single elementary test case. As such it
is the main link between test planning, execution and result analysis. With the help of
Dependencies(589), Test cases can be isolated from each other so that they can be run in any
arbitrary order. QF-Test automatically takes care of the necessary test setup. Cleanup
is also automatic and will be performed only when necessary in order to minimize over-
head in the transition from one test to the next. This enables things like running subsets
of functional test suites as build tests or retesting only failed Test cases.

Test sets basically are bundles of Test cases that belong together and typically have similar
requirements for setup and cleanup. Test sets can be nested. The whole structure of Test
sets and Test cases is very similar to Package(635) and Procedure(627) nodes. The Test suite root
node can be considered a special kind of Test set.

Test suite, Test set and Test case nodes can be called from other places using a Test call
node. That way, tests that run only a subset of other tests can easily be created and
managed. Test call nodes are allowed everywhere, but should not be executed from
within a Test case node because that would break the atomicity of a Test case from the
report’s point of view. A warning is issued if Test case execution is nested.

8.2. Test set and Test case nodes 139

8.2.3 Variables and special attributes

Default value

As both Test sets and Test case can be called via a Test call node they each have a set
of default parameters similar to those of a Procedure(627). These will be bound on the
secondary variable stack and can be overridden in the Test call node.

Variable definitions

A Test case has an additional set of variable bindings. These are direct bindings for the
primary variable stack that will be defined during the execution of the Test case and
cannot be overridden via a Test call node or the command line parameter
-variable <name>=<value>(929). Primary and secondary variable stack are
described in section 6.2(106).

Characteristic variables

The list of Characteristic variables is a set of names of variables that are part of the char-
acteristics of the test for data-driven testing. Each execution of the Test case with a
different set of values for these variables is considered a separate test case. The ex-
panded values of these variables are shown in the run log and report for improved error
analysis.

Condition

Another useful attribute is the Condition which is similar to the Condition(648) of an If(647)

node. If the Condition is not empty, the test will only be executed if the expression
evaluates to true. Otherwise the test will be reported as skipped.

Expected to fail if...

Sometimes a Test case is expected to fail for a certain period of time e.g. when it is cre-
ated prior to the implementation of the respective feature or before a bug-fix is available
in the SUT. The Expected to fail if... attribute allows marking such Test cases so they are
counted separately and don’t influence the percentage error statistics.

8.3. Sequence and Test step nodes 140

8.3 Sequence and Test step nodes

The primary building block of a test are the Sequence(577) and Test step(580) nodes which
execute their child nodes one by one in the order as they appear. They are used to
structure the child nodes of a Test case.

The difference between Sequence(577) and Test step(580) nodes is that Test step(580) nodes will
show up in the report whereas Sequences(577) will not.

8.4 Setup and Cleanup nodes

Since it is in the nature of testing that tests may fail from time to time it is crucial to have
structure elements that will help you set up a defined initial state for a test. Setup and
Cleanup nodes are for simple cases and are inserted as child nodes of Test case nodes.
However, in most cases Dependency nodes, that contain Setup and Cleanup nodes, will
prove far more efficient.

Test case nodes with well designed Setup and Cleanup nodes have the following properties
important to successful testing:

• The Test case can be executed independently of previous test cases that may have
failed.

• Test case nodes can be added at any position in Test suite and Test set nodes without
influencing other Test cases

• You can work on a Test case or just run it without having to execute previous Test
cases to get the SUT into the state required by your test.

• You can execute any number of Test case nodes in case you do not want to run the
whole Test set or Test suite.

In the simplest case exactly the same initial condition is required by all the Test case
nodes of a Test set. This can be implemented via the following structure:

8.4. Setup and Cleanup nodes 141

Figure 8.2: Test structure with simple Setup and Cleanup

In the run log you can see that for each Test case node first the Setup node and then the
Cleanup node is run:

8.5. Procedures and Packages 142

Figure 8.3: Test execution with simple Setup and Cleanup

In this simple example the cleanup is done in any case, even if the next test could be
executed with the state the previous test left the SUT in. QF-Test provides a more com-
prehensive structure for setting up the SUT and handling cleanup much more efficiently,
and even including error handling. This is explained in chapter section 8.6(145) in detail.

8.5 Procedures and Packages

In a way, writing good tests is a little like programming. After mastering the initial steps,
tests and source code alike tend to proliferate. Things work fine until some building block
that was taken for granted changes. Without a proper structure, programs as well as
tests tend to collapse back upon themselves at this point as the effort of adapting them
to the new situation is greater than the one needed for recreating them from scratch.

The key to avoiding this kind of problem is reuse or avoidance of redundancy. Gener-
ating redundancy is one of the main dangers of relying too much on recording alone.
To give an example, imagine you are recording various sequences to interact with the
components in a dialog. To keep these sequences independent of each other, you start

8.5. Procedures and Packages 143

each one by opening the dialog and finish it by closing the dialog again. This is good
thinking, but it creates redundancy because multiple copies of the events needed to
open and close the dialog are contained in these sequences. Imagine what happens if
the SUT changes in a way that invalidates these sequences. Let’s say a little confirma-
tion window is suddenly shown before the dialog is actually closed. Now you need to go
through the whole suite, locate all of the sequences that close the dialog and change
them accommodate the confirmation window. Pure horror.

To stress the analogy again, this kind of programming style is called Spaghetti Program-
ming and it leads to the same kind of maintenance problems. These can be avoided
by collecting the identical pieces in one place and referring to them wherever they are
needed. Then the modifications required to adapt to a change like the one described
above are restricted to this place only.

Figure 8.4: Packages and Procedures

QF-Test comes with a set of nodes that help to achieve this kind of modularization,
namely the Procedure(627), Procedure call(630) and Package(635) nodes. A Procedure is similar to
a Sequence(577) except that its Name(628) attribute is a handle by which a Procedure call node
can refer to it. When a Procedure call is executed, the Procedure it refers to is looked up
and execution continues there. Once the last child node of the Procedure has finished,
the Procedure call has completed as well.

Packages are just a way to give even more structure to Procedures. A hierarchy of Pack-
ages and Procedures, rooted at the special Procedures(637) node, is used to group sets of
Procedures with a common context together and to separate them from other Procedures
used in different areas.

A Procedure that always does exactly the same, no matter where it is called from, is
only marginally useful. To expand on the above example, let’s say we want to extend
the Procedure that opens the dialog to also set some initial values in some of its fields.
Of course we don’t want to have these initial values hard-coded in the Procedure node,
but want to specify them when we call the Procedure to get different values in different
contexts. To that end, parameters can be defined for the Procedure. When the Procedure
call is executed, it specifies the actual values for these parameters during this run. How
all of this works is explained in Variables(104). Also please take a look at the detailed

8.5. Procedures and Packages 144

explanation for the Procedure(627) and Procedure call(630) nodes for a better understanding of
how these complement each other.

A test suite library with a set of commonly useful Procedures is provided with QF-Test
under the name qfs.qft. An entire chapter of the Tutorial is devoted to this library and
section 26.1(332) explains how to include it in your test suites.

8.5.1 Local Procedures and Packages
3.1+

If you work with several test suite libraries you might face a situation, where you define
reusable test steps or sequences, which you only want to use within a dedicated test
suite. If you want to create such local Procedures, you can put a ’_’ as first sign of the
procedure’s name. This marks a Procedure as test suite local.

A call of a local Procedure can only be inserted within the test suite, where it is defined.
You can use the same concept for local Packages.

8.5.2 Relative Procedures
3.1+

If you call Procedures from other Procedures, it could be convenient not to specify the full
procedure name all the time.

So called ’relative’ procedure calls can only be added to a Package, which has the Border
for relative calls (see Border for relative calls(636)) attribute specified. The structure of that
call follows the concept below:

Level Call
Procedures of the same level .Name of Procedure
Procedures one level higher ..Name of Procedure
Procedures one level deeper .Name of Package.Name of Procedure

Table 8.1: Relative procedure calls

As you can see each dot stands for one level. So calling a Procedure two levels higher
requires three dots (Current level also requires a dot.)

8.5.3 Inserting Procedure call nodes

As you should organize your tests in separate test steps, which are ideally the same like
QF-Test’s procedures, QF-Test offers several ways to insert those Procedure call nodes:

8.6. Dependency nodes 145

1. Via the menu Insert→Procedures→ProcedureCall

2. Via right mouse click and selecting Insert node→Procedures→ProcedureCall

3. Copy a Procedure node and insert it at the location of the Procedure call using the
normal Copy/Paste actions

4. Via Drag&Drop operation, i.e. dragging the Procedure node to its target node

5. Via the keyboard shortcut
�� ��Ctrl-A

6. By converting a Sequence or a Test step into a procedure, as described in section
8.5.5(145). Shortcut

�� ��Ctrl-Shift-P

This approach is also valid for inserting Dependency reference nodes, except the keyboard
shortcut.

8.5.4 Parameterizing nodes
3.1+

You can create parameters for a Procedure, Dependency or Test case automatically via the
menu Operations→Parameterize node .

The parameter details dialog allows you to define for which actions you want to create
parameters, e.g. only text-inputs or check nodes.

8.5.5 Transforming a Sequence into a Procedure
3.0+

This transformation is very useful for developing procedures immediately after recording!
Under Extras you can convert a recorded Sequence node into a Procedure and move that
to the Procedures node.

If you transform a Sequence under Test cases QF-Test automatically creates a Procedure3.1+
node and inserts a Procedure call to the previous location of the transformed node.

8.6 Dependency nodes

Video:Video

Dependencies
https://www.qftest.com/en/yt/dependencies-basics-50.html

8.6. Dependency nodes 146

8.6.1 Concept

Dependencies are a powerful and optimized concept for handling pre- and
post-conditions. They are indispensable when running tests in the QF-Test Daemon
mode(1193) mode. They basically work the following way:

1. Set up a list of all dependencies required for the test case.

2. Compare the list of dependencies needed for the current test case with the list of
dependencies of the test case executed last.

3. Execute all Cleanup nodes of the dependencies no longer part of the current
dependencies list plus the ones where the values of Characteristic variables(152)

changed, including the Cleanup nodes of the Dependencies based on them.

4. Execute all Setup nodes of the current dependencies list.

Test cases as well as other dependencies can make use of Dependency(589) nodes placed
in the Procedures(627) section via Dependency reference(592) nodes. Therefore, Setup and
Cleanup nodes placed in a Dependency node can be used by various test cases - in
contrast to those placed directly in Test case or Test set nodes.

In order to understand the concept of Dependency nodes it might be helpful to have a
look at how a manual tester would proceed: He would do the setup for the first test case
and then run it. In case of errors he may want to run special error cleanup routines. After
that he would first check the requirements of the second test case. Only then would he
do any cleanup. And he would only clean up as much as is necessary. Next he would
check that the SUT still meets all preconditions required by the next test case and if not
execute the necessary steps. In case the previous test case failed badly he might need
to clean up the SUT completely before being able to set up the initial condition for the
second test case.

This is exactly what you can implement using QF-Test Dependencies.

Dependencies give an answer to the disadvantages of the classical Setup and Cleanup
nodes(140) where Setup nodes can only be nested by nesting test sets and where Cleanup
nodes will be executed in any case, both of which is not very efficient. Moreover, Depen-
dency nodes provide structure elements for handling errors and exceptions.

Quite a number of the provided sample test suites make use of Dependencies, e.g.:

• The test suite in the directory doc/tutorial named dependencies.qft. You
will find a detailed description in the tutorial in chapter 16.

• The test suite in demo/carconfigSwing named carconfigSwing_en.qft,
showing a realistic example.

8.6. Dependency nodes 147

• The SWT demo test suite named swt_addressbook.qft, with an example for
SWT users

• The test suite in demo/eclipse named eclipse.qft, containing nested De-
pendencies.

• The data driver demo datadriver.qft in doc/tutorial also uses Dependen-
cies.

Single-stepping through these suites in the debugger, looking at the variable bindings
and examining the run logs should help you to familiarize yourself with this feature.
Please take care to store modified test suites in a project-related folder.

8.6.2 Usage of Dependencies

You can define Dependencies in two places:

• You can implement Dependency nodes at the beginning of Test suite, Test set or Test
case nodes. Additionally to their own Dependency a Test case or Test set may inherit
the Dependency of its parent node.

• Dependencies used by a number of Test cases or used as a basis for other Depen-
dencies may be implemented just like a Procedure(627) node and be placed in the
Procedures(637) section, e.g. in a Package(635) node named ”Dependencies”. The fully
qualified name has the same structure as that of a Procedure. Just like Procedures(627)

Dependencies can be referred to by other nodes, in this case via Dependency refer-
ence nodes.

One Dependency should deal with one precondition. Then you can reduce the test over-
head generated by cleanup activities. In case a Dependency itself relies on preconditions
these should be implemented in separate Dependency nodes. Dependencies can either
be inherited from a parent node or referred to explicitly via Dependency reference nodes.

The implementation of the actual pre- and post-conditions is done in the Setup and
Cleanup nodes of the Dependency.

In case a Test set or Test case node has a Dependency node as well as Setup and Cleanup
nodes the Dependency will be executed first. Setup and Cleanup nodes have no influence
on the dependency stack.

8.6.3 Dependency execution and Dependency stack

The execution of a Dependency has three phases:

8.6. Dependency nodes 148

1. Generate a list of required Dependencies and check with list of previously executed
Dependency nodes

2. Execute Cleanup nodes if required

3. Execute Setup nodes of all required Dependency nodes

The examples used in this chapter all refer to tests with the following preconditions and
cleanup activities:

Sample

Dependency A:
Setup: start application if necessary

Cleanup: stop application

Dependency B:
Setup: log in user if necessary

Cleanup: log off user

Dependency C:
Setup: load application module 1 if necessary

Cleanup: close application module 1

Dependency D:
Setup: load application module 2 if necessary

Cleanup: close application module 2

Dependency E:
Setup: open dialog in module 2 if necessary

Cleanup: close dialog

Dependency C depends on B, B in turn on A.
Dependency E depends on D, D on B therefore also on A.

Before executing a Test case node QF-Test checks whether it has a Dependency node of its
own and/or inherits one from its parent nodes. In that case QF-Test checks whether the
Dependency node itself relies on other dependencies. Based on this analysis QF-Test
generates a list of the dependencies required. This is done in step 1 of the example
below.

Next, QF-Test checks if previous tests have already executed dependencies. If so, QF-
Test checks if it has to execute any Cleanup nodes. After that QF-Test goes through
all the setup nodes, starting with the most basic ones. The name of each Dependency
executed is noted down in a list called dependency stack. See step 2 of below example.

8.6. Dependency nodes 149

Example: Test case 1
Test of application module 1. First test case to be executed.

1. step
Analyze the dependencies: the dependencies A-B-C have to be executed.

2. step
Compare the dependencies to be executed with the dependency stack: In
this example the dependency stack is still empty as the test case is the first
one to be executed.

3. step
Execute the Setup nodes, starting with A (start application), then B (login user
(user name: Standard)), and last C (load application module 1).
The dependency stack now reads A-B-C.

4. step
Execute the Test case.

In the run log you can see exactly what QF-Test did:

Figure 8.5: Dependency stack A-B-C

8.6. Dependency nodes 150

After executing the test case the application remains in the condition the last test case
left it in. Only after analyzing the dependencies of the next test case Cleanup nodes
might be run and the respective Dependency be deleted from the dependency stack.
When Cleanup nodes need to be run they are executed in reverse order to the Setup
nodes. After maybe clearing up dependencies no longer needed the Setup nodes of
all required Dependencies are executed. Just like a manual tester will check that all
requirements for the next test case are fulfilled QF-Test will do the same. A manual
tester may not be conscious of checking the basic requirements. However, if he notices
that the last test case left the application in a very bad state like a deadlock, he will
probably kill the process if nothing else helped and start it again. To this end QF-Test
explicitly runs all Setup nodes. These should be implemented in a way that they first
check if the application is already in the required state and just in case not run the
whole Setup node.

Figure 8.6: Good practice Setup node

Setups nodes should first check if the required condition already exists before actually
executing the node. Cleanup nodes should first check if the requested cleanup action
(e.g. closing a dialog) has already been performed. Also they should be programmed
in such a way that they are in grade of clearing up error states of the application (e.g.
error messages) so that a failed test case will not affect the following ones.

Example: test case 2
Test a dialog in application module 2

1. step:
Analyze the dependencies: the dependencies A-B-D-E have to be executed.

2. step:
Compare the list of dependencies to be executed with the dependency stack:

8.6. Dependency nodes 151

Dependency C is not required for test case 2. Therefore Cleanup node of De-
pendency C is executed (close application module 1).

3. step:
Execute the Setup nodes, starting with A (check the application is already
started and skip the rest of the setup), then B (check the user is already
logged in, and skip the rest of the setup), then D (check if application module
2 is loaded and as it is not execute the complete Cleanup node), then E (same
as D).

4. step:
Execute the Test case.

You can see in the run log that the cleanup was done:

8.6. Dependency nodes 152

Figure 8.7: Dependency stack A-B-D-E

8.6.4 Characteristic variables

Values of certain variables may determine whether a dependency has to be cleared up
and the setup re-executed, like the user name for dependency B ’Login’. These variables
are called Characteristic variables. The values of the Characteristic variables are always
taken into account when comparing dependency stacks. Two Dependencies on the stack

8.6. Dependency nodes 153

are only considered identical if the values of all Characteristic variables from the previous
and the current run are equivalent. Consequently it is also possible for a Dependency
to directly or indirectly refer to the same base Dependency with different values for its
Characteristic variables. In that case the base Dependency will appear multiple times in the
linearized dependency stack.

Furthermore, QF-Test stores the values of the Characteristic variables during execution
of the Setup of a Dependency. When the Dependency is rolled back, i.e. its Cleanup node
is executed, QF-Test will ensure that these variables are bound to the same value as
during execution of the Setup. This ensures that a completely unrelated Test case with
conflicting variable definitions can be executed without interfering with the execution
of the Cleanup nodes during Dependency rollback. Consider for example the commonly
used ”client” variable for the name of an SUT client. If a set of tests for one SUT has
been run and the next test will need a different SUT with a different name, the ”client”
variable will be changed. However, the Cleanup node for the previous SUT must still refer
to the old value of ”client”, otherwise it wouldn’t be able to terminate the SUT client. This
is taken care of automatically as long as ”client” was added to the list of Characteristic
variables.

Example: Test case 3:
Test of the same dialog for the user Administrator.

1. Step:
Analyze the dependencies: same list of dependencies A-B-D-E as in Test case
2. However, the Characteristic variables of Dependency B has a different value,
i.e. ’Administrator’.

2. Step:
Compare the dependency list with the dependency stack: The required De-
pendency B differs from the Dependency B saved on the dependency stack
because of the values of the Characteristic variables ’username’, which is ’Stan-
dard’ on the dependency stack. This means that the dependency stack will be
rolled back including Dependency B, starting with the Cleanup for Dependency E
(close dialog), then Cleanup for Dependency D (stop module 2), then Cleanup
for Dependency B (log off user - the variable ’username’ then has the value
’Standard’ saved via the Characteristic variables on the dependency stack).

3. Step:
Execute the Setup nodes, starting with A (check the application is already
started and skip the rest of the setup), then B (log in user ’Administrator’),
then D (load module 2), then E (open dialog).

4. Step:
Execute the Test case.

In the run log you can see the values of the Characteristic variables behind the respective
Dependency:

8.6. Dependency nodes 154

Figure 8.8: Dependency with Characteristic variables

8.6. Dependency nodes 155

Other examples for Characteristic variables are JDK versions when the SUT needs to
be tested for various JDK versions or the browser name with web applications. In our
example these would be specified as Characteristic variables for Dependency A.

8.6.5 Forced cleanup

In some use cases it may be necessary to execute the Cleanup node of a Dependency
after each Test case. Then you should set the attribute Forced cleanup.

If Forced cleanup is activated for a Dependency node on the list of dependencies the
Cleanup node of this and maybe of subsequent Dependencies will be executed.

Example:
In this example the test logic requires module 2 to be stopped after test

execution. The attribute Forced cleanup is activated for Dependency D.

In our example the Cleanup nodes of Dependencies E (close dialog) and D (stop
modul) would be executed after each Test case.

8.6.6 Rolling back Dependencies

QF-Test rolls back Dependencies depending on the needs of the Test cases.

If you want to clear the list of dependencies explicitly there are two ways to do it:

• The menu item Run→Roll back dependencies rolls back the list of dependencies
’cleanly’ executing all the Cleanup nodes in reverse order to the setup activities.

• The menu item Run→Reset dependencies just deletes the list of dependencies
without executing any nodes.

When a Test case does not use Dependencies the list of dependencies remains untouched,
i.e. no Cleanup nodes are executed.

8.6.7 Error escalation

Another thing that is just grand about Dependencies is the convenient way that errors
can be escalated without any additional effort. Let’s again consider the example from
the previous section after the first dependency stack has been initialized to A-B-C (Ap-
plication started, user logged in, module one loaded) and the Setups have been run.
Now what happens if the SUT has a really bad fault, like going into a deadlock and not
reacting to user input any longer?

8.6. Dependency nodes 156

When a Cleanup node fails during rollback of the dependencies stack, QF-Test will roll
back an additional Dependency and another one if that fails again and so on until the
stack has been cleared. Similarly, if one of the Setups fails, an additional Dependency is
rolled back and the execution of the Setups started from scratch.

Example:
In the example Test case 1 above the SUT would for example get deadlocked. In

Test case 1 an exception would be thrown, Test case 1 would be stopped and
execution passed on to Test case 2.

1. Step:
Analyze the dependencies: the list of dependencies A-B-D-E has to be exe-
cuted. (Application started, user logged in, module 2 loaded, dialog opened)

2. Step:
Comparing the dependency list with the dependency stack set up by Test case
1 A-B-C (application started, user logged in, module 1 loaded) results in the
execution of the Cleanup node of Dependency C (stop module 1). Of course,
the exception is thrown again. Now QF-Test runs the Cleanup node for the
next Dependency B (log off user). This will fail again so that now the basic
Dependency A will be rolled back, which successfully stops the application.

3. Step:
Execute the Setup nodes, starting with A (start the application), then B (log in
user), then D (load module 2), then E (open dialog).

4. Step:
Test case 2 will be executed despite the deadlock in Test case 1.

Figure 8.9: Exception in forced cleanup sequence of C causes B to clean up

8.6. Dependency nodes 157

For this to work it is very important to write Cleanup sequences in a way that ensures
that either the desired state is reached or that an exception is thrown and that there
is a more basic dependency with a more encompassing Cleanup. For example, if the
Cleanup node for the SUT Dependency just tries to cleanly shut down the SUT through
its File->Exit menu without exception handling and further safeguards, an exception in
that sequence will prevent the SUT from being terminated and possibly interfere with
all subsequent tests. Instead, the shutdown should be wrapped in a Try/Catch with a
Finally node that checks that the SUT is really dead and if not, kills the process as a last
resort.

Figure 8.10: Typical Cleanup node

With good error handling in place, Test cases will rarely interfere with each other even in
case of really bad errors. This helps avoid losing a whole night’s worth of test runs just
because of a single error.

8.6.8 Error handling

Besides supporting automatic escalation of errors a Dependency can also act as an error
or exception handler for the tests that depend on it. Catch nodes, which can be placed
at the end of a Dependency, are used to catch and handle exceptions thrown during a
test. Exceptions thus caught will still be reported as exceptions in the run log and the
report, but they will not interfere with subsequent tests or even abort the whole test run.

An Error handler node is another special node that may be added to a Dependency after

8.6. Dependency nodes 158

the Cleanup and before the Catch nodes. It will be executed whenever the result of
a Test case is ”error”. In case of an exception, the Error handler node is not executed
automatically because that might only cause more problems and even interfere with
the exception handling, depending on the kind of exception. To do similar things for
errors and exception, implement the actual handler as a Procedure and call it from the
Error handler and the Catch node. Error handlers are useful for capturing and saving
miscellaneous states that are not automatically provided by QF-Test. For example, you
may want to create copies of temporary files created during execution of your SUT that
may hold information pertaining to the error.

Only the topmost Error handler that is found on the dependency stack is executed, i.e.
if in a dependency stack of [A,B,C,D] both A and C have Error handlers, only C’s Error
handler is run. Otherwise it would be difficult to modify the error handling of the more
basic Dependency A in the more specialized Dependency C. To reuse A’s error handling
code in C, implement it as a Procedure.

8.6.9 Name spaces for Dependencies

You might be interested in reading this section in case you want to run several SUTsNote
at the same time where you do not want the Dependency node for a test on one of the
SUTs to trigger cleanup actions for another SUT. Otherwise feel free to skip it.

A typical use case would be the test of whole process chains over several applications.

Consider the following situation: Sales representatives enter data for offers via a web
application into a database at headquarters. There, the offers will be completed, printed
and posted. A copy of each printed offer will be saved in a document management
system (DMS).

8.6. Dependency nodes 159

Figure 8.11: Example Test set for name spaces

In above example two sales representatives (UserA and UserB) enter offers and two
different persons (UserC and UserD) process the offers at headquarters. Then the
offers will be checked in the document management system. Since you do not want the
dependencies of the test cases to interfere with one another you need to add a suitable
name in the Dependency namespace(594) attribute of each Dependency reference node.

After running the test set you can see in the run log that a dependencies stack was set
up in the name space ’data entry’ for the first test case:

8.6. Dependency nodes 160

Figure 8.12: Dependency handling for test case ’Data entry by User A’

A dependencies stack is set up in the name space ’database’ for the second test case.
The dependencies stack in the name space ’data entry’ remains unheeded. Looking
at the applications, this means the database is started whereas the application for data
entry is left as it is.

Figure 8.13: Dependency handling for test case ’Offer processing by User C’

A dependencies stack is set up in the name space ’DMS’ for the third test case. The
dependencies stacks in the name spaces ’data entry’ and ’database’ remain unheeded.
Looking at the applications, this means the document management system is started
whereas the other two applications are left as they are.

Figure 8.14: Dependency handling for test case ’Check offer 1 in DMS’

8.6. Dependency nodes 161

In test case number four the required dependencies are checked against the ones on the
dependencies stack in the name space ’data entry’ of the first test case. The dependen-
cies stacks in the other two name spaces remain unheeded. Looking at the applications,
this means User A is logged off, User B is logged into the data entry application and the
other two applications are left as they are.

Figure 8.15: Dependency handling for test case ’Data entry by User B’

In test case number five the required dependencies are checked against the ones on
the dependencies stack in the name space ’database’ of the second test case. The
dependencies stacks in the other two name spaces remain unheeded. Looking at the
applications, this means User C is logged off, User D is logged into the database appli-
cation and again the other two applications are left as they are.

Figure 8.16: Dependency handling for test case ’Offer processing by User D’

In the last test case the required dependencies are checked against the ones on the
dependencies stack in the name space ’DMS’ of the third test case. The dependencies

8.7. Documenting test suites 162

stacks in the other two name spaces remain unheeded. Looking at the applications, this
means no clean up action has to be done on the DMS. The other two applications are
left as they are, anyway.

Figure 8.17: Dependency handling for test case ’Check offer 2 in DMS’

8.7 Documenting test suites

Like with any programming-related task it is important for successful test-automation
to properly document your efforts. Otherwise there is a good chance (some might say
a certainty) that you will lose the overview over what you have done so far and start
re-implementing things or miss out tests that should have been automated. Proper
documentation will be invaluable when working through a run log, trying to understand
the cause of a failed test. It will also greatly improve the readability of test reports.

An easy option for readable and documented tests is to group the recorded nodes into
Sequence(577) und Test step(580) nodes.

For inline documentation you can use the Comment(797) node.

When you want to set up a documentation available outside QF-Test you can do so
based on the Comment(572) attributes of Test set(566), Test case(558), Package(635) and Procedure(627)

nodes, and create a set of comprehensive HTML documents that will make all required
information readily available. The various kinds of documents and the methods to create
them are explained in detail in chapter 24(305).

Chapter 9

Projects

3.5+
Projects provide a better overview, improve navigation between test suites and expand
the scope for search and replace operations. Also, QF-Test automatically manages
dependencies resulting from includes or absolute references between test suites that
belong to the same project (see section 26.1(332)). Many other features have already
been implemented or are under development.

Technically a QF-Test project is a set of test suites located in one or more directories
with a common root. There is a 1:1 relation between the project and its directory and
the name of the directory automatically becomes the name of the project.

To create a new project, select the menu item File→New project... and choose the di-
rectory. QF-Test then creates a file called qftest.qpj in that directory which identifies
it as a project. All test suites located below that directory, except those specified in
the option Project files and directories to exclude(455) automatically belong to this project.
Please see section 41.1.1(454) for options affecting projects, including the exclusion list.

A subproject is subdirectory of a project which is itself a project. Test suites within a
subproject also belong to all outer projects containing the subproject. The project of a
test suite is the innermost subproject it belongs to. Automatic dependency resolution
always covers the whole outermost project of a suite including all subprojects.

Projects 164

Figure 9.1: The project view

The project view with one or more projects can be turned on or off via the menu item
View→Show projects . The project tree shows the hierarchy of directories and test

suites starting from the project root, possibly limited by the filter at the top of the tree
which matches on test suite names. Double clicking a test suite opens it, as does
pressing the

�� ��Return key. You can select several files or directories to be opened in one
go, including all test suites located below the selected directories.

The hierarchy is refreshed automatically at intervals defined in the option Project refresh
interval (s)(455). You can refresh a directory including its complete hierarchy at any time
by selecting it and pressing

�� ��F5 . For a more thorough rescan that does not rely on
modification times but may take significantly longer for large projects, press

�� ��Shift-F5
instead.

To switch keyboard focus back and forth between the test suite and the project view,
press

�� ��F6 . Via
�� ��Shift-F6 you can navigate to the node representing the current test suite

in the project tree. If necessary, project view and project are automatically shown.

Chapter 10

The standard library

The standard library qfs.qft, a test suite that is part of the QF-Test distribution, con-
tains many useful procedures for a diverse set of tasks.

The standard library 166

Figure 10.1: Standard library qfs.qft

Among others there are procedures for accessing and checking components (AWT,
Swing, JavaFX, SWT, Web) in a generic manner, file system and database access,
logging messages or screenshots to the run log and report and for performing cleanup.

A complete description of all packages and procedures including parameters and return
values is provided in the library’s HTML documentation, also accessible from the QF-
Test Help menu. The latest version is also available online.

The standard library 167

qfs.qft is included by default in every newly created test suite. As its directory is on
the library path(469), specifying just qfs.qft in the Include files(556) of the Test suite node is
sufficient.

All procedures referring to an SUT use the generic variable $(client) as an implicitNote
parameter. You must make sure that this variable is set correctly either globally or locally
or specified as an explicit parameter in the procedure call.

Chapter 11

Scripting

The videoVideo

’Scripting in QF-Test (Basics)’
https://www.qftest.com/en/yt/scripting-basics-45.html

explains the basic concepts about scripting.

If you want to know more about scripting have a look at the video

’Scripting in QF-Test (Advanced)
https://www.qftest.com/en/yt/scripting-advanced-47.html

explains the basic concepts about scripting.

One of QF-Test’s benefits is that complex tests can be created without writing a single
line of code. However, there are limits to what can be achieved with a GUI alone. When
testing a program which writes to a database, for example, one might want to verify that
the actual values written to the database are correct; or one might want to read values
from a database or a file and use these to drive a test. All this and more is possible with
the help of powerful scripting languages like Jython, Groovy or JavaScript.

While Jython is supported since the beginning of QF-Test, Groovy has found its way4.2+
into QF-Test a bit later (QF-Test version 3). This language might be more convenient
than Jython for those who are familiar with Java. Version 4.2 enabled JavaScript which
might be more suitable for web developers. It’s mainly a matter of individual preference
whether to utilize Jython, Groovy or JavaScript scripting inside QF-Test.

In this chapter the basics of the scripting features available in all supported languages
are explained. Most of the examples can be applied exactly or with few changes in
other script languages. Methods calls which vary in syntax are exemplified in the af-
fected languages. Particularities of the script languages are described in the sections
Fundamentals of the Jython integration(180), Scripting with Groovy(189) and Scripting with
JavaScript(192).

11.1. General 169

The scripting language to use for a given Server script(670) or SUT script(673) node is de-3.0+
termined by its Script language(672) attribute, so you can mix all three languages within a
test suite. The default language to use for newly created script nodes can be set via
the options Default script language for script nodes(453) and Default script language for
conditions(453).

11.1 General

The approach to scripting in QF-Test is inverse from that of other GUI test tools. Instead
of driving the whole test from a script, QF-Test embeds scripts into the test suite. This
is achieved with the two nodes Server script(670) and SUT script(673).

Both nodes have a Script(671) attribute for the actual code.

Figure 11.1: Detail view of a Server script with help window for rc methods

The internal script editor has some useful features to ease the typing of code. Reserved3.0+
keywords, built-in functions, standard types, literals and comments are highlighted. In-
dentation is handled automatically inside of code blocks. With

�� ��TAB and
�� ��Shift-TAB

respectively several selected lines can be indented manually.

11.1. General 170

However, the probably most useful feature - at least for the QF-Test newbie - might be
the input assistance for many built-in methods. Type, for example, rc. and maybe
some initial letters of a method name. Then press

�� ��Ctrl-Space to open a pop-up win-
dow displaying the appropriate methods and descriptions of QF-Test’s run context (cf.
chapter 50(961)). Select one of the methods and confirm with

�� ��Return to insert it into the
script code. To get a list of all objects equipped with help, just press

�� ��Ctrl-Space with
the mouse cursor positioned after white space.

Server scripts are useful for tasks like calculating the values of variables or reading and
parsing data from a file and using it to drive a test. SUT scripts on the other hand give
full access to the components of the SUT and to every Java API that the SUT exposes.
An SUT script might be used to retrieve or check values in the SUT to which QF-Test
doesn’t have access. The SUT script node has a Client(674) attribute which requires the
name of the SUT client to run in.

Server scripts are run in script interpreters for the different script languages embedded
in QF-Test itself, while SUT scripts are run in a script interpreter embedded in the SUT.
These interpreters are independent of each other and do not share any state. However,
QF-Test uses the RMI connection between itself and the SUT for seamless integration
of SUT scripts into the execution of a test.

Through the menu items Extras→Jython console or Extras→Groovy console etc. you
can open a window with an interactive command prompt for the language interpreters
embedded in QF-Test. You can use the console to experiment with the scripts, get
a feeling for the language, but also to try out some sophisticated stuff like setting up
database connections. The keystrokes

�� ��Ctrl-Up and
�� ��Ctrl-Down let you cycle through

previous input and you can also edit any other line or mark a region in the console and
simply press

�� ��Return to send it to the interpreter. In that case QF-Test will filter the ’»>’
and ’...’ prompts from previous interpreter output.

Similar consoles are available for each SUT client. The respective menu items are
located below the Clients menu.

When working in a SUT script terminal, there’s one thing you need to be aware of: TheNote
commands issued to the interpreter are not executed on the event dispatch thread, con-
trary to commands executed via SUT script nodes. This may not mean anything to you
and most of the time it doesn’t cause any problems, but it may deadlock your appli-
cation if you access any Swing or SWT components or invoke their methods. To avoid
that, QF-Test provides the global methods runAWT, runSWT, runFX, runWeb, runWin,
runAndroid and runIOS which execute arbitrary code on the event dispatch thread.
For example, to get the number of visible nodes in a JTree component named tree,
use runAWT(”tree.getRowCount()”) (or runAWT { tree.getRowCount() }
in Groovy) to be on the safe side.

11.2. Script expressions 171

11.2 Script expressions

On occasion it can be useful to directly run small calculations or text manipulations di-
rectly in a node attribute. In QF-Test, this is possible everywhere where QF-Test variable
expansion is available. To achieve this, there is a special syntax with which single-line
script expressions can be evaluated:

• $[Jython expression] evaluates the given expression in the Jython inter-
preter. Alternatively you can use ${jython:Jython expression}. All expres-
sions are allowed that are allowed for the Jython eval method.

• to process a Groovy expression, use ${groovy:Groovy expression},

• and to process a JavaScript expression, use ${javascript:JavaScript
expression}.

The script expressions are evaluated according to the same rules as the script nodes,
see Fundamentals of the Jython integration(180), Scripting with Groovy(189) or Scripting with
JavaScript(192).

Access to QF-Test variables in ${Script language:expression} or $[...] ex-Note
pressions follows the same rules as in other scripts for the respective language. An
exception for Jython: the default QF-Test syntax $(...) and ${...:...} can only
be used for numeric and boolean values. You should access strings via rc.getStr
instead (see section 11.3.3(173)).

Example: In a Loop(639) node, the expression $[$(lastRowIndex) + 1] in Number
of iterations can be used if the variable lastRowIndex was previously set by the node
Fetch index(790) with index &-1 for the last row (like #List:&-1).

Script expressions can also return encapsulated objects. Example: The variable
myList contains the value $[[”Ape”, ”Beaver”, ”Chincilla”]]. You can
now use $[len($(myList))] in Number of iterations in a Loop(639) node.

In the condition attributes of If(647), Test case(558) and Test set(566) this special syntax is not
required. There you can enter script expressions directly.

11.3 The run context rc

When executing Server scripts and SUT scripts, QF-Test provides a special environment
in which a variable named rc is bound. This variable represents the run context which
encapsulates the current state of the execution of the test. It provides an interface
(fully documented in section 50.5(963)) for accessing QF-Test variables, for calling QF-
Test procedures and can be used to add messages to the run log. To SUT scripts it also
provides access to the actual Java components of the SUT’s GUI.

11.3. The run context rc 172

For those cases where no run context is available, i.e. Resolvers, TestRunListeners,
code executing in a background thread etc. QF-Test also provides a module called qf
with useful generic methods for logging and other things. Please see section 50.6(988) for
details.

11.3.1 Logging messages

One thing the run context can be used for is to add arbitrary messages to the run log that
QF-Test generates for each test run. These messages may also be flagged as warnings
or errors.

rc.logMessage("This is a plain message")
rc.logWarning("This is a warning")
rc.logError("This is an error")

Example 11.1: Logging messages from scripts

When working with compact run logs (see the option Create compact run log(549)), nodes
which most likely will not be needed for error analysis may be deleted from the run log
to preserve memory. This does not apply to error messages (rc.logError). They
are kept, along with about 100 nodes preceding the error. Warnings (rc.logWarning)
are also kept, however, without preceding nodes. Normal messages (rc.logMessage)
may be subject to deletion. If you really need to make sure that a message will definitely
be kept in the run log you can enforce this by specifying the optional second parameter
dontcompactify, e.g.

rc.logMessage("This message will not be removed", dontcompactify=true)
or simply
rc.logMessage("This message will not be removed", 1)

Example 11.2: Logging messages that will not get removed in compact run logs

11.3.2 Performing checks

Most of the time logging messages is tied to evaluating some condition. In that case, it
is often desirable to get a result in the HTML or XML report equivalent to that of a Check
node. The methods rc.check and rc.checkEqual will do just that:

11.3. The run context rc 173

var = 0
rc.check(var == 0, "Value of var is 0")
rc.checkEqual('${system:user.language}', 'en', "English locale required",

rc.EXCEPTION)

Example 11.3: Performing checks

The optional last argument changes the error level in case of failure. Possible values
are rc.EXCEPTION, rc.ERROR, rc.OK or rc.WARNING.

11.3.3 Variables

QF-Test has different kinds of variables. On the one hand there are variables belonging
to the QF-Test environment and on the other variables of the script languages, see
chapter 6(104). Variables of the script languages are separated into server-side and SUT-
side variables of each interpreter. The following graphic visualizes the different visibility
of the variable types:

Figure 11.2: Overview of the types of variables in QF-Test

11.3. The run context rc 174

To share the different kinds of variables between QF-Test and the script interpreters, QF-
Test provides the rc object which has several methods for this purpose. The methods
are explained in the next section.

Accessing variables

Using QF-Test variables in scripts is not difficult. You can access string values through
the run context method getStr, boolean values through getBool, integer values
through getInt, other numeric values through getNum and data object values through
getObj (see section 50.5(963) for the complete API documentation).

access a simple variable
text = rc.getStr("someText")
access a property or resource
version = rc.getStr("qftest", "version")

Example 11.4: Using rc.getStr to access string variables

Setting variables

To make the results of a script available during further test execution, values can be
stored in global or local variables. The effect is identical to that of a Set variable(814) node.
The corresponding methods in the run context are rc.setGlobal and rc.setLocal.

Test if the file /tmp/somefile exists
from java.io import File
rc.setGlobal("fileExists", File("/tmp/somefile").exists())

Example 11.5: Using rc.setGlobal

After executing the above example $(fileExists) will expand to true if the file
/tmp/somefile exists and to false if it doesn’t.

To clear a variable, set it to None, to clear all global variables use rc.clearGlobals()
from a Server script.

Global variables

Sometimes it is helpful to have a variable available in several scripting nodes. If the
value of the variable is not a simple string or integer, it is sometimes not sufficient to
use rc.setGlobal to store it in a global QF-Test variable, because the value must be

11.3. The run context rc 175

serialized when written or accessed from an SUT scripts - otherwise only the stringifica-
tion of the object is stored in the variable. In such a case, the variable can be declared
global in Jython to be usable within different scripts or expressions of the same script-
ing language, as shown in the following example.

global globalVar
globalVar = 10000

Example 11.6: Global Jython variable

The globalVar is now accessible within all further scripting nodes of the same type
(Server scripts or SUT scripts of the same client). For changing the value of globalVar
within another script, the global declaration is necessary again. Otherwise, a new
local variable is created instead of accessing the existing global. Use the del statement
to remove a global Jython variable:

global globalVar
del globalVar

Example 11.7: Delete a global Jython variable

In Groovy and JavaScript the global variables declaration is even easier than in Jython.
All variables that are not declared locally are assumed to be global.

myGlobal = 'global'

Example 11.8: Defining a global variable in Groovy or JavaScript

assert myGlobal == 'global'
def globals = binding.variables
assert globals['myGlobal'] == 'global'
globals.remove('myGlobal')
assert globals.find { it == 'myGlobal' } == null

Example 11.9: Usage and deletion of a global Groovy variable

Exchanging variables between processes

Sometimes one would like to use variable values that have been defined in one process
in a different process. For example, an SUT script might have been used to create a list
of items displayed in a table. Later we want to iterate over that list in a Server script.

11.3. The run context rc 176

One way is to store the list in a QF-Test variable with rc.setGlobal or rc.setLocal
and then retrieve the list content later with rc.getObj. This works fine as long as the
stored content is serializable, the object can be recreated in the other process and no
exception is defined (see Object classes to exclude from serialization(553)). If that is not
the case, rc.getObj will automatically return the stringification of the stored value -
similar to rc.getStr.

Alternatively, the run context provides a symmetrical set of methods to access or set
global script variables in a different process. For SUT scripts these methods are named
toServer and fromServer. The corresponding Server script methods are toSUT and
fromSUT. For this to work, the script nodes must use the same scripting language.

The following example illustrates how an SUT script can set a global variable in the QF-
Test Jython interpreter:

cellValues = []
table = rc.getStr("idOfTable")
for i in range(table.getRowCount()):

cellValues.append(table.getValueAt(i, 0))
rc.toServer(tableCells=cellValues)

Example 11.10: Setting a server variable from an SUT script

After the above script is run, the global variable named ”tableCells” in the QF-Test Jython
interpreter will hold the array of cell values.

The cell values in the above example are not necessarily strings. They could beNote
numbers, date values, anything. Unfortunately Jython’s pickle mechanism isn’t smart
enough to transport instances of Java classes (not even realizable ones), so the whole
exchange mechanism is limited to primitive types like strings and numbers, along with
Jython objects and structures like arrays and dictionaries.

11.3.4 Accessing the SUT’s GUI components

For SUT scripts the run context provides an additional method that is extremely use-
ful. Calling rc.getComponent(”componentId”) will retrieve the information of the
Component(869) node in the test suite with the QF-Test ID(870) ”componentId” and pass that
to QF-Test’s component recognition mechanism. The whole process is basically the
same as when simulating an event, including the possible exceptions if the component
cannot be found.

If the component is located, it will be passed to Jython, not as some abstract data but as
the actual Java object. All methods exposed by the Java API for the component’s class
can now be invoked to retrieve information or achieve effects which are not possible
through the GUI alone. To get a list of a component’s method see section 5.12(96).

11.3. The run context rc 177

get the custom password field
field = rc.getComponent("tfPassword")
read its encrypted value
passwd = field.getCryptedText()
rc.setGlobal("passwd", passwd)
get the table component
table = rc.getComponent("tabAddresses")
get the number of rows
rows = table.getRowCount()
rc.setGlobal("tableRows", rows)

Example 11.11: Accessing components with rc.getComponent

You can also access sub-items this way. If the componentId parameter references
an item, the result of the getComponent call is a pair, the component and the item’s
index. The index can be used to retrieve the actual value. The following example shows
how to get the value of a table cell. Note the convenient way Jython supports sequence
unpacking during assignment.

first get the table and index
table, (row,column) = rc.getComponent("tableAddresses@Name@Greg")
then get the value of the table cell
cell = table.getValueAt(row, column)

Example 11.12: Accessing sub-items with rc.getComponent

11.3.5 Calling Procedures

The run context can also be used to call back into QF-Test and execute a Procedure(627)

node.

rc.callProcedure("text.clearField",
{"component": "nameField", "message" : "nameField cleared"})

Example 11.13: Simple procedure call in Jython

In the example above the Procedure named ”clearField” in the Package(635) named ”text”
will be called. The parameter named ”component” is set to the value ”nameField” and
the parameter named ”message” is set to the value ”nameField cleared”.

The same example with Groovy syntax:

11.3. The run context rc 178

rc.callProcedure("text.clearField",
["component" : "nameField", "message" : "nameField cleared"])

Example 11.14: Simple procedure call in Groovy

And in JavaScript:

rc.callProcedure("text.clearField",
{"component" : "nameField", "message" : "nameField cleared"})

Example 11.15: Simple procedure call in JavaScript

The value returned by the Procedure through a Return(633) node is returned as the result
of the rc.callProcedure call.

Great care must be taken when using rc.callProcedure in SUT script nodes. OnlyNote
short-running Procedures should be called that won’t trigger overly complex actions in
the SUT. Otherwise, a DeadlockTimeoutException(898) might be caused. For data-
driven tests where for some reason the data must be determined in the SUT, use
rc.toServer to transfer the values to QF-Test interpreter, then drive the test from
a Server script node where these restrictions do not apply.

11.3.6 Setting options
3.1+

Many of the options described in chapter 41(450) can also be set at runtime via
rc.setOption. Constants for option names are predefined in the class Options. It
is automatically available for all script languages.

A real-life example where this might be useful is if you want to replay an event on a
disabled component, so you need to temporarily disable QF-Test’s check for the en-
abled/disabled state. For setting and immediately resetting an option there is the variant
pushOption / popOption which leaves a potentially preceding setOption call intact:

rc.pushOption(Options.OPT_PLAY_THROW_DISABLED_EXCEPTION, false)

Example 11.16: Example for pushOption

After replaying this special event, the previous option setting can be restored as shown
in the following example:

rc.popOption(Options.OPT_PLAY_THROW_DISABLED_EXCEPTION)

Example 11.17: Example for popOption

11.3. The run context rc 179

To be on the safe side and ensure, that the value is always restored, the two script
nodes should be placed into a Try(658) / Finally(665) combination. Otherwise, for example
a ComponentNotFoundException during event replay would prevent restoring the
option.

Be sure to set QF-Test options in a Server script node and SUT options in an SUT scriptNote
node, otherwise the setting will have no effect. Some options - most notably for Smar-
tIDs - have effect on QF-Test and SUT side. Those must be set in a Server script node.
QF-Test automatically takes care of the SUT side as well. The option documentation in
chapter 41(450) includes information about the effected side - server and/or SUT.

11.3.7 Override components

You might face a situation where you want to work with a component which you have
to determine at script level before working with it, either for performance reasons when
using the same component multiple times or for special cases where default compo-
nent recognition is too difficult or inefficient. For such cases you can use the method
rc.overrideElement to associate the component found with a QF-Test ID or Smar-
tID after which you can work use the assigned ID QF-Test event, check or similar nodes.

The following example could alternatively be resolved using SmartIDs but still illustratesNote
the case well. For more complex cases overrideElement remains a relevant alter-
native.

Let’s imagine that we have a panel and we want to work with the first textfield, but
because of changing textfields we cannot rely on the standard way of the recognition.
Now we can implement a script, which looks for the first textfield and assigns that
textfield to the PriorityAwtSwingComponent from the standard library qfs.qft.
Once we have executed that script we can work with any QF-Test nodes using the
PriorityAwtSwingComponent, which actually performs all actions on the found
textfield.

panel = rc.getComponent("myPanel")
for component in panel.getComponents():

if qf.isInstance(component, "javax.swing.JTextField"):
rc.overrideElement("PriorityAwtSwingComponent", component)
break

Example 11.18: Using rc.overrideElement

This concept is very useful if you know an algorithm to determine the target component
of your test steps.

You can find (old-style, see below) priority components for all engines in the standard
library qfs.qft. You can also find an illustrative example in the provided demo

11.4. Fundamentals of the Jython integration 180

test suite carconfigSwing_advanced_en.qft, located in the directory
demo/carconfigSwing in your QF-Test installation.

Before the introduction of SmartIDs QF-Test ID(870) of an existing Component(869) node had7.0+
to be used as the id parameter. When using SmartIDs these are no longer necessary.
You are free to assgin a pseudo SmartID as long as it starts with #. This function-
ality is based on simple string comparison. Potentially defined scopes are not taken
into account! Also new in QF-Test 7.0 is the ability to query overridden elements via
rc.getOverrideElement. Following is an example based on SmartID that overrides
a component only if necessary.

if not rc.getOverrideElement("#FirstTextField"):
panel = rc.getComponent("myPanel")
for component in panel.getComponents():

if qf.isInstance(component, "javax.swing.JTextField"):
rc.overrideElement("#FirstTextField", component)
break

Example 11.19: Conditional rc.overrideElement with SmartID

11.4 Fundamentals of the Jython integration

Jython is based on Python 2, not Python 3, so whenever just ”Python” is mentioned inNote
relation to Jython throughout this manual it refers to Python 2.

Python is an object oriented scripting language written in C by Guido van Rossum. A
wealth of information including an excellent Python tutorial is available at
http://www.python.org. Python is a standard language that has been around for years
with extensive freely accessible documentation. Therefore, this manual only explains
how Jython is integrated into QF-Test, not the language itself. Python is a very natural
language. Its greatest strength is the readability of Python scripts, so you should have
no problems following the examples.

Jython (formerly called JPython) is a Java implementation of version 2 of the language
Python. It has the same syntax as Python and almost the same set of features. The
object systems of Java and Jython are very similar and Jython can be integrated seam-
lessly into applications like QF-Test. This makes it an invaluable tool for Java scripting.
Jython has its own web page at http://www.jython.org. There is also an extensive tutorial
available which may help you get started with this scripting language.

QF-Test uses Jython version 2.7 which supports a large majority of the standard Python
2 library.

The Jython script language is not only used in Server script(670) and SUT script(673) nodes,
but also in $[...] expressions and (by default) to evaluate conditions like in the at-

11.4. Fundamentals of the Jython integration 181

tribute Condition(648) of If(647) nodes.

11.4.1 Jython Variables

In Jython scripts, QF-Test variable references like $(var) or ${group:name} are ex-Note
panded before the evaluation of the script. This can lead to unwanted effects, especially
if the values of these variables contain line breaks or backslashes (\). Instead, you
should use the methods rc.getStr() and rc.getObj() etc. (see section 11.3.3(174))
or rc.vars and rc.groups (see section 6.1.3(105)), which are safely evaluated during
script execution.

11.4.2 Modules

Modules for Jython in QF-Test are just like standard Python modules. You can import the
modules into QF-Test scripts and call their methods, which simplifies the development
of complex scripts and increases maintainability since modules are available across test
suites.

Modules intended to be shared between test suites should be placed in the direc-
tory jython under QF-Test’s root directory. Modules written specifically for one test
suite can also be placed in the test suite’s directory. The version-specific directory
qftest-9.0.4/jython/Lib is reserved for bundled modules. Jython modules must
have the file extension .py.

The following Jython module defines a procedure sorting an array of numbers.

def insertionSort(alist):
for index in range(1, len(alist)):

currentvalue = alist[index]
position = index
while position > 0 and alist[position-1] > currentvalue:

alist[position] = alist[position-1]
position = position-1

alist[position] = currentvalue

Example 11.20: The Jython module pysort.py

The procedure defined in above module is beeing called in the following Jython script:

11.4. Fundamentals of the Jython integration 182

import pysort
alist = [54,26,93,17,77,31,44,55,20]
pysort.insertionSort(alist)
print(alist)

Example 11.21: Jython script using a module

11.4.3 Post-mortem debugging of Jython scripts

Python comes with a simple line-oriented debugger called pdb. Among its useful fea-
tures is the ability for post-mortem debugging, i.e. analyzing why a script failed with an
exception. In Python, you can simply import the pdb package and run pdb.pm() after
an exception. This will put you in a debugger environment where you can examine the
variable bindings in effect at the time of failure and also navigate up to the call stack
to examine the variables there. It is somewhat similar to analyzing a core dump of a C
application.

Though Jython comes with pdb, the debugger doesn’t work very well inside QF-Test for
various reasons. But at least post-mortem debugging of Jython scripts is supported from
the Jython consoles (see section 11.4(180)). After a Server script(670) node fails, open QF-
Test’s Jython console, for a failed SUT script(673) node open the respective SUT Jython
console, then just execute debug(). This should have a similar effect as pdb.pm()
described above. For further information about the Python debugger please refer to the
pdb documentation.

You can find a step-by-step tutorial on debugging Jython scripts in QF-Test with external
tools in our blog post How to debug Jython Scripts in QF-Test .

11.4.4 Boolean type

Jython now has a real boolean type with values True and False whereas in older
versions integer values 0 and 1 served as boolean values. This can cause problems if
boolean results from calls like file.exists() are assigned to a QF-Test variable,
e.g. ”fileExists” and later checked in a Condition(648) attribute in the form
$(fileExists) == 1. Such conditions should generally be written as just
$(fileExists) or rc.getBool(”fileExists”) which work well with all Jython
versions.

11.4.5 Jython strings and character encodings

Summary and advice

11.4. Fundamentals of the Jython integration 183

Characters in Jython literal strings like ”abc” used to be limited to 8 bit, causing prob-5.3+
lems when trying to work with international characters.

QF-Test version 5.3 introduces a solution for international characters in Jython scripts
and Condition(648) attributes based on the option Literal Jython strings are unicode (16-bit
as in Java)(453).

If you start using QF-Test with version 5.3. or higher, that option is turned on by default.

A small percentage of existing scripts will need to be updated when switching to unicode
literals, so if QF-Test encounters an existing older system configuration the option re-
mains off until explicitly turned on. Turning the option on is strongly recommended. The
”Trouble shooting” section below explains what to do in case you encounter problems.

If Jython unicode literals are activated, the option Default character encoding for
Jython(454) should be set to ”utf-8” for maximum flexibility.

The main thing to avoid, regardless of the option setting, is expansion of QF-Test vari-
ables in literal Jython strings like ”$(somevar)”. It can cause syntax errors or have
unexpected results if the expanded variable contains newlines or backslash characters.
Use rc.getStr(”somevar”) instead.

Background and history of Jython in QF-Test

In Java all strings are sequences of 16-bit characters, whereas Jython has two kinds of
Strings: 8-bit ”byte strings” (type <str>) and 16-bit ”unicode strings” (type <unicode>).
The majority of strings used in QF-Test Jython scripts are either string constants like
”abc”, called literal strings, or Java string values converted to Jython, e.g. the result
of rc.getStr(”varname”). Conversion from a Java string always results in a 16-bit
unicode Jython string. For literal strings the result depends on the setting of the option
Literal Jython strings are unicode (16-bit as in Java)(453).

When unicode and byte strings are compared or concatenated, Jython needs to convert
one into the other. Conversion from unicode to byte strings is called encoding, the
other way decoding. There are many different ways to encode 16-bit strings to 8-bit
sequences and the rules to do so are called encodings. Common examples include
”utf-8” or ”latin-1”. The option Default character encoding for Jython(454) specifies the
default encoding to use. For backwards compatibility the default used to be ”latin-1”
before QF-Test 5.3 and is now ”utf-8”, which is preferable because it is the most flexible
and supports all international character sets.

Jython in QF-Test is based on Python version 2. In early Python versions strings were
made of 8-bit characters. Later, unicode strings with 16-bit characters were added. In
Python 2 literal strings like ”abc” are 8-bit byte strings, prepending ’u’, i.e. u”abc”
turns them into unicode strings. In Python 3 literal strings are unicode and one needs
to prepend ’b’, i.e. b”abc” to get 8-bit strings.

In Jython 2.2, Java strings were converted to 8-bit Python strings based on the default
encoding of the Java VM, typically ISO-8859-1 (also known as latin-1) in western coun-

11.4. Fundamentals of the Jython integration 184

tries. Since Jython 2.5, every Java string gets interpreted as a unicode Jython string.
With 8-bit literal string this results in a lot of implicit conversion between 8-bit and uni-
code strings, for example when concatenating a Java string - now unicode - and a literal
string like rc.getStr(”path”) + ”/file”.

Before QF-Test version 5.3 the Jython script nodes had further problems with charac-5.3+
ters outside the 8-bit range, because of the way scripts were passed from QF-Test to the
Jython compiler. In the process of fixing these issues it was decided that the best way
to reduce problems with Jython literal strings was to adapt a feature already available in
Python 2, namely from future import unicode_literals and make it possible
to treat Jython literal strings in QF-Test as unicode. This results in literal strings be-
ing the same in all three scripting languages of QF-Test and fully compatible with Java
strings, so the interaction of Jython scripts with everything else in QF-Test gets far more
natural. The new option Literal Jython strings are unicode (16-bit as in Java)(453) deter-
mines whether or not literal Strings in QF-Test Jython scripts are treated as unicode.
For backwards compatibility reasons the default remains 8-bit if QF-Test encounters an
exsiting system configuration, otherwise unicode literals are now the default.

The recommended Jython option settings are on for Literal Jython strings are unicode
(16-bit as in Java)(453) and ”utf-8” for Default character encoding for Jython(454).

Trouble shooting Jython encoding issues

As explained in the previous sections, Jython has two string types, <type ’str’> for
8-bit ”byte” strings and <type ’unicode’> for 16-bit ”unicode” strings. Literal strings
can be prepended with ’b’ (b”abc”) to get byte strings or with ’u’ (u”abc”) for unicode
strings. Plain literal strings (”abc”) are unicode if the option Literal Jython strings are
unicode (16-bit as in Java)(453) is turned on and byte strings otherwise. Java strings
resulting from Java function calls like rc.getStr(”somevar”) are unicode strings.

The following advice should help minimizing Jython string encoding issues:

• Turn the option Literal Jython strings are unicode (16-bit as in Java)(453) on and set
the option Default character encoding for Jython(454) to ”utf-8”.

• Literal strings containing $() expansion like ”$(varname)” have always been
problematic and should be replaced with rc.getStr(”varname”).

• Strings containing Windows filenames need special treatment because of the
backslash ’\’ character. In 8-bit strings backslashes are retained unless they have
special meaning like ’\t’ for tab or ’\n’ for newline. In 16-bit strings there are sev-
eral more special escape sequences that are likely to cause syntax errors or un-
expected results. Issues are avoided by using rc.getStr(”filename”) (see
above) and prepending ’r’ (for ”raw string”) to literal strings, e.g. qftestDir =
r”C:\Program Files\QFS\QF-Test”.

• Generally use qf.println instead of print ... because the latter gets

11.4. Fundamentals of the Jython integration 185

passed through an 8-bit stream with the default Java encoding (and in case of an
SUT script(673) node also of the operating system) and thus may lose international
characters on the way.

• Converting an object to a string in Jython was traditionally done via
str(some_object). As str is the byte string type this always creates a byte
string and triggers encoding. Unless you specifically need a byte string it is much
better to use unicode(some_object).

• The types Jython module provides the constant types.StringType and
types.UnicodeType as well as the list types.StringTypes cotaining both.
The latter is very useful when checking if an object is any type of string,
regardless of 8-bit or 16-bit. Instead of if type(some_object) ==
types.StringType
this should be written as
if type(some_object) in types.StringTypes

• In the very few cases where you really need a literal byte string, prepend a ’b’, e.g.
array.array(b’i’, [1, 2, 3])

And of course our support is always there to help.

11.4.6 Getting the name of a Java class

This simple operation is surprisingly difficult in Jython. Given a Java object you would
expect to simply write obj.getClass().getName(). For some objects this works
fine, for others it fails with a cryptic message. This can be very frustrating. Things go
wrong whenever there is another getName method defined by the class, which is the
case for AWT Component, so getting the class name this way fails for all AWT/Swing
component classes.

In Jython 2.2.1 the accepted workaround was to use the Python idiom
obj.__class__.__name__. This no longer works in Jython 2.5 because it no
longer returns the fully qualified class name, only the last part. Instead of
java.lang.String you now get just String. The only solution that reliably works
for version 2.5 is:

from java.lang import Class
Class.getName(obj.getClass())

This also works for 2.2, but it is not nice, so we initiated a new convenience module
with utility methods called qf that gets imported automatically. As a result you can now
simply write

qf.getClassName(obj).

11.4. Fundamentals of the Jython integration 186

11.4.7 A complex example

We are going to close this section with a complex example, combining features from
Jython and QF-Test to execute a data-driven test. For the example we assume that a
simple table with the three columns ”Name”, ”Age” and ”Address” should be filled with
values read from a file. The file is assumed to be in ”comma-separated-values” format
with ”|” as the separator character, one line per table-row, e.g.:

John Smith|45|Some street, some town
Julia Black|35|Another street, same town

The example verifies the SUT’s functionality in creating new table rows. It calls a QF-
Test procedure that takes the three parameters, ”name”, ”age”, and ”address”, creates
a new table-row and fills it with these values. Then the Jython script is used to read and
parse the data from the file, iterate over the data-sets and call back to QF-Test for each
table-row to be created. The name of the file to read is passed in a QF-Test variable
named ”filename”. After filling the table, the script compares the state of the actual table
component with the data read from the file to make sure everything is OK.

11.4. Fundamentals of the Jython integration 187

import string
data = []
read the data from the file
fd = open(rc.getStr("filename"), "r")
line = fd.readline()
while line:

remove whitespace
line = string.strip(line)
split the line into separate fields
and add them to the data array
if len(line) > 0:

data.append(string.split(line, "|"))
line = fd.readline()

now iterate over the rows
for row in data:

call a qftest procedure to create
one new table row
rc.callProcedure("table.createRow",

{"name": row[0], "age": row[1],
"address": row[2]})

verify that the table-rows have been filled correctly
table = rc.getComponent("tabAddresses")
check the number of rows
rc.check(table.getRowCount() == len(data), "Row count")
if table.getRowCount() == len(data):

check each row
for i in range(len(data)):

rc.check(table.getValueAt(i, 0)) == data[i][0],
"Name in row " + str(i))

rc.check(table.getValueAt(i, 1)) == data[i][1],
"Age in row " + str(i))

rc.check(table.getValueAt(i, 2)) == data[i][2],
"Address in row " + str(i))

Example 11.22: Executing a data-driven test

Of course, the example above serves only as an illustration. It is too complex to be
edited comfortably in QF-Test and too much is hard-coded, so it is not easily reusable.
For real use, the code to read and parse the file should be parameterized and moved to
a module, as should the code that verifies the table.

This is done in the following Jython script with the methods loadTable to read
the data from the file and verifyTable to verify the results. It is saved
in a module named csvtable.py. An example module is provided in
qftest-9.0.4/doc/tutorial/csvtable.py. Following is a simplified version:

11.4. Fundamentals of the Jython integration 188

import string
def loadTable(file, separator="|"):

data = []
fd = open(file, "r")
line = fd.readline()
while line:

line = string.strip(line)
if len(line) > 0:

data.append(string.split(line,separator))
line = fd.readline()

return data
def verifyTable(rc, table, data):

ret = 1
check the number of rows
if table.getRowCount() != len(data):

if rc:
rc.logError("Row count mismatch")

return 0
check each row
for i in range(len(data)):

row = data[i]
check the number of columns
if table.getModel().getColumnCount() != len(row):

if rc:
rc.logError("Column count mismatch " +

"in row " + str(i))
ret = 0

else:
check each cell
for j in range(len(row)):

val = table.getModel().getValueAt(i, j)
if str(val) != row[j]:

if rc:
rc.logError("Mismatch in row " +

str(i) + " column " +
str(j))

ret = 0
return ret

Example 11.23: Writing a module

The code above should look familiar. It is an improved version of parts of example
11.22(187). With that module in place, the code that has to be written in QF-Test is reduced
to:

11.5. Scripting with Groovy 189

import csvtable
load the data
data = csvtable.loadTable(rc.getStr("filename"))
now iterate over the rows
for row in data:

call a qftest procedure to create
one new table row
rc.callProcedure("table.createRow",

{"name": row[0], "age": row[1],
"address": row[2]})

verify that the table-rows have been filled correctly
table = rc.getComponent("tabAddresses")
csvtable.verifyTable(rc, table, data)

Example 11.24: Calling methods in a module

11.5 Scripting with Groovy

Groovy is another established scripting language for the Java Platform. It was invented
by James Strachan and Bob McWhirter in 2003. All you need for doing Groovy is a
Java Runtime Environment (JRE) and the groovy-all.jar file. This library contains
a compiler to create Java class files and provides the runtime when using that classes
in the Java Virtual Machine (JVM). You may think of Groovy as being Java with an
additional .jar file. In contrast to Java, Groovy is a dynamic language, meaning that
the behavior of an object is determined at runtime. Groovy also allows to load classes
from sources without creating class files. Finally, it is easy to embed Groovy scripts into
Java applications like QF-Test.

The Groovy syntax is similar to Java, maybe more expressive and easier to read. When
coming from Java you can embrace the Groovy style step by step. Of course we cannot
explain all aspects of the Groovy language here. For in-depth information, please take
a look at the Groovy home page at http://groovy-lang.org/ or read the excellent book
”Groovy in Action” by Dierk Koenig and others. Perhaps the following tips may help a
Java programmer getting started with Groovy.

• The semicolon is optional as long as a line contains only one statement.

• Parentheses are sometimes optional, e. g. println ’hello qfs’ means the
same as println(’hello qfs’).

• Use for (i in 0..<len) { ... } instead of for (int i = 0; i <
len; i++) { ... }.

• The following imports are made by default: java.lang.*, java.util.*,

11.5. Scripting with Groovy 190

java.io.*, java.net.*, groovy.lang.*, groovy.util.*,
java.math.BigInteger, java.math.BigDecimal.

• Everything is an object, even integers like ’1’ or booleans like ’true’.

• Instead of using getter and setter methods like obj.getXxx(), you can simply
write obj.xxx to access a property.

• The operator == checks for equality, not identity, so you can write if (somevar
== ”somestring”) instead of if (somevar.equals(”somestring”)).
The method is() checks for identity.

• Variables have a dynamic type when being defined with the def keyword. Using
def x = 1 allows for example to assign a String value to the variable x later in
the script.

• Arrays are defined differently from Java, e. g. int[] a = [1, 2, 3] or def
a = [1, 2, 3] as int[]. With def a = [1, 2, 3] you define a List in
Groovy.

• Groovy extends the Java library by defining a set of extra methods for many
classes. Thus, you can for example apply an isInteger() method to any
String object in a Groovy script. That’s what is called GDK (according to the
JDK in Java). To get a list of those methods for an arbitrary object obj, you can
simply invoke obj.class.metaClass.metaMethods.name or use the
following example:

import groovy.inspect.Inspector
def s = 'abc'
def inspector = new Inspector(s)
def mm = inspector.getMetaMethods().toList().sort() {

it[Inspector.MEMBER_NAME_IDX] }
for (m in mm) {

println(m[Inspector.MEMBER_TYPE_IDX] + ' ' +
m[Inspector.MEMBER_NAME_IDX] +
'(' + m[Inspector.MEMBER_PARAMS_IDX] + ')')

}

Example 11.25: GDK methods for a String object

• Inner classes are not supported, in most cases you can use Closures instead. A
Closure is an object which represents a piece of code. It can take parameters
and return a value. Like a block, a Closure is defined with curly braces { ...
}. Blocks only exist in context with a class, an interface, static or object ini-
tializers, method bodies, if, else, synchronized, for, while, switch, try,

11.5. Scripting with Groovy 191

catch, and finally. Every other occurrence of {...} is a Closure. As an
example let’s take a look at the eachFileMatch GDK method of the File class.
It takes two parameters, a filter (e. g. a Pattern) and a Closure. That Closure
takes itself a parameter, a File object for the current file.

def dir = rc.getStr('qftest', 'suite.dir')
def pattern = ~/.*\.qft/
def files = []
new File(dir).eachFileMatch(pattern) { file ->

files.add(file.name)
}
files.each {

// A single Closure argument can also be referred with "it"
rc.logMessage(it)

}

Example 11.26: Closures

• Working with Lists and Maps is simpler than in Java.

def myList = [1, 2, 3]
assert myList.size() == 3
assert myList[0] == 1
myList.add(4)
def myMap = [a:1, b:2, c:3]
assert myMap['a'] == 1
myMap.each {

this.println it.value
}

Example 11.27: Working with lists and maps

11.5.1 Groovy packages

Just like Java classes, Groovy source files (.groovy) can be organized in packages.
Those intended to be shared between test suites should be placed in the directory
groovy under QF-Test’s root directory. Others that are written specifically for one test
suite can also be placed in the directory of the test suite. The version-specific directory
qftest-9.0.4/groovy is reserved for Groovy files provided by Quality First Software
GmbH.

11.6. Scripting with JavaScript 192

package my
class MyModule
{

public static int add(int a, int b)
{

return a + b
}

}

Example 11.28: MyModule.groovy

The file MyModule.groovy could be saved in a subdirectory my below the suite direc-
tory. Then you can use the add method from MyModule as follows:

import my.MyModule as MyLib
assert MyLib.add(2, 3) == 5

Example 11.29: Using MyModule

This code also shows another groovy feature: Type aliasing. By using import and as
in combination you can reference a class by a name of your choice.

11.6 Scripting with JavaScript

JavaScript has become the most widely used programming language in the web area
and is one of the most popular script languages. QF-Test supports scripting with EC-
MAScript, which provides a common standard for the variety of different implementa-
tions of JavaScript.

QF-Test must run with at least Java 8 to use JavaScript.

It is possible to write code for the ECMAScript 6 standard. QF-Test automatically tran-
spiles the code to the EcmaScript 5 standard before the execution.

Special features of JavaScript as compared to other programming languages:

• There are two different null values: undefined and null. A variable is
undefined when it has no value. null is an intended null value that has to be
assigned.

• The == operator checks for equality instead of identity. So you can use if
(somevar == ”somestring”) to check for equality. To check for identity use
the === operator.

11.6. Scripting with JavaScript 193

• Variables declared with the let keyword are dynamically typed. E.g. let x = 1
makes it possible to assign String to x. Constants can be declared with const.

11.6.1 JavaScript imports

The following example shows how functionality can be transfered in a module. The
module must be placed in the javascript directory inside the QF-Test root directory.
The module can look like this:

var fibonacci = function(n) {
return n < 1 ? 0

: n <= 2 ? 1
: fibonacci(n - 1) + fibonacci(n - 2);

}
function sumDigits(number) {

var str = number.toString();
var sum = 0;
for (var i = 0; i < str.length; i++) {

sum += parseInt(str.charAt(i), 10);
}
return sum;

}
// Module exports (Node.js style)
exports.fibonacci = fibonacci;
exports.sumDigits = sumDigits;

Example 11.30: The moremath.js module

The moremath.js module defines the two function: fibonacci and sumDigits.
Each function has to be exported to . This can be achieved via Node.js like function
exports.

The following code can now be used inside the script node to take advantage of the
moremath.js modules functions:

moremath = require('moremath');
console.log(moremath.fibonacci(13));
console.log(moremath.sumDigits(123));

Example 11.31: Usage of the moremath.js module

There are multiple ways to import modules. Modules provided by QF-Test can be im-
ported using the import function.

11.6. Scripting with JavaScript 194

import {Autowin} from 'autowin';
Autowin.doClickHard(0, 0, true);

Example 11.32: Using the autowin module

Java classes can also be imported using the import function.

import {File} from 'java.io';

Example 11.33: Importing Java classes

It is also possible to use the ”require” function for importing npm modules, which are
explained in the following section.

11.6.2 NPM modules

npm is a package manager for JavaScript with over 350.000 packages. The available
packages are listed here https://www.npmjs.com/. The packages can be used in QF-
Test scripts. They need to be installed in the javascript folder of the QF-Test root direc-
tory.

npm install underscore

This line installs the npm underscore package from the os command line.

There are a few npm modules that are incompatible with the ECMAScript standard as
they were written for Node.js.

_ = require('underscore');
func = function(num){ return num % 2 == 0; }
let evens = _.filter([1, 2, 3, 4, 5, 6], func);
console.log(evens);

Example 11.34: Usage of the ’underscore’ package

11.6.3 Print statements

Besides console.log() there is another method implemented in QF-Test to show
output on the terminal. Note that this print is not defined in ECMAScript and was
added for convenience in QF-Test.

11.6. Scripting with JavaScript 195

print([1,2,3,4]);

Example 11.35: Printing an array

11.6.4 Execution

JavaScript scripts are not executed inside the browser but in the Nashorn engine. This
allows the execution of EcmaScript directly in the JVM.

Chapter 12

Unit Tests

With Unit Tests, i.e. component tests, you can check the functional units. They explicitly
test the functionality of single components. For this reason they are much less complex
compared to integration and system tests.

The Unit test(836) node executes Unit Tests via the JUnit framework as part of a QF-Test
test run. The results are available in the run log as well as in the report. In section
29.5(380) you find information on how to include QF-Test test suites into existing JUnit
tests.

The tests can be started from two possible sources: Java classes containing the JUnit
test cases or Unit Tests scripted directly in QF-Test. The parameters of the node vary
with the use case.

The JUnit 5 framework is used to execute the tests. This enables executing JUnit 5
Tests using the JUnit Jupiter engine as well as executing JUnit 4 and JUnit 3 tests using
the JUnit Vintage engine. With JUnit 5 you can use features like parameterized tests,
nested tests and test with a different display name.

12.1 Java Classes as the Source for the Unit Test

It is possible to execute Unit Tests from Jar or Class files. It is also possible to execute
Unit Tests that are available from the SUT’s runtime. QF-Test executes the tests of the
test classes specified in the respective attribute of the Unit test(836) node. In the report they
will be displayed as test steps within a test case. The following example demonstrates
the usage of a Unit test(836) node with Java test classes.

12.1. Java Classes as the Source for the Unit Test 197

Figure 12.1: Unit Test node with Java classes

12.2. Basics of the Test Scripts 198

package de.qfs.test;
import org.junit.Assert;
import org.junit.Test;
public class StringTest {

@Test
public void testubstring() {

String s = new String("Long text");
s = s.substring(5, 9;
assert("text".equals(s));

}
@Test
public void testReplace() {

String s = new String("example");
s = s.replace('e', 'i');
Assert.assertEquals("ixampli", s);

}
}

Example 12.1: Java Unit test

The class de.qfs.test.StringTest must exist in the unittests.jar specified in the Classpath(840)

attribute. The path is determined relative to the path of the directory of the current suite.
In this example the jar file is in the same directory as the suite.

JUnit test classes are Java classes where the methods have the @Test annotation. The
Unit test node executes all classes specified in the Test classes(840) table. Thus a Unit test
node can execute several test classes.

12.2 Basics of the Test Scripts

The second option to execute Unit Tests is to script the Unit Test directly in the Unit test
node. You can use any of the Script languages QF-Test offers. The most appropriate
one is Groovy because it supports the Java annotations. The JUnit framework is used
to execute the scripts.

12.2. Basics of the Test Scripts 199

12.2.1 Groovy Unit Tests

@BeforeClass
static void onbefore(){

println("Set Up")
}
@Test(expected=IndexOutOfBoundsException.class)
void indexOutOfBoundsAccess() {

def numbers = [1,2,3,4]
numbers.get(4)

}
@Test
void noFailure() {

assert true
}

Example 12.2: Unit Test Script with Groovy

In Groovy the required JUnit 4 classes are automatically imported at run-time. Just like
in Java all tests with the @Test annotation will be executed. You can ignore expected
exceptions using the expected parameter of the @Test annotation. The methods with
the @BeforeClass annotation will be executed before the test methods will be run.

12.2.2 Jython Unit Tests

def setUp(self):
print "Set Up"

def testMathCeil(self):
import math
self.assertEqual(2, math.ceil(1.01))
self.assertEqual(1, math.ceil(0.5))
self.assertEqual(0, math.ceil(-0.5))
self.assertEqual(-1, math.ceil(-1.1))

def testMultiplication(self):
self.assertAlmostEqual(0.3, 0.1 * 3)

Example 12.3: Unit Test script with Jython

Because Jython does not support Java annotations, the tests run as JUnit 3 tests. All
methods beginning with the keyword test are considered to be a test and executed
as QF-Test checks. The methods must have the self parameter because they are
automatically enclosed in a class. The setUp method is executed at the beginning of
each test.

12.3. Injections 200

12.2.3 JavaScript Unit test

setUp(){
print("Set up");

}
tearDown() {

print("Tear Down");
}
testUpperCase(){

let s = "text";
assertEquals("TEXT", s.toUpperCase());

}
testOk() {

assertTrue(true);
}

Example 12.4: Unit Test Script with JavaScript

Also JavaScript does not support Java annotations, the tests are executed as JUnit-3
Tests (cf. section 12.2.2(199)). Just like in Jython all functions beginning with the keyword
tests are executed as QF-Test checks.

12.3 Injections

It is possible to use the Unit Test node for the so called Live Tests. In this case the Unit
Tests are executed in the running SUT. Using ’Injections’ the Unit Tests inject QF-Test
objects like WebDriver, components and variables into the Unit Tests or scripts directly.

12.3. Injections 201

12.3.1 Component-Injections

import static org.junit.Assert.*;
import javax.swing.JComponent;
import org.junit.Test;
public class ComponentTest
{

/** The component to test in this unit test */
static JComponent component;
/** Expected value */
static String accessibleName;
@Test
public void accessibleNameIsCorrect()
{

/** component and accessible name are injected at run-time */
final String currentName =

component.getAccessibleContext().getAccessibleName();
assertEquals(accessibleName,currentName);

}
}

Example 12.5: Java Unit test

12.3. Injections 202

Figure 12.2: Example Unit Test node with Injections

The example shows the injection of two QF-Test objects: component and variable.
The parameter ”Field” corresponds to the name of the field static JComponent
component; in the Java class. The java field must be static.

12.3. Injections 203

12.3.2 WebDriver-Injections

import static org.junit.Assert.*;
import org.junit.Test;
import org.openqa.selenium.WebDriver;
public class WebdriverTest
{

/** The driver of the window currently opened by QF-Test. */
static WebDriver driver;
@Test
public void urlIsCorrectedLoaded()
{

// driver is injected at run-time
final String currentUrl = driver.getCurrentUrl();
assertEquals("http://www.example.com", currentUrl);

}
}

Example 12.6: Java Unit Test with WebDriver Injections

12.3. Injections 204

Figure 12.3: Example Unit Test node with Injections

This example shows how to inject a WebDriver object into a Java class. When no value
for the WebDriver driver is specified QF-Test determines the value via the given
client.

12.4. Unit Tests in Report 205

12.4 Unit Tests in Report

The greatest benefit from using the Unit test node is that the results are displayed nicely
formatted in the HTML report. All Unit Test classes executed via this node are consid-
ered QF-Test test cases. Unit test nodes should not be run separately. In order to see
them correctly displayed in the HTML report, run them as part of a Test case. Each test
method is handled like a QF-Test check, e.g. a failed check does not abort the tests
execution.

Figure 12.4: Unit Test Report

Chapter 13

Testing Java desktop applications

QF-Test’s origin is testing of Java desktop applications and since 1999 a very profound
support has been achieved for the basic Java UI toolkits as there are:

• Java Swing - the UI toolkit from Sun/Oracle

• SWT (Standard Widget Toolkit) - the tookit behind Eclipse, developed by IBM

• JavaFX - the intended successor of Java Swing from Oracle

There are also extensions/libraries available for this toolkits providing special compo-
nents or framework functionalities:

• Rich Client Platform (RCP)

• Eclipse Plug-Ins

• Netbeans Platform

• JFace GUI toolkit (library based on SWT)

• JIDE Common Layer components

• ULC (UltraLightClient) and RIA (Rich Internet Application)

• Java WebStart

• ...

Desktop application based on those technologies can be tested with QF-Test in a con-
venient and efficient way, leading to robust and reliable test cases with low maintenance
efforts and a high benefit for the software quality assurance. All general techniques
described in this manual can be applied for Java desktop testing.

Testing Java desktop applications 207

There are also hybrid applications, like Java desktop applications with an embedded
browser component or being displayed/rendered by a browser. Also those kind of sys-
tems can be perfectly tested with QF-Test. Please refer to Web testing(208) and Testing
Java desktop applications in a browser with Webswing and JPro(283) respectively for fur-
ther details.

There are short introductory videos aboutVideo

Java Swing testing
https://www.qftest.com/en/yt/java-swing-testing.html

and

JavaFX testing
https://www.qftest.com/en/yt/javafx-testing.html

available on our QF-Test YouTube Channel.

Chapter 14

Web testing

QF-Test allows intuitive testing of web pages in a browser from the point of view of the
user. Just as with the other supported GUI technologies you can record actions and
checks directly, and then rework, structure and replay them.

There is a shortVideo

introductory video about web testing
https://www.qftest.com/en/yt/web-testing.html

available on our QF-Test YouTube Channel.

14.1 Supported browsers

QF-Test supports test automation for the following browsers:

• Google Chrome (also headless mode, cf. section 14.7(213))

• Mozilla Firefox (also headless mode, cf. section 14.7(213))

• Microsoft Edge (also headless mode, cf. section 14.7(213))

• Safari

• Opera

• JxBrowser embedded into Swing, JavaFX or SWT

• WebView embedded into JavaFX

• Internet Explorer or Webkit embedded into SWT

Please refer to section 1.1.3(4) for details on the supported browser versions.

14.2. General approach 209

14.2 General approach

In the tutorial, part II, you will find a step-by-step instruction for starting with test automa-
tion for web applications.

You can also take a look at the Video tutorials. If you just want to set up the startupVideo
sequence for the web application we recommend the video

’Quickstart Wizard’
https://www.qftest.com/en/yt/quickstart-wizard-web-42.html

on our QF-Test YouTube Channel.

The approach towards test automation and execution regarding web applications does
not really differ from that for other GUI technologies, as described in the general part
of the manual, starting from chapter 2(13). However, you should pay special attention to
component recognition, which highly depends on the precise implementation of the web
application. In order to find out how well the direct recognition will work we recommend
you do a test recording of different components in several dialogs of the web application
and check the replay is correct. Please refer to section 14.4(210) for more information on
component recognition and configuration.

14.3 Browser connection

First, you need to start and connect to the desired browser via QF-Test. As soon as the
web application, defined by its URL, has been loaded you can start with recording and
test automation.

QF-Test uses three different methods, so-called drivers, to get access to the browser
and to set up the connection: the QF-Driver, CDP-Driver and the WebDriver.

For some browsers QF-Test supports more than one connection mode. QF-Test triesNote
to set the best mode for accessing the browser automatically. However, it is possible to
take control over the connection mode via the attribute Browser connection mode(691) of the
Start web engine(689) node. For details please refer to section 51.3(1052).

QF-Driver embeds the browser installed on the testing machine into a wrapper window,
and the wrapper window into the locally installed web browser, thus gaining access to
the automation interfaces of the browser and being able to listen to the events in the
browser and on the other hand to inject events into the browser.

The embedding of the browser into a separate window unfortunately does not work with
all browsers anymore, requiring an alternative mechanism to be implemented.

The CDP-Driver mechanism brings into play debugging interface integrated in5.3+
Chromium (and browsers based on it). QF-Test uses for it Chrome DevTools Protocol.

14.4. Recognition of web components and toolkits 210

It is the same API that is used by browser development tools. The API provides close
communication with a browser and efficient test execution. Unfortunately, an
implementation of this interface exists so far not for all the browsers supported by
QF-Test.

The WebDriver mechanism uses the Selenium WebDriver as link between the browser4.1+
and QF-Test, the WebDriver having become a W3C standard for controlling of web
browsers (http://www.w3.org/TR/webdriver/).

For reasons inherent to WebDriver, unfortunately, the WebDriver connection mode isNote
not yet on par with QF-Driver mode in terms of performance and feature completeness
(see section 51.3.4(1054)). For the time being we recommend to primarily use QF-Driver
or CDP-Driver mode for recording.

QF-Test needs to deep inspect the browser content in order to enable the familiar testingNote
features (e.g. event and check recording, feature based component recognition, web
and custom resolvers) in WebDriver mode. With some browsers this might trigger in a
warning related to mixed content display or an untrusted certificate. If this warning or
error message only appears while running the web site in testing mode, you can safely
ignore it.

14.4 Recognition of web components and toolkits

With web applications developers are quite free as to how to implement graphical ob-
jects with HTML, leading to a multitude of different implementations for functional GUI
components like buttons, text fields, data tables etc. Some samples for an OK Button:

1. <button id=”ok1”>OK</button>

2. <div class=”toolkit-btn”>OK</div>

3. OK

4. <div role=”button”>OK</div>

By default, QF-Test records the GUI elements with the HTML tag as class plus basic
features for recognition.

For the first sample QF-Test would record a component of the class BUTTON, the name
ok1 and the structure and geometry as resulting from the GUI. When replaying the
tests, the component recognition should work all right.

Moreover, QF-Test checks whether the HTML implementation is a quasi-standard, and
if so, maps the object to a generic QF-Test class. In the first sample this would be the
case and the component would be recorded as Button.

14.5. Cross browser tests 211

One benefit of generic classes is that QF-Test additionally records class specific fea-
tures for component recognition, e.g. the text of a button would be saved in the Feature
attribute. Another advantage are the class specific checks, like a check for a whole row
or column with tables. For more benefits of generic classes please read the introduction
of Generic classes(1242). For detailed information on class specific features please have
a look at Generic classes(1242).

There are a variety of web component libraries on the market, such as Angular Material
or Vaadin, which are very helpful when creating web pages. Each of these libraries has
their own implementation of GUI objects.

The second sample could be from a framework using the css class toolkit-btn for
buttons.

For some web frameworks the mapping of the GUI elements to generic classes has al-
ready been implemented with QF-Test. For such frameworks you can work with the sta-
ble component recognition you are used to with QF-Test. For more information please
refer to Special support for various web frameworks(1047). By default, QF-Test should au-
tomatically recognize the web framework used to implement the application. Else you
can choose the correct framework manually.

The third and the fourth sample do not follow any standard. For sample three the
standard component recognition would probably be sufficient regarding stability be-
cause of the name attribute. The fourth sample would not have a good standard com-
ponent recognition. However, it has an HTML attribute defining the functionality of
the node. In both cases you could map the defining attribute to the generic class
Button. For detailed instructions please refer to Improving component recognition with
a CustomWebResolver(1004).

We recommend checking which category the GUI objects of the application to be testedNote
belong to before starting test automation. In case standard recognition should not be
sufficient we recommend to improve it by mapping the GUI objects to generic QF-Test
classes as described in section 51.1(1004).

For general information on QF-Test components refer to chapter 5(42).

Working with several browser windows is explained in FAQ 25.Note

14.5 Cross browser tests

Cross browser tests are easy to implement. You can implement test cases working on
one browser and then replay them on other browsers. You just need to implement a
Data driver(603) defining adequately the variable $(browser). If you want to try it out
just open the web demo test suite and add a Data driver node in the test set ”: (To open
the demo test suite select the menu item Help→Explore sample test suites... and click

14.6. Emulation of mobile browsers 212

the ’open’ link behind ’Web CarConfig Suite’.)

Figure 14.1: Cross-Browser Tests

Then the four test sets which are in the same test set as the data driver will be run once
for each of the browsers.

14.6 Emulation of mobile browsers

An important aspect of web page testing is the user experience on mobile devices4.2.1+
like smartphones or tablets, since due to varying browser identifiers (”user agent”) and
device-specific screen sizes rendering of web pages differs between mobile and desktop
browsers (”responsive design”).

QF-Test supports such scenarios by emulating mobile browsers: A desktop browser
(e.g. Google Chrome) is started in a special mode, where the page size and the browser
identifier mimics those of browsers on mobile devices.

14.7. Web-Tests in headless mode 213

Google Chrome in particular is able to simulate specific characteristics of mobile
browsers like adjusted pixel ratios and automatic scaling of non-responsive web pages.

To use mobile emulation in QF-Test, select the corresponding entry in the Quickstart
wizard (see chapter 3(28)) and specify the required device parameters, together with the
URL of the web page and additional test requirements. QF-Test ships with a great
number of predefined definitions of well-known mobile devices, which can be freely
adapted as needed.

For a demo please open the test suite ’carconfigWeb_advanced_en.qft’ and run the
test set ’Emulation of Mobile Devices’. An easy way to open it is via the menu
Help→Explore sample test suites... and then selecting the ’open’ link behind ’Web

CarConfig Suite’ (at the very bottom).

14.7 Web-Tests in headless mode

Using the CDP-Driver and WebDriver connection mode it is possible to run Firefox,4.2+
Chrome and Microsoft Edge in a so called ”headless” mode. In this mode, the browser
is started in the background, without any visible window on the screen. All interactions
with the web page are executed inside this ”invisible” window.

A use case for headless browsers might be load testing (section 33.5(419)). Or you could
use it for tests you want to run in the background on the same machine as you are
developing tests on.

To execute an existing web test using the ”headless”-mode, simply change the type
of browser in the Start web engine(689) step from chrome to headless-chrome, from
firefox to headless-firefox, or from edge to headless-edge.

14.8 Integrating existing Selenium web tests

You can run existing Selenium Scripts with QF-Test when using the WebDriver mode.

One way is the direct use of the WebDriver Java APIs in the SUT script(673) node (cf.
section 54.11(1185)).

Another option is embedding Selenium Scripts as Unit tests, as described in chapter
12(196). As a nice side effect, you get an integrated report including the executed Unit
tests.

For a demo please open the test suite ’carconfigWeb_advanced_en.qft’ and run the
test set ’Integrating Selenium tests’. An easy way to open it is via the menu
Help→Explore sample test suites... and then selecting the ’open’ link behind ’Web

14.9. Selecting the browser installation 214

CarConfig Suite’ (at the very bottom).

14.9 Selecting the browser installation

If you use the CDP-Driver or WebDriver mode, you are no longer limited to
Firefox if you want to specify a browser installation folder using the attribute
Directory of browser installation(691) of the Start web engine(689) node. If no matching browser
can be localized in the specified directory, an exception will be thrown. If no directory is
specified, QF-Test will try to start a default browser of the given browser type.

Chapter 15

Testing native Windows applications

5.0+

15.1 Getting started

Video about testing of native Windows desktop applications:Video

’QF-Test Version 5.0 - Testing Windows applications’
https://www.qftest.com/en/yt/version-50-testing-windows-applications-50.html

This chapter covers automation and testing of Windows desktop applications, in partic-
ular

• Classical Win32 applications,

• .NET applications based on Windows Presentation Foundation (WPF) or Windows
Forms,

• Universal Windows Platform (UWP) applications using XAML controls.

All these kinds of applications support Microsoft UI Automation or Microsoft Active Ac-
cessibility (MSAA) for software test automation, joined together in the Windows Automa-
tion API, please see section 15.2(216) for background information.

For test execution a connection between the process of the application being tested and
QF-Test is needed. In order to create a Setup that is able to create such a connection,
the Setup sequence creation(29), launchable via the Extras menu can be used. Choose
’A native Windows application’ as application type then. Further information on how to
use the Quickstart-Manager can be found in section 15.3(217) and section 3.1(29).

If your application is already up and running, you can use the Attach to windows appli-
cation node. You just need to specify the title of its (main) window. Therefore a regular
expression can also be defined. In this case the checkbox for As regexp needs to be ac-
tivated as well. For example .*- Editor for the Windows Notepad application would

15.2. Technical background 216

be sufficient. However, it should be ensured that the given regular expression, does not
match any another window title. Otherwhise you can use the Start windows application
node to give the path to your Windows executable (.exe) so that QF-Test can start the
program, please see Launching/Attaching to an application(217) for details.

Once the application is connected to QF-Test (as GUI engine(675) win), capture and re-
play can be performed as described in chapter 4(35). However, due to the nature of UI
Automation, you should observe the recording rules listed in section 15.4(218).

The QF-Test installation provides the following example files:

• qftest-9.0.4/demo/carconfigForms/winDemoForms_en.qft

• qftest-9.0.4/demo/carconfigWpf/winDemoWPF_en.qft

• qftest-9.0.4/demo/windows/Win10Calculator_en.qft

Also have a look at the (Current) Limitations(223), most of which are expected to be fixed
or improved in future releases of QF-Test.

15.2 Technical background

A common framework for all Windows-based applications is the Windows Automation
API consisting of Microsoft’s Active Accessibility and its successor, Microsoft UI Au-
tomation. These frameworks provide the core of the win engine, whereby QF-Test is
now able to control virtually any Windows applications.

A Windows application has to expose so-called Providers in order to follow the rules
of UI Automation. This is done automatically when a framework like WPF is used to
develop a program. This is also done for Win32 applications via proxy providers. That
means, how good an application can be controlled and tested depends on the quality of
the respective providers, i.e. usually on the framework used in application development.
Like this, applications created via the WPF framework tend to be easily testable, as
the WPF framework was introduced along with the UI Automation framework. If the
framework does not provide an integration for the UI Automation the situation is different.
For example if you try to test a Java Swing application. However, QF-Test already
provides another very good connection mode for Java applications.

A test application that wants to control a program via UI Automation can get hold
of so called Automation Elements which represent the actual UI elements in the
SUT (System Under Test). Though every automation element has a control type (like
Button, MenuItem, etc.), its actual functionality - for example, setting a value in a text
field - depends on Control Patterns implemented by the respective providers.

15.3. Launching/Attaching to an application 217

To deal with the UI Automation framework, QF-Test starts a special Java program which
serves as UI Automation client application. That program can access all UI Automation
elements in a given process and handle them according to the rules of QF-Test (e.g.
create a snapshot of an element as Component(869)).

15.3 Launching/Attaching to an application

Testing a native Windows application does not require you to launch that application
from QF-Test. You can also connect to a running process and that way even control
parts of the operating system, for example the Windows Taskbar.

In order to connect to a process you can specify a window title (optionally as a regular
expression) or the respective process ID or the window’s UI Automation class name.
Strictly speaking, that window must not be a Window but could also be a Pane or a Menu
in terms of UI Automation control types. Whatever feature is used for attaching, QF-Test
will eventually determine the respective process ID and treat exactly that process as the
actual client application (SUT).

To connect just define the attribute Window title(700) in the Attach to windows application(699)

node and this can be

• a regular expression for the title

• -pid <process ID>

• -class <class name>

For example, by specifying .*- Editor you can attach to a running Windows Notepad
application, while -class Shell_TrayWnd will address the Windows Taskbar.

In order to find out the titles, process IDs and class names of running programs, you can
run the procedure qfs.autowin.logUIAToplevels in qfs.qft, cf. The standard
library(165).

Besides attaching to a running process, it is also possible to launch a program from
the Start windows application(696) node. To this end, specify the path to the respective
executable in the Windows application(697) attribute.

In some cases, it can also be useful to define both the Windows application and the
Window title attribute. QF-Test will then first try to attach. If that fails, the given program
will be started and connected via its process ID. If that fails too - the process may launch
a child process and terminate itself or may not display a (graphical) user interface -
another attempt to attach is made.

When you terminate a win client in QF-Test (either via the Stop client(720) node or from
the Clients menu), the respective UI Automation client process will be stopped along

15.4. Recording 218

with its sub-processes. That is, your actual SUT will terminate as well, if you started
it from QF-Test. On the other hand, the SUT will not be stopped when it was running
before you attached to it.

When you close the SUT, the UI Automation client will terminate as well.

To attach to an elevated processes (presenting the UAC prompt), you have to launch
QF-Test as administrator.

15.4 Recording

After connecting QF-Test with the SUT, you can record events (section 4.1(35)), checks
(section 4.3(38)) and components (section 4.5(40)).

However, as the communication between the SUT and the QF-Test UI Automation client
is handled by Windows (the UI Automation core), accessing elements is not quite as
fast as you may know it from the QF-Test Java automation. Furthermore, in contrast
to Java and Web testing (QF-Driver), events are processed asynchronously, i.e. you
cannot expect that an application’s dispatch thread is blocked while QF-Test is handling
an event.

That makes recording more difficult, because a target element might be destroyed by
the action to be recorded, for example when selecting an entry from a ComboBox or
clicking on a button that closes its parent window.

So you’d best get into the habit of following a few recording rules:

• Activate the recording mode and move the mouse over the element for which you
want to record an event.

• As QF-Test may take a little time to retrieve information about the element below
the mouse cursor, a red pane is displayed until it is done; the little ’QF-Test Element
Information’ window will then show which automation element was found.

• Now perform the mouse click to be recorded.

• When a mouse click will close a dialog or window (might also be a popup display-
ing a list), make sure to perform the click slowly, i.e. do not release the mouse
button immediately after pressing it so that QF-Test has the opportunity to gather
information before the window will disappear (when the mouse release is done).

• When recording checks or components, the respective frame around the element
is drawn almost immediately when the mouse is hovering over an automation ele-
ment. Before recording a check, you should wait until the frame disappears.

15.5. Components 219

Sometimes check recording (and transforming the node afterwards) may work better
than event recording, for example when a click on a button (like OK, Cancel) closes the
respective dialog or when a mouse down event recreates elements (for example the
accessory table in the CarConfiguratorNet WPF demo application). In check recording
mode QF-Test covers the SUT with an (almost) invisible window to prevent mouse clicks
from triggering an action in the client application.

15.5 Components

In QF-Test an automation element is recorded (or can be inserted manually, of course)
as Window(858) or Component(869) and stored within the Windows and components(881) node.
The QF-Test (generic) Class name often corresponds to the type of the UI Automation
element, for example Button. To be able to differentiate between the UI Automation
type and the generic class name, QF-Test adds a prefix Uia. to the type. Similarly, the
UI Automation framework specifier is used as prefix for the automation element’s class.
So you may for example see a classname: WPF.DataGrid in the Extra features of a
Table component recorded in a WPF application.

QF-Test does not strictly follow the hierarchy of the UI Automation elements. That is
often the case with dialogs (like Notepad’s Font dialog) which are usually listed below
the main application window in the UI Automation tree. From the Win32 perspective
as well as what QF-Test users would expect, such dialogs are also top-levels and thus
listed as a sibling of the main window below Windows and components. On the other hand,
a context menu can be a top-level in the UI Automation tree, but may be a window’s child
in QF-Test.

15.6 Playback and Patterns

UI Automation supports various ”soft” actions which do not rely on mouse events. For
example, to trigger a button’s action you can play back

+Select: invoke [myButtonID]

The effect should be the same as with

+Mouse click [myButtonID]

but no mouse is involved when using the Selection node. Instead, the UI Automation
core will trigger the execution of a provider’s Invoke() method in the SUT.

The Selection node does support the following actions in its Detail attribute:

15.6. Playback and Patterns 220

Detail Description Pattern
invoke Usually equivalent with a mouse

click.
InvokePattern

expand, collapse Should expand/collapse a Com-
boBox, MenuItem or TreeItem.

ExpandCollapsePattern

select[:0|-1|1] Should select an item in a list.
If -1 or 1 is specified, a multi-
selection is extended or reduced
by one.

SelectionItemPattern

toggle[:on|off] Change the state of a CheckBox
element.

TogglePattern

scroll:horiz%,vert% Values between 0 and 100 are
possible, defining the position
of the scroll location in percent;
specify -1 when you do not want
to change a position (horizon-
tally or vertically).

ScrollPattern

Table 15.1: Supported details for a Selection

The actions actually supported depend on an automation element’s patterns. They are
recorded among the Extra features of a component or can be determined in an SUT script
like print rc.getComponent(id).getPatterns().

What exactly a pattern means can vary from application to application. If, for example,
both SelectionItem and Invoke patterns are supported, Invoke might be prefer-
able because

+Select [list@item]

may only highlight the element but not trigger the respective action (e.g. Notepad Fonts).

The formal support of a pattern does unfortunately not mean that applying it has any
effect, for example scrolling an (invisible) entry in the list of Windows Calculator’s modes
into view (ScrollItem pattern). To get around the problem, you can simply play back
select here, whether or not the entry is currently visible.

As already mentioned above, because ”soft” playback may simply not work (due to the
provider implementation).

Regarding Key events, a text can only be set directly by a Text input node if the Value
pattern is supported. Otherwise single key events have to be played back.

15.7. Scripting 221

15.7 Scripting

Internally, the win engine represents automation elements by a class WinControl. To
obtain an element in a Groovy SUT script(673) node, run

def ctrl = rc.getComponent("myComponentID")
println ctrl

Example 15.1: Retrieving a WinControl in a Groovy SUT script

with the respective QF-Test component ID. The methods of the WinControl class are
described in section 54.12.1(1188):

• getUiaType(), getUiaClassName(), getFramework(),
getUiaName(), getUiaId(), getUiaDescription(),
getUiaHelp(), getHwnd(), getLocation(), getSize(),
getLocationOnScreen(), getPatterns(), hasPattern() to retrieve UI
Automation properties of the element

• getChildren(), getParent(), getChildrenOfType(),
getAncestorOfType(), getElementsByClassName() to traverse the
element hierarchy

• getUiaControl() to retrieve an AutomationBase control, compatible with the
uiauto script module (chapter 52(1059)).

15.8 Options

The behavior of the win engine can be influenced via a set of QF-Test options and
additionally by defining preferences which affect the native part of the UI Automation
Client. Those options and preferences can be set in an SUT script node via

rc.setOption(<name>, <value>)

or

rc.engine.preferences().setPref(<name>, <value>)

respectively. To reset an option, use

rc.unsetOption(<name>)

15.8. Options 222

15.8.1 Windows scaling

As the display resolution increased over the years, Windows allows to define a scale
factor so that application windows and controls are enlarged and text becomes more
readable. Usually, UWP, WPF and Windows Forms application do scale automatically,
but especially Win32 programs may retain the size of its controls or scale differently.

QF-Test works with physical display coordinates by default so that geometry values will
change when an application is scaled. Say the scale factor is set to 125%, a button
which originally (100%) resides at location (24, 40) with size (100, 20) will be moved to
location (30, 50) within its container and grow to an area of 125 times 25 pixels. The
consequences are

• different geometry when recording the component anew

• geometry mismatch when QF-Test tries to identify an element which was recorded
at 100% now in the scaled environment

• a (hard) mouse click onto a given region within an element may fail because the
scaled region is farther away from the element’s top-left corner.

To make QF-Test work with logical coordinates (as seen with a scale factor of 1), you can
set Options.OPT_WIN_USE_SCALING to true. QF-Test then uses the scale factor
of the primary connected monitor to adapt the geometry of components and mouse
event coordinates. Note that rounding errors may occur when calculating new integer
coordinates so that the mouse may not hit a given point exactly.

15.8.2 Visibility

You sometimes may want to play back an event on an element that is actually not visible
(it may not be scrolled into view). To perform an invoke event then, you may need to
get rid of the visibility test which is usually part of the component recognition.

This can be achieved by setting Options.OPT_WIN_TEST_VISIBILITY to false.
After playing back the event, you should reset the option to re-enable the visibility test.

15.8.3 Attaching to a window with a given class

If you attach to an application via -class <class name>, QF-Test by default ignores
all toplevels in the application which do not have the given class name. That way, you
can for example deal solely with the Windows Taskbar (and set apart the desktop and
its icons which run in the same process).

15.9. (Current) Limitations 223

To be able to access all toplevels in the process, you can set the preference
”windriver.restrict.tops.to.class” to ”false”.

15.8.4 Child count limitation

Unfortunately, big hierarchies of automation elements may cause performance prob-
lems. To avoid that recording and playback slow down drastically, QF-Test limits the
number of children when retrieving automation elements from the client.

The default value is 100. It can be changed by setting
Options.OPT_WIN_MAX_CHILDREN to another value.

15.9 (Current) Limitations

There are a number of limitations in the current implementation status of the Windows
testing functionality. We will try to further improve things within the next versions, but
possibly not all of the following points will be resolved soon.

As the support for UI Automation depends on the framework used for application devel-
opment, the recording in QF-Test may not always be consistent. For example, a Wait for
component to appear node may or may not be recorded when opening a dialog.

Dealing with applications consisting of several processes requires several win clients
and can be tricky.

Further limitations / not yet implemented features (January 2020) are among other
things

• Supported check types are more less complete There may be some special check
types missing. This is supposed to be fixed in a future release of QF-Test.

• Elements in the title bar of a Windows app cannot be accessed (easily), because
they live in a different process. This might be improved in a future release of
QF-Test.

• Redirection from a Button’s Text element to the Button element is done when
recording a mouse click, but may be missing elsewhere. This is supposed to be
improved in a future release of QF-Test.

15.10. Links 224

15.10 Links

The Windows Automation API is described here: https://docs.microsoft.com/en-
US/windows/desktop/WinAuto/windows-automation-api-portal.

More about Mark Humphrey’s ui-automation Java library can be found on
https://github.com/mmarquee.

Chapter 16

Testing Android applications

6.0+
This chapter covers test automation of Android native applications.

There is a shortVideo

introductory video about Android testing
https://www.qftest.com/en/yt/android-testing.html

available on our QF-Test YouTube Channel.

In June 2022, a special webinar took place about Android Testing with QF-Test. After a
bit of theory the detailed way of working with emulator and real device is demonstrated.

Here you can find theVideo

special webinar video recording
https://www.qftest.com/en/yt/android-special-webinar.html

available on our QF-Test YouTube Channel.

In case you want to test mobile Web applications, we recommend to check out theNote
options of the mobile emulation mode of the chrome desktop browser as describe in
section 14.6(212). Even though is possible to use a web browser on an Android device
(given that it supports the accessibility interface), the mobile emulation mode offers
better automation features and less overhead for mobile web testing.

16.1 Preconditions and known restrictions

16.1.1 Preconditions

In order to perform Android tests with QF-Test, the following preconditions need to be
fulfilled for the machine QF-Test is running on:

16.2. Emulator or real device 226

• In case an Android emulator shall be used, a sufficiently powerfull machine is
required (not an old scrap mill :-). It might be even necessary to enable hardware
acceleration (typical via the bios) if the emulator works too slow. Further details
can be found at https://developer.android.com/studio/run/emulator-acceleration.

• Android SDK Command-Line tools need to be available on your machine, even
better an installation of Android Studio as described in section 16.3(227).

• Either a real Android mobile device needs to be connected via cable and USB
debugging need to be enabled for this device (see section 16.4(233)),

• Or an Android emulator needs to be installed, running an adequate Android Virtual
Device (AVD) (see section 16.3.2(227)).

• The Android API Level of the real or virtual Android device needs to be greater
or equal 24, which means Android Version 7 Nougat or later (see Andriod version
history at Wikipedia).

16.1.2 Known restrictions

There are some restrictions within this version listed below:Note

• Only one Android client can be connected and controlled in parallel so far. It is
planned to enhance this to multiple clients as it is supported with the other UI
technologies.

16.2 Emulator or real device

At the beginning of Android testing, you need to decide how to start: with a virtual or
real device.

A real Android device can be used for testing with QF-Test. It needs to have the USB de-
bugging developer option activated and requires a connection via cable to the machinge
QF-Tests runs on. By help of respective setup sequence, QF-Test connects to the real
device and is able to control it. Now actions and tests can be recored and executed.

An Android virtual device (AVD) is the emulation of a real device. It runs by using an
emulator software on a computer that replicates the hardware and behavior of the real
device. An Android emulator is therefore a software to execute and test Android apps on
a computer. The emulator is able to load different Android virtual devices with specific
Android versions or products of a certain vendor.

16.3. Installing Android Studio, emulator and virtual devices (AVD) 227

When using an emulator, it is typically started by QF-Test at the beginning of the test,
then QF-Test loads and connect to the defined virutal Android device. Finally the app to
be tested is opened. Actions and tests can now be recorded and executed.

An advantage of the emulator is, that there is no dependency of external devices and
testing of different virtual devices is possible. Though, it needs a bit more of initial setup
and may cause more load on your maschine.

A real device allows a quicker start, is less flexible and needs USB debugging enabled.

16.3 Installing Android Studio, emulator and virtual de-
vices (AVD)

The easiest way to install the Android SDK Command-Line tools and emulator and
configure a virtual device is via the Android Studio. There is also the option to just install
the Android SDK or even just the SDK command line tools but there are some pitfalls,
which is why we decided to focus on Android Studio.

If you have not already installed Android Studio, the following steps are necessary:

16.3.1 Android Studio installation

• Download Android Studio from https://developer.android.com/studio. The installa-
tion will need about 3 GB on your hard disk.

• Just install it in the standard way with default settings and allow it to get started
afterwards.

• In the setup wizard you can go with the proposed settings.

• During installation you will be asked for a change in command line settings which
you may want to accept.

• Installation is finished.

16.3.2 Android Studio virtual device configuration

• As we just want to use the Android Studio to configure our virtual device, we
choose Virtual Device Manager from the menu (sometimes indicated by the ver-
tical dots top right). Otherwise, you can find the Device Manager in the Tools
menu.

16.3. Installing Android Studio, emulator and virtual devices (AVD) 228

Figure 16.1: Android studio start screen

• Here we can select Create device... .

16.3. Installing Android Studio, emulator and virtual devices (AVD) 229

Figure 16.2: Android studio virtual device creation screen

• Select an appropriate virtual device. It is recommended to go for smaller screen
sizes to both spare memory and allow the virtual device to fully fit on your screen.

16.3. Installing Android Studio, emulator and virtual devices (AVD) 230

Figure 16.3: Android studio screen to chose a device definition

• Now select the System Image representing the Android version. Press the respec-
tive ”Download” link to start the component installer. Then you can also proceed
with ”Next”.

16.3. Installing Android Studio, emulator and virtual devices (AVD) 231

Figure 16.4: Android studio screen to download and select the system image

• Finally press ”Finish” on the last configuration dialog.

16.3. Installing Android Studio, emulator and virtual devices (AVD) 232

Figure 16.5: Android studio screen to finish the AVD configuration procedure

• Now you have a first configured virtual device ready for QF-Test to use.

16.4. Connecting to a real Android device 233

Figure 16.6: Android studio screen showing available AVDs

16.4 Connecting to a real Android device

To use a real Android device for testing it needs to have USB debugging enabled and
connected to the machine via USB cable.

Also an Android SDK is required on your machine. Even though it may be sufficient to
just install a dedicated package for the Android SDK Command-Line tools we strongly
recommend install the full Android Studio as described in section 16.3(227)

Enable USB debugging

Please activate USB debugging for your real device. Typically following steps are nec-
essary:

1. Navigate to ”Setings” -> ”About ’Device”’.

16.5. Create a QF-Test setup sequence for Android testing 234

2. Click seven times at Build-Number, then ”Settings” -> ”Developer options” will get
visible

3. There activate the option ”USB debugging”

The reference documentation how to activate USB debugging can be found at
https://developer.android.com/studio/debug/dev-options.

Connect to PC via USB cable

• After connecting the Android device to the PC, you may be asked on the device
whether to allow USB debugging from this PC and whether to allow this perma-
nently. You need to confirm this.

16.5 Create a QF-Test setup sequence for Android test-
ing

• As always when creating a setup sequence, open the Quickstart Wizard via the

Extras menu or the toolbar button.

• Select ”An Android application”.

Figure 16.7: Quickstart wizard screen to select the application type

16.5. Create a QF-Test setup sequence for Android testing 235

16.5.1 Usage of an Android emulator

• Select first option ”Launch emulator and connect to an Android virtual device”.

Figure 16.8: Quickstart wizard screen to select the emulate as test device

• Select the virtual device from the drop-down list. Press ”Refresh” in case no AVD
is visible. If it is still not visible also try to restart QF-Test in order to make the
virtual device visible. Then press ”Next”.

16.5. Create a QF-Test setup sequence for Android testing 236

Figure 16.9: Quickstart wizard screen to select the AVD

• As the next step you may want to specify the Android .apk file you want to test. If
you want to test an App already installed, leave it empty.

16.5. Create a QF-Test setup sequence for Android testing 237

Figure 16.10: Quickstart wizard screen to select an APK

• In the next step you can specify a client name and press ”Next” or ”Finish” to
finalize the Wizard.

16.5. Create a QF-Test setup sequence for Android testing 238

Figure 16.11: Quickstart wizard screen to specify the client name

• As a result, a Setup sequence will be created in the ”Extras” node of your test
suite. It should be pretty much self explanatory and also contains the hint, that in
this early access phase the qfsandroid.qft suite is needed for this setup sequence
to run successfully. A resepective include has been added automatically.

Figure 16.12: Android setup sequence created by the quickstart wizard

• When executing the Setup sequence, the emulator window is supposed to appear
and in case you have provided an .apk file to be started, the same should be

visible there. Also the Record button is supposed to become active in order to
indicate an established connection.

16.5. Create a QF-Test setup sequence for Android testing 239

Figure 16.13: Android emulator window

16.5.2 Usage of a real Android device

• Select ”Connect to a real Android device or running Android virtual device”.

16.5. Create a QF-Test setup sequence for Android testing 240

Figure 16.14: Quickstart wizard screen to select the application type

• From the Combo box select the shown entry, which is the id of your connected
device. Press ”Refresh” in case no device is visible. If it is still not visible also try
to restart QF-Test in order to make the device visible. Then press ”Next”.

16.5. Create a QF-Test setup sequence for Android testing 241

Figure 16.15: Quickstart wizard screen to select the real device

• As the next step you may want to specify an Android .apk file you want to test. If
you want to test an App already installed, leave it empty.

16.5. Create a QF-Test setup sequence for Android testing 242

Figure 16.16: Quickstart wizard screen to select a .apk file

• In the next step you can specify a client name and press ”Next” or ”Finish” to
finalize the Wizard.

Figure 16.17: Quickstart wizard screen to specify the client name

16.6. Record actions and checks for Android 243

• As a result, a Setup sequence will be created in the ”Extras” node of your test
suite. It should be pretty much self explanatory and also contains the hint, that in
this early access phase the qfsandroid.qft suite is needed for this setup sequence
to run successfully. A resepective include has been added automatically.

Figure 16.18: Android setup sequence created by the quickstart wizard

• When executing this Setup sequence the Record button is supposed to be-
come active in order to indicate an established connection. Also in case you have
provided an .apk file to be started, the same should get visible on you real device.

16.6 Record actions and checks for Android

• Please press on the Record Button to see what is going to happen for Android
testing in QF-Test.

• A special recording windows will open showing the content of either the emulator
or the real device. This special window is necessary, as it is currently not possible
to directly capture events from the emulator or real device. So you need to capture
actions and checks via this special window.

• It offers buttons for resizing the content area. Please also note that the content
area just shows an image of the device screen. It needs to be updated manually

by using the refresh button. There is also an auto refresh toggle button to
perform this automatically.

16.6. Record actions and checks for Android 244

Figure 16.19: QF-Test Android recording window

• Now you can try and record and also replay actions or checks. It may feel a bit
clumsy in the beginning, but you will get used to the recording window soon.

• Despite these Android recording specifics, QF-Test should work and behave as
with any other GUI Technology, except for the known restrictions described in

16.7. Android utility procedures 245

section 16.1.2(226).

• Goodies:

The recording window also has some goodies to mention. In the bottom line left it
shows the mouse coordinates, which may become handy if you need to work with
absolute mouse clicks. On the right, it indicates the type of the last highlighted
component.

There is a toolbar button on the recording window to open a UI inspector win-
dow, see UI Inspector(97), displaying all visible components including the size and
coordinates. This is more to help tracking down issues with component recording
and recognision issues, but may become handy here and there.

16.7 Android utility procedures

There are a number of Android utility procedures available in the standard library(165) and
are located in respecitive ”android” package.

Some are similar to those avaialbe for other UI technologies but some are very specific
for mobile testing e.g. for performing guestures or swipe actions, scrolling and setting of
a certain component status.

16.7. Android utility procedures 246

Figure 16.20: Android utility procedures

Chapter 17

Testing iOS applications

6.0+
This chapter covers test automation of iOS native applications.

There is a shortVideo

introductory video about iOS testing
https://qftest.com/en/yt/ios-overview.html

available on our QF-Test YouTube channel.

In September 2024, a special webinar took place about iOS testing with QF-Test. After
a bit of theory the detailed way of working with the simulator and real device is demon-
strated.

Here you can find theVideo

special webinar video recording
https://qftest.com/en/yt/ios-special-webinar.html

available on our QF-Test YouTube channel.

In case you want to test mobile Web applications, we recommend to check out theNote
options of the mobile emulation mode of the chrome desktop browser as describe in
section 14.6(212). Even though it is possible to control an accessibility aware web browser
on an iOS device for testing (e.g. Safari), the mobile emulation mode offers better
automation features and less overhead for mobile web testing.

17.1 Preconditions and known restrictions

17.1.1 Preconditions

In order to perform iOS tests with QF-Test, the following preconditions need to be fulfilled
for the machine QF-Test is running on:

17.1. Preconditions and known restrictions 248

• iOS applications can only be tested on a macOS system. You have to install and
execute QF-Test on this system (interactively, in batch mode or via daemon calls).

• To execute tests on the iOS simulator or iOS device, you have to install the com-
plete development environment Xcode in version 13 or higher from the App Store.
To avoid installation problems, it is recommended to disable the auto update mech-
anism for applications in the App Store or system settings, and update Xcode
manually while no test is running.

• In Xcode, you have to enable the iOS development platform and install the cor-
responding iOS simulators/runtimes. To install, open ”Settings” or ”Preferences”
and select the tab ”Platforms” or ”Components”. You have to repeat this step after
each Xcode update.

• Select the correct development path
/Applications/Xcode.app/Contents/Developer via Terminal: sudo
xcode-select -s /Applications/Xcode.app/Contents/Developer.

• To control the iOS device or iOS simulator, the iOS Development Bridge is re-
quired. For installation, please refer to https://fbidb.io/docs/installation.

In the menu ”Extras” of the QF-Test main window you can find the command
”Check/Setup iOS test environment ...”. This command helps to verify your current
system and gives advices on how to install the required tools. When a tool is started
the first time it can happen that its initialization takes more than 30 seconds. In this
case, due to timeout, a wrong version number of the tool is reported. To work around,
simply restart the check/setup procedure.

17.1.2 Known restrictions

• Events directly entered on a connected device or in the Simulator app cannot
be recorded. Similar to Android tests, interactions have to be performed in the
dedicated recording window, see Record actions and checks for iOS(260).

• Starting from iOS version 13, when using SecureField components (for entering
passwords or other sensitive information), the software keyboard will no longer
be displayed in the recording window, and the text component will appear empty
although it contains input. The software keyboard is not essential for record-
ing, because input to the text component can always be recorded via keyboard
events to the recording window. However, the component information for the soft-
ware keyboard remains available and can be used for playback of Mouse events
to its keys. For this purpose, you can use component recording (see Recording
components(40)) on the whole window to record the keyboard component or work

17.2. Installing Xcode, Simulators and IDB 249

directly with SmartID(72). A suitable SmartID suggestion can be obtained using the
UI Inspector(97).

17.2 Installing Xcode, Simulators and IDB

For iOS testing, QF-Test requires an installation of the full Xcode development applica-
tion, as well as the iOS Development Bridge (idb).

In the menu ”Extras” of the QF-Test main window you can find the command
”Check/Setup iOS test environment ...”. This command helps to verify your current
system and gives advice on how to install the required tools. When a tool is started the
first time it can happen that its initialization takes more than 30 seconds. In this case,
due to timeout, a wrong version number of the tool is reported. To work around, simply
restart the check/setup procedure.

17.2.1 Xcode Installation

• Install Xcode in version 13 or higher from the App Store.

17.2. Installing Xcode, Simulators and IDB 250

Figure 17.1: Xcode in the macOS App Store

• If Xcode is updated while a test is running, the installation can be damaged. There-
fore, it is recommended to disable the auto update mechanism for applications in
the App Store or system settings, and update Xcode manually while no test is
running.

17.2. Installing Xcode, Simulators and IDB 251

Figure 17.2: Recommended App Store settings

• Select the correct development path
/Applications/Xcode.app/Contents/Developer via Terminal:

sudo xcode-select -s /Applications/Xcode.app/Contents/Developer

Example 17.1: Xcode development path selection in Terminal

• After installation, open Xcode and trigger the installation of additional required
software as requested. This must include at least one iOS Platform. If you dis-
miss the dialog upon first start, you can retrigger the installation from the dialog
XCode→Settings. . . in the Platforms panel. Using the right-click menu, it is also

possible to remove installed frameworks.

17.2. Installing Xcode, Simulators and IDB 252

Figure 17.3: Platform management in Xcode

• Using the menu item XCode→Open Developer Tool→Simulator , start the iOS
Simulator once and make sure that proper Simulator definitions have been cre-
ated. Here, it is also possible to define additional devices.

17.2. Installing Xcode, Simulators and IDB 253

Figure 17.4: The iOS Simulator menu

17.2.2 iOS Development Bridge (idb) Installation

To interact with the iOS device, QF-Test uses the idb tool. It consists of the idb com-
panion which communicates directly with the (simulated) device, and the Python based
idb client. Both parts need to be available on the system in order to execute iOS tests.
More information about the idb tool can be found in the idb documentation.

• The installation of the idb companion can be performed using the command line
Homebrew tool (see https://brew.sh). To install the idb companion, run on the
command line:

brew tap facebook/fb
brew install idb-companion

Example 17.2: idb companion installation on the command line

• The idb client requires a Python 3.6 or greater to be installed on the system. This
can also be done using Homebrew on the command line. Afterward, the idb client
is installed using the pip tool of Python:

17.3. Testing on a real iOS device 254

brew install python3
pip3 install --upgrade pip
pip3 install fb-idb

Example 17.3: idb client installation on the command line

17.3 Testing on a real iOS device

App testing on the iOS Simulator is quick and easy, but sometimes it is required to run
a test using a real device connected to the machine running the iOS test. To run iOS
tests on a real device, several requirements need to be fulfilled:

1. The system has to be prepared as described in section 17.2(249), including a com-
plete installation of Xcode.

2. The Developer Mode must be enabled on the device in
Xcode→Settings→Privacy & Security .

3. The device has to be connected to the machine, and the machine has to be marked
as ”trusted” on the device.

4. The device must be unlocked during testing.

5. A developer account must be added in Xcode→Settings. . .→Accounts using its
Apple ID.

6. The team ID corresponding to the selected developer account must be provided
using the option Code Signing Team ID / Organizational Unit(526).

7. Sometimes, the first test start fails due to missing profile trust on the device. To
trust the developer profile, open the Settings app and on the device navigate to
General→VPN & Device Management or Profiles and confirm the trust there.

17.4. Create a QF-Test Setup sequence for iOS testing 255

Figure 17.5: Navigate to the iOS profile trust section

8. Applications, which are installed on the device during the test must be available in
a version build for ”Any iOS device” (which is another build target than ”Any iOS
Simulator”), and properly signed. As well, a provisioning profile must be installed
on the device allowing the application to be run (see Apple documentation).

17.4 Create a QF-Test Setup sequence for iOS testing

• Open the Quickstart Wizard via the Extras menu or the toolbar button.

• Select ”An iOS application”.

17.4. Create a QF-Test Setup sequence for iOS testing 256

Figure 17.6: Quickstart wizard screen to select the application type

• Select the real or simulated device from the drop-down list. Press ”Refresh”
in case no devices are visible. If it is still not visible, open Xcode and select
Window→Devices and Simulators to make sure everything is properly set up.

You can also provide only the first part of the device name to make your test more
flexible.

To proceed to the next step, press ”Next”.

17.4. Create a QF-Test Setup sequence for iOS testing 257

Figure 17.7: Quickstart wizard screen to select the test device

• As the next step you may want to specify the iOS .app bundle or .ipa file you want
to test. You can also directly reference a .zip file, containing the app bundle. If you
want to test an app already installed, leave it empty.

17.4. Create a QF-Test Setup sequence for iOS testing 258

Figure 17.8: Quickstart wizard screen to select an app file

• In the next step you can specify a client name and press ”Next” or ”Finish” to
finalize the Wizard.

17.4. Create a QF-Test Setup sequence for iOS testing 259

Figure 17.9: Quickstart wizard screen to specify the client name

• As a result, a Setup(595) sequence will be created in the ”Extras” node
of the test suite. The Setup sequence includes a call to the
qfs.ios.setup.checkEnvironment procedure from the standard library(165),
to verify that the executing system is properly set up.

17.5. Record actions and checks for iOS 260

Figure 17.10: iOS setup sequence created by the quickstart wizard

17.5 Record actions and checks for iOS

• To start recording, press the record button in QF-Test.

• A special recording window will open showing the content of either the Simulator
or the real device. This special window is necessary, as it is currently not possible
to directly capture events from the Simulator or real device.

• The display content from the (simulated) device is continuously mirrored in the
recording window, which also offers buttons for resizing the content area.

17.5. Record actions and checks for iOS 261

Figure 17.11: QF-Test iOS recording window

17.6. iOS utility procedures 262

• Now you can record and also replay actions or checks.

• There is an toolbar button on the recording window to open a UI inspector
window, see UI Inspector(97), displaying all visible components including the size
and coordinates.

17.6 iOS utility procedures

There are a number of iOS utility procedures available in the standard library(165), located
in respective ios package.

Some are similar to those available for other UI technologies but some are very specific
to mobile testing for example for performing gestures or swipe actions, scrolling and
setting of a certain component status.

17.6. iOS utility procedures 263

Figure 17.12: iOS utility procedures

Chapter 18

Testing PDF documents

From version 4.2 onwards QF-Test offers the possibility to test PDF documents similarly4.2+
to GUIs, i.e. QF-Test analyzes the structure of a PDF document and recognizes single
components, which can be tested individually.
Using Capture and replay(35) QF-Test can directly record and replay Events(266) as well as
Checks(266).

Video:Video

’Testing PDF Documents with QF-Test’
https://www.qftest.com/en/yt/testing-pdf-documents-42.html

18.1 PDF Client

QF-Test loads the PDF document to be tested into a viewer, which QF-Test starts as a
client process.

18.1.1 PDF Client start

The Quickstart Wizard allows to create a setup sequence to start the PDF client. Please
choose ”PDF document” as Type of Application. (c.f. chapter 3(28)). This allows to start
the viewer. The node Start PDF client(693) is used as start node.

18.1.2 PDF Client window

The left side of the window of the PDF Client displays a column with an overview of all
pages of the PDF document.

18.1. PDF Client 265

The right part of the window shows the currently selected page.
The following screenshot shows the PDF Client with a demo PDF document.

Figure 18.1: PDF Client main window with PDF document

18.2. PDF events 266

18.2 PDF events

To change the opened document during test execution or the shown page you may use
a Selection(742) step. These actions can be recorded directly in the recording mode. The
following events can be replayed:

18.2.1 Open a PDF document

You can load another PDF document during the test execution. To do so you have to
set the Detail(744) attribute of the Selection(742) step to open: .

Now you can set the path to the PDF document. If a relative path is specified it is
resolved relatively to the directory containing the current test suite.

open:C:\Users\qfs\meinPDFDokument.pdf

Example 18.1: Loading a PDF document

If the document cannot be found or opened a TestException(896) will be thrown.

18.2.2 Switch page

To switch to a specific page the Detail(744) attribute of the Selection(742) step can be set to
goto:.

Just like the Page of PDF Document(694) attribute, the page can either be set as an integer
to set the page number or a string in quotation marks for the page name.

goto:3 or goto:"Introduction"

Example 18.2: Open a specific page

If the desired page cannot be determined, a PageNotFoundException will be thrown.

18.3 Checks for PDF components

The following checks exist for PDF components (c.f. section 18.4(272)). These checks can
be directly recorded via the Check recording mode.

18.3. Checks for PDF components 267

18.3.1 Check text

For a description of the Check text node please refer to Check text(754). There are two
check types available for PDF text components: ’default’ and ’Text positioned’.

PDF documents do not necessarily contain line breaks, and spaces. The spaces be-
tween words and rows result from the coordinates of the single letters. The check type
’default’ checks the text as it is represented in the PDF document - without line breaks
and spaces when the text object does not contain any. From the coordinates of the sin-
gle letters QF-Test calculates where there should be line breaks and spaces. The check
type ’Text positioned’ checks this processed text.

Figure 18.2: Check text ’default’

Figure 18.3: Check text ’Text positioned’

Additionally the whole text of the current page can be checked with the check types ”Text4.4+
(whole page)”, ”Text positioned (whole page)”, ”Text as items (whole page)” and ”Text
positioned as items (whole page)” available at the Main stage.
These check types record all Text components of the current page sorted by their
Y/X position. The check types differ between recording the Text components posi-
tioned/processed (see above) or not and whether they are recorded as Check items(765)

or as combined Check text(754).

18.3. Checks for PDF components 268

Figure 18.4: Check Items ’Text as items (whole page)’

Figure 18.5: Check Items ’Text positioned as items (whole page)’

18.3. Checks for PDF components 269

Figure 18.6: Check text ’Text (whole page)’

18.3. Checks for PDF components 270

Figure 18.7: Check text ’Text positioned (whole page)’

18.3.2 Check image

For a description of the Check image node please refer to Check image(775). The check type
’default’ is provided for all PDF object types.

The check type ’default’ checks the object as it is displayed on the PDF page, with
scaling and with overlapping objects or parts of objects.

18.3. Checks for PDF components 271

Figure 18.8: Check Image ’default’ recording of a Text object

Figure 18.9: Check Image ’default’ recording of an Image object

In a PDF document there may also be real embedded images. The images can be
scaled for display on the PDF page. Moreover, other objects may overlap the image on
the displayed page. For these Images the following check types are also available:

The check type ’unscaled’ checks the original unscaled image embedded into the file.

Figure 18.10: Check Image ’unscaled’ recording of an Image object

The check type ’scaled’ checks the image displayed on the PDF page without overlap-
ping objects, however, taking into account scaling. This allows to check partly invisible
images.

18.4. PDF component types 272

Figure 18.11: Check Image ’scaled’ recording of an Image object

18.3.3 ’Check Font’

The Check text node with the check type ’text_font’ allows to check the font of a text
object.

The letters within one PDF text object may have various fonts. ’Check Font’ checks the
font which is used predominantly.

18.3.4 ’Check Font size’

The Check text node with the check type ’text_fontsize’ allows to check the fontsize of a
text object.

The letters within one PDF text object may have various font sizes. ’Check Font size’
checks the font size which is used predominantly.

18.4 PDF component types

QF-Test recognizes the following object types:

PDF object type QF-Test component type Comment
Text Text or Label Collection of letters, which have

a font and a font size.
Image Graphics Collection of pixels. May also

have the form of a letter.
Shader and Vectors Graphics Collection of vectors, which ei-

ther represent geometrical fig-
ures or maybe also letters.

Main stage MainPanel The basic page for all objects.

Table 18.1: Supported PDF objects

18.5. PDF component recognition 273

QF-Test highlights all recognized PDF objects with a colored border line if this feature
is enabled via the menu View -> Show components or the keyboard shortcut CTRL-T.
This feature must be disabled during capture and replay, otherwise image checks will
show the colored border lines.
The following color code applies to the object types:

Color PDF object type
Red Text
Blue Image
Green Shader and Vectors
Cyan Main stage

Table 18.2: Color code for PDF objects

18.5 PDF component recognition

QF-Test represents PDF objects as Swing components, which can be accessed via the
Swing API by SUI scripts, for example (c.f. chapter 11(168)).

The basic data QF-Test needs to identify the PDF object on the page are the same as
with all QF-Test components: class, geometry and structure information (index). For text
components QF-Test also saves the predominantly used font and predominantly used
font size in the Extra features table. For image objects QF-Test also records the image
hash and saves it in the Extra features table, for shader objects the shader type.

Moreover, QF-Test checks for every text object whether according to its features it might
be a label. If so, the text object is given the class ’Label’. Via the standard algorithm
for ’qfs:label’ in the Extra features table QF-Test will assign the label component to other
components where appropriate.

As the standard algorithm for the recognition of labels is based on assumptions and
probabilities it may happen that labels are not recognized or the falsely identified. In this
case you may want to use resolvers (section 54.1(1075)) to improve recognition. Resolvers
can also be used to improve the assignment of label components to the respective field.

Chapter 19

Accessibility Testing

9.0.0+
Video:Video

Web Accessibility Testing with QF-Test
https://www.qftest.com/en/yt/a11y-web-specialwebinar.html

QF-Test supports accessibility testing for web applications
based on the WCAG guidelines (https://www.wcag.com or
https://digital-strategy.ec.europa.eu/en/policies/web-accessibility). Deque
Systems has developed a library (axe-core) for these guidelines, which
provides methods that control the implementation of part of this set of rules
(https://dequeuniversity.com/rules/axe/html/).

QF-Test provides the procedure runAxeChecks for access to the axe-core library. This
means that the entire functionality of axe-core can be used in QF-Test - without addi-
tional programming effort. Parameters are used to control which rules are applied and
which areas of a website are to be checked. QF-Test offers additional features:

• Clear HTML-reports and detailed QF-Test run logs

• Logging of faulty elements with extensive information and suggestions for trou-
bleshooting

• Creation of screenshots with highlighting of faulty elements for easy identification

As QF-Test has full access to HTML elements and can simulate user actions, it has the
potential to provide checks that go beyond axe-core. In the first step, we offer a check
of color contrasts of simple graphic elements like icons using the checkColorContrast-
SimpleGraphics procedure. It is located in the same package in the standard library as
the above-mentioned procedure runAxeChecks and it implements the same structure
for the run log

The term a11y used in the procedure names is a commonly used abbreviation of theNote
word ”accessibility” (”A” + 11 characters + ”y”).

19.1. General parameters of the check functions 275

19.1 General parameters of the check functions

The methods provided for testing accessibility can be set using various parameters, for
example to define the scope of the test or the type of logging.
These parameters are explained in more detail below.

scope
The QF-Test ID(870) of the Component(869) within which the checks are to be applied

is specified here. The tests are only applied to this component and its child
components.
Default: genericDocument, the entire page

genericClassesToSkip
The comma-separated names of Generic classes(1242) which are to be skipped in

the tests. These classes and any subclasses are not checked during the tests.
Default: -

showSuccessfulChecks
If this parameter is set to true, successful checks are also listed as information

in the log.
Default: false

skipInvisibleElements
If true, the checks will not be performed for invisible elements.
Default: true

showSkippedChecks
If this parameter is set to true, checks that could not be fully executed are listed

as a warning in the log. One reason for this may be, for example, that the element
to be tested is covered by another element.
Default: true

logOverviewScreenshot
Determines whether a screenshot should be generated in the event of an error to
provide an overview of the faulty elements. The overview screenshot includes the
defined scope, so it can also include the entire page. On the screenshot,
elements with errors are outlined in red, elements with warnings in yellow.
Default: true

allowedHeightOfOverviewScreenshot
Defines the maximum height (in pixels) for the overview screenshot. Only applies
if the screenshot would be larger than the browser view. The limit is required for
memory reasons.
Default: 2000

19.2. Axe-checks with QF-Test 276

logElementScreenshots
Determines whether an image of the individual elements should be created in

the event of an error.
If the value is all, an image is created for every single element.
If the value is first, an image is created only for the first element of each error
type.
If the value is none, no image is created.
On the screenshot, elements with errors are outlined in red, elements with
warnings in yellow. The total amount of element screenshot in the run log is
limited by the following parameter allowedNumberOfElementScreenshots.
Default: all
Possible Values: all, first, none

allowedNumberOfElementScreenshots
Determines the maximum number of images of individual elements in the event

of an error. The limit is required for memory reasons.
Default: 10

logElementSmartIdToMessage
Determines whether the QF-Test specific SmartID(72) of the checked element

should be listed in the log.
The SmartID helps addressing components within QF-Test.
Default: false

squashCheckResultsWithSameMessage
If this parameter is set to true, elements with the same error message are

grouped together in the log under a single error (or warning).
Default: false

19.2 Axe-checks with QF-Test

Errors when checking a website with axe can be found in the run log with the following
error code:
QF-Test-errorcode: ERR_AXE-CORE_CHECKS

QF-Test extends axe with the function of checking elements in closed shadow rootsNote
for accessibility. However, this is only possible when using the CDP-Driver connection
mode(1054).

19.2.1 Parameters of axe-checks

The procedure runAxeChecks has the following additional parameters:

19.2. Axe-checks with QF-Test 277

rules
The rule-IDs of the axe rules or the tags defined by axe, separated by a comma

(https://dequeuniversity.com/rules/axe/html). Examples:

• button-name

• button-name,color-contrast,aria-required-attr

• wcag2aa

• wcag2aa,best-practice,cat.aria

If this parameter is left empty, all rules are checked.
Default: wcag2a,wcag2aa,wcag21a,wcag21aa,wcag22aa, also die Tags
der für die Erfüllung der WCAG relevanten Axe-Regeln

rulesToSkip
If the rules parameter is empty or filled with tags, it is possible to exclude

individual rules from the check here. A comma-separated list of Axe rule IDs must
be specified for this. Examples:

• button-name

• button-name,color-contrast,aria-required-attr

If this parameter is left blank, no rules are excluded from the check.
Default: -

19.2.2 Axe-core’s ”impact” rating

The developers of axe-core assigned an “impact” to each individual rule. This value
is listed by QF-Test in the error messages for the rules and quantifies the impact of a
problem on a user with a disability. Listed in ascending order (by severity of the impact
on disabled users), there are the following categories:

Minor: low priority
A nuisance or an annoying bug.

Moderate: medium priority
Causes difficulties for people with disabilities, but generally does not prevent

them from accessing basic features.

Serious: high priority
Creates serious barriers for people with disabilities and prevents them from

accessing basic functions or content in whole or in part.

19.3. Color contrast check for simple graphics 278

Critical: top priority
The problem blocks people with disabilities from using the basic functionalities of

the site and accessing the content.

The ”impact” rating allows to prioritize problems for bugfixing. To comply with the WCAGNote
guidelined, however, all errors must be fixed - even low priority ones!

19.3 Color contrast check for simple graphics

The WCAG stipulates a minimum color contrast of 3:1 for images of large text, user
interface components and information-bearing graphics.(§§1.4.3, 1.4.11 WCAG 2.2)
The color contrast check checks the color contrast of simple graphic elements (like
icons) against the automatically determined background color.

Errors when checking graphic elements with this method can be found in the run log
with the following error code:
QF-Test-errorcode: ERR_COLOR_CONTRAST_SIMPLE_GRAPHICS

19.3.1 Parameters of the color contrast check

The procedure checkColorContrastOfGraphic has the following additional parameters:

genericClass
The generic class of a component (see Generic classes(1242)). All elements of this

class within the scope are checked for their color contrast.
Default: Graphics

19.4 A11y run logs and reports

For working with the run log and generating a report (Reports and test
documentation(305)), accessibility tests have their own tips, tricks and special features.

19.4.1 Working with the run log

After each accessibility test, a log is created that can be used for error analysis.

19.4. A11y run logs and reports 279

Figure 19.1: Excerpt of the run log of an axe accessibility test

The following image shows the complete error message of the selected error:

19.4. A11y run logs and reports 280

Figure 19.2: Error message for the selected error

Elements that do not fulfill certain accessibility criteria are listed in error messages.
The associated error and additional information, such as suggested solutions, are
described in the error message..
Warnings are logged for elements that could not be checked for a specific rule due to
various problems, such as being covered by another element.
Depending on the value set for the showSuccessfulChecks parameter, successful
checks are also listed as information in the log.

QF-Test In addition to images, QF-Test also logs various identifiers of theNote
elements, such as the X-Path or, if applicable, the SmartID (parameter:
logElementSmartIdToMessage). The SmartID can be used to address the element
within QF-Test. The X-Path can be used to find the element in the browser using
developer tools.

In addition, QF-Test generates a screenshot of the tested page on which faulty and
skipped elements are highlighted.

19.4. A11y run logs and reports 281

Figure 19.3: Screenshot: Overview of faulty and skipped elements

Faulty elements are outlined in red, skipped elements in yellow.

In order to obtain the most accurate images and highlights of the elements, the screenNote
and browser scaling should be set to 100%.

19.4.2 Notes on generating reports

When creating the report, it makes sense to include the images of the elements gen-
erated for the errors in the report. To do this, “Embed thumbnails” must be selected
in interactive mode. A fixed value, such as 300x200 pixels, is suitable for scaling the
thumbnails.

19.4. A11y run logs and reports 282

Figure 19.4: Example of settings for report generation

The command line arguments for batch mode are -report-thumbnails(924) and
-report-scale-thumbnails <percent>(924).

Chapter 20

Testing Java desktop applications in a
browser with Webswing and JPro

Webswing and JPro are two fascinating solutions that bring Swing and JavaFX desktop5.2+
applications into a browser. The underlying technologies, concepts and goals differ
significantly, but the challenge for QF-Test mainly boils down to the same thing: There
are two SUT clients that need to be tested together in a coordinated way.

Migrating existing applications is one of the most common scenarios, so the ability to
reuse existing QF-Test tests for the Swing or Java desktop application is crucial. This
is one reason why testing through the browser alone is not sufficient. The other rea-
son is that in the browser QF-Test only sees either a CANVAS node with colored pixels
(Webswing) or a hierarchy of very similar DIV nodes (JPro). Though the latter is at
least moderately useful for testing and may become interesting for special cases like
load testing, it is still very limited compared to the deep access QF-Test has to Java
applications.

Enter ”JiB” - QF-Test’s solution for ”Java in Browsers”.

In addition to QF-Test engine licenses for Swing and/or JavaFX, JiB support requiresNote
QF-Test licenses for the web engine.

A demo test suite for Webswing is provided for a better understanding of the
concepts described in the section below. You can open it via the menu
Help→Explore example test suites... , entry ”Webswing SwingSet Suite”.

There is a shortVideo

introductory video about Webswing testing
https://qftest.com/en/yt/webswing-overview.html

available on our QF-Test YouTube channel.

In November 2020, a special webinar took place about Webswing testing with QF-Test.Video
Here you can find the

20.1. Technical concepts of JiB for Webswing and JPro 284

special webinar video recording
https://qftest.com/en/yt/webswing-special-webinar.html

available on our QF-Test YouTube channel.

20.1 Technical concepts of JiB for Webswing and JPro

With the JiB concept QF-Test treats the Swing or JavaFX application as the primary
SUT. Nearly all interaction is triggered through the respective Swing or JavaFX SUT
engine. QF-Test also opens a browser window and uses its web engine to interact
with this frontend through which the application is displayed and through which the user
interacts with it.

There are two modes of interaction between QF-Test and the application:

Java mode
QF-Test can keep the event handling entirely within the Swing or JavaFX

application. In that mode the browser serves only as a trigger to launch the
application, as a reference for the user and for handling special cases where the
workflow in the application had to be adapted to use web interfaces, most notably
for file upload and download.

This mode is very similar to testing a plain Swing or JavaFX application, event
simulation happens in an identical way. Images for image checks are taken via
Swing or JavaFX off-screen-rendering to a memory buffer, also identical to the
desktop version.

Web mode
What the above doesn’t cover is the verification that the Webswing or JPro

integration actually works end-to-end as expected, i.e. that the user really sees
the interface as expected and that the user can interact with the application via
mouse and keyboard through the browser. Though it is debatable to which
degree underlying technologies should simply be trusted or covered by one’s own
tests, the ability to perform real end-to-end tests via the browser is a very
important aspect in this scenario.

To that end QF-Test can redirect the actual replay of mouse and key events to
the browser via a number of option settings. Tests are still written and executed
against the Java application, component recognition works unchanged and QF-
Test performs all the necessary synchronization and setup like scrolling the target
component visible or implicitly opening tree nodes. At the final step the Swing
or JavaFX engine doesn’t replay the mouse or key event itself but uses a special
connection instead to forward the event information to the QF-Test web engine,

20.1. Technical concepts of JiB for Webswing and JPro 285

then waits for the event to be performed there and received back into the Java
application via Webswing or JPro.

The final building block for end-to-end tests is verification of what gets displayed
in the browser via image checks. Instead of using off-screen-rendering, QF-Test
can delegate taking images to the web engine which captures a screenshot of the
respective region in the browser window. These images will vary from the Java
off-screen variants in subtle ways for font-rendering or antialiasing which can be
accommodated for by using QF-Test’s image check algorithms as described in
chapter 59(1223).

Tests using Java-mode are very robust and more efficient. Our recommendation is to
use that mode for migrating existing tests and for running the bulk of the functional tests.
These should be supplemented with various tests using web-mode to ensure end-to-
end reliability. As a rule of thumb, testing the same UI with different values and the
focus on functionality should mostly use Java-mode. Testing different components with
the focus on interaction should use web-mode.

Procedures for switching between the various option settings are provided in the pack-
age qfs.jib of the standard library suite qfs.qft.

Chapter 21

Testing Electron applications

Electron1 is a framework for executing cross-platform desktop applications using the4.5+
web browser Chromium and the Node.js framework. HTML, CSS und JavaScript can
be used for the development of the applications. Electron applications can access native
functionality of the operating system such as menus, files or the task bar.

Since version 4.5 QF-Test can handle applications developed via the Electron frame-
work. All features QF-Test supports for the web engine can also be used for Electron
testing.

21.1 Starting the Electron Client

Connecting to an Electron application can be realized using the recommended CDP-
Driver connection mode (see section 51.3.2(1054)) or the WebDriver connection mode
(see section 51.3.3(1054)).

The quickstart wizard (see chapter 3(28)) helps you generate the correct Setup(595) se-
quence for an easy start of the application.

The Electron specific parameters for the quickstart wizard will be explained in this chap-
ter. For the remaining optional parameters you will find an explanation within the quick-
start wizard itself.

The video showsVideo

’ Starting your Electron application via the Quickstart wizard’.
https://www.qftest.com/en/yt/electron-45.html

1https://electronjs.org

21.2. Electron specific functionality of QF-Test 287

21.1.1 Electron settings for the quickstart wizard

In the quickstart wizard select An Electron application in the section ’Type of the
Application’.

Please enter the fully qualified executable for the application in the section ’Electron
application’. You can make use of the file selection dialog by clicking the button to the
right of the text field. If your application requires specific command line arguments, you
can provide them here.

Electron is based on Node.js, which is executed in the JavaScript runtime environ-
ment ’V8’. Since Electron 6 and QF-Test 5.4.0 the CDP-Driver connection mode is
used to control the application. Older applications require the WebDriver connection
mode in combination with a ChromeDriver. In most cases, QF-Test detects the required
ChromeDriver automatically and downloads it. The downloaded driver will be saved in
the subdirectory chromedriver of the QF-Test installation directory.

21.2 Electron specific functionality of QF-Test

For Electron testing you can use all the features QF-Test offers for web testing plus the
following:

21.2.1 Native Menus

The Selection(742) node allows you to control native menus in Electron applications.

Please enter the QF-Test ID of the node Web page of the SUT in the attribute QF-Test
component ID.

The menu item to be selected goes in the Detail(744) attribute using the following syntax:
clickmenu:/@<menu path>, where <menu path> is the menu name plus the menu
item(s), separated by /. For example, if you want to select the menu item Save as in
the menu File the correct entry would be clickmenu:@/File/Save as....

21.2.2 Native Dialogs

QF-Test supports capture, check and control of dialogs instantiated with the dialog-5.1.0+
module of Electron. For technical reasons, during the test the dialogs can be optically
different from the usual Electron-dialogs.

A capture of a native dialog results in a component-node with the class Dialog. It is
possible to check the text of the dialog-window using a node Check text(754). The interac-

21.2. Electron specific functionality of QF-Test 288

tion with the dialog-window can be performed using a node Selection(742). The Detail(744)

value of a Selection-node depends on a type of the dialog:

• Message Box: The value of the Detail(744) attribute is the number of the button to
select, e.g. 2. If the Message Box contains a CheckBox, it is possible to append
its value separated with :, e.g. 2:true.

• Error Box: An Error Box contains just one button, so the value of the Detail(744)

attribute should be 0.

• Open File Dialog: The Detail(744) attribute should contain the name of the file to
select. In order to select multiple files, the Detail-attribute should be set to a Json-
Array containing their names, e.g. [”file.txt”,”C:\\TEMP\\other.txt”].
It is possible to cancel the dialog by setting the Detail-attribute to <CANCEL>.

• Save File Dialog: A Save File Dialog can be controlled in the same way as an
Open File Dialog. Selection of multiple files in a Save File Dialog is not supported
by Electron.

21.2.3 Extended Javascript-API

In Electron applications separate render processes control the content view of the ap-5.4.0+
plication windows. In addition, a so called main process, built upon the Node.js engine,
executes the main application logic. To execute individual code in the context of this
process, QF-Test provides the methods mainCallJS and mainEvalJS as powerfull
extension of the DocumentNode-API (see section 54.10.2(1179)).

Object mainCallJS(String code)

Runs Javascript code as function in the main process of the Electron application.
Parameters
code The code to run.
Returns Whatever the code returns explicitly using a return

statement, converted to the proper object type. Gen-
eral Javascript objects will be converted to Json objects.
The specific variable _qf_window will be replaced by the
BrowserWindow objekt, which corresponds to the cur-
rent DocumentNode.

21.3. Technical remarks on testing Electron applications in WebDriver
connection mode 289

Object mainEvalJS(String script)

Evaluates Javascript code in the main process of the Electron application.
Parameters
script The script to execute.
Returns Whatever the script returns, converted to the proper ob-

ject type. General Javascript objects will be converted
to Json objects. The specific variable _qf_window will
be replaced by the BrowserWindow objekt, which corre-
sponds to the current DocumentNode.

In the example, the ”Chrome Developer Tools”” will be displayed in the current Electron
window.

rc.getComponent("genericDocument").mainCallJS("_qf_window.webContents.openDevTools()")

Example 21.1: SUT script to display the Dev Tools in an Electron window

21.3 Technical remarks on testing Electron
applications in WebDriver connection mode

To support testing the Electron APIs, e.g. record and replay native menu interaction,
QF-Test has to be able to access the core Electron APIs in WebDriver connection
mode from the renderer processes of your application. In practice, this means that
the nodeIntegration preference of the BrowserWindow should not be set to false.
In addition, contextIsolation must be left deactivated and enableRemoteModule
must remain true:

mainWindow = new BrowserWindow({
webPreferences: {

nodeIntegration: true,
enableRemoteModule: true,
contextIsolation: false,
...

},
...

})

Example 21.2: Basic example for good testability in Electron apps

If you want to avoid to expose the complete node integration into the browser window
web content, you can enable QF-Test to access the API integration using a preload
script:

21.3. Technical remarks on testing Electron applications in WebDriver
connection mode 290
mainWindow = new BrowserWindow({

webPreferences: {
nodeIntegration: false,
...
preload: `${__dirname}/preload.js` // absolute pathname required

},
...

})

Example 21.3: The require preferences for limited node integration

// Expose require API in test mode:
if (process.env.NODE_ENV === 'test') {

window.electronRequire = require;
}

Example 21.4: The corresponding preload.js

Since QF-Test always sets the NODE_ENV environment variable to test, you can use
this to dynamically loosen the access security during test:

const inTestMode = (process.env.NODE_ENV === 'test');
mainWindow = new BrowserWindow({

webPreferences: {
nodeIntegration: inTestMode,
enableRemoteModule: inTestMode,
contextIsolation: ! inTestMode,
...

},
...

})

Example 21.5: Dynamic example for good testability in Electron apps

Starting with Electron 14, the remote module is not part of the Electron API anymore,
but must be explicitly included. To do so, add at development time a reference to the
@electron/remote module in your package.json and initialize the module in your
main.js:

// in the main process:
require('@electron/remote/main').initialize()

Example 21.6: How to initialize the @electron/remote module

21.3. Technical remarks on testing Electron applications in WebDriver
connection mode 291

QF-Test automatically uses the new module if detected. More information about the
module can be found it the documentation at https://github.com/electron/remote/.

When using the CDP-Driver connection mode, no specific adaptation of the Electron
application is required for QF-Test.

Chapter 22

Testing web services

From version 4.2 onwards QF-Test offers the possibility to test web services.4.2+

Unlike the well known capture replay model here you must take care yourself to build
the HTTP request and verify or validate the responses and/or the results. It is highly
suggested to use the existing documentation of the web services you will test. For
testing SOAP web services you have to build every HTTP request, there is no automated
creation from a WSDL file.

22.1 RESTful web services

The node Server HTTP request(848) is used for sending arbitary HTTP packets to a host.

22.1.1 HTTP standards and web services

The web services and web sites all use the Hypertext Transfer Protocol. It is a text
based communication made of requests and responses. Here are the most useful and
suprisingly short internet standards: Hypertext Transfer Protocol – HTTP/1.1

HTTP Authentication, 2 Basic Authentication Scheme

A list of currently supported HTTP request methods

22.1. RESTful web services 293

Supported HTTP Methods
GET
POST
PUT
DELETE
HEAD
OPTIONS
TRACE

Table 22.1: Supported HTTP Methods

22.1.2 HTTP request

Let’s examine a simple browser GET request. When you open a web page/URL in the
browser, the browser makes a HTTP GET request for you. Here is an example taken
via the developer tools in Chrome. The HTTP request consists of headers, URL and
optional payload (body).

Figure 22.1: Browser send HTTP GET

The response from the server has response code, headers and optional payload.

22.1. RESTful web services 294

Figure 22.2: GET response

22.1.3 Examples

Unlike web browsers when using the Server HTTP Request node you must enter all
required data in the respective places, e.g. headers payload etc. Response handling
should also be created if needed by using the variables filled in by the server response.
Such examples can be found in the example test suite demo/webservices named
webservice_testing.qft.

The examples are built with the help of a HTTP Proxy used for development purposes.
Such a proxy is Charles (https://www.charlesproxy.com/) or the free alternative James
(https://github.com/james-proxy/james).

Chapter 23

Data-driven testing

Data-driven testing is a very important aspect of test automation. In short, the goal is
to run a given test or set of tests multiple times with different sets of input data and
expected results. QF-Test has various means to store data or load external data for use
in data-driven tests. The most convenient is based on a Data driver node which sets up
an environment for iterating over the sets of data combined with one or more Data binder
nodes to bind the variables for test execution. Note that there is no Data binder node as
such. The name serves as a generic term for the specific nodes like a Data table or a
CSV data file. This is best explained through some examples. A demo test suite with
simple and advanced examples named datadriver.qft is provided in the directory
doc/tutorial below QF-Test’s root directory. Please take care to store modified test
suites in a project-related folder.

23.1. Data driver examples 296

23.1 Data driver examples

Figure 23.1: A simple data-driven test

The image above shows a Test set with a Data driver node that contains a single Data
binder in the form of a Data table node. The contents of the Data table are as follows:

23.1. Data driver examples 297

Figure 23.2: Data table example

When the Test set is executed, it will iterate over the rows of the Data table shown above.
For each of the three iterations the values of the respective row in the table are bound
to the variable named in the matching column header. Thus, during the first iteration the
variable named ”Model” is bound to ”Rolo”, ”Variant” to ”None” and ”Price” to ”19000”.
During the second iteration, ”Model” is set to ”I5” and to ”Minigolf” during the third and
last iteration. For each iteration, all Test case child nodes of the Test set are run.

23.1. Data driver examples 298

The following image shows a run log for the above Test set.

Figure 23.3: Run log of a data-driven test

The next example shows that data-driven testing is not limited to a single loop:

23.1. Data driver examples 299

Figure 23.4: Data-driven test with nested loops

The Data driver now contains a second Data table node with the following contents:

23.1. Data driver examples 300

Figure 23.5: Second data table example

The Test set will now go through a total of six iterations because for each of the three
iterations of the outer loop ”cars”, both iterations of the inner loop ”accessories” will be
run as shown in the following run log.

23.2. General use of Data drivers 301

Figure 23.6: Run log of a data-driven test with nested loops

The extremely useful dynamic names of the loop nodes in the run logs are obtained byNote
setting the attribute Name for loop pass in the run log to the value ”car Model: $(Model)”in
the first and to ”car Model: $(Model), accessory Name: $(Accessory)” in the second
example. As you can see, that name is expanded individually for each iteration, so you
can make use of the variables bound for that iteration.

23.2 General use of Data drivers

As seen in the example above the Data driver node must be placed in a Test set node,
between the optional Dependency and Setup nodes. When the Test set is executed it will
check for Data driver and run it. The contents of the Data driver node are not limited to
Data binders. Like a normal Sequence the Data driver node can hold any executable node
to be able to perform any setup that may be required to retrieve the data. Thus it is
also possible to share Data binders by putting them inside a Procedure and calling the
Procedure from inside the Data driver.

Conceptually, a Data binder represents a loop where a different set of variables is bound
for each iteration. A Data binder must be registered with a name in the Data driver context
of a Test set. This ensures that the loop can be interrupted by a Break(646) node with
the same name. Once the Test set has run the Data driver node, it will iterate over the

23.3. Examples for Data drivers 302

registered data loops and perform the tests.

In case of nested loops the Data binder that was registered first represents the outermost
loop. Its variables are bound first and have lesser precedence than the variables from
the inner loop(s).

23.3 Examples for Data drivers

We provide a couple of examples for reading CSV or Excel files in the test suite
doc/tutorial/datadriver.qft.

23.4 Advanced use

Besides the Data table(607) node there are various other means for binding data in a data
driver. The Excel data file(615), CSV data file(620), Database(610) and Data loop(624) nodes are all
explained in detail in section 42.4(603).

It is also possible to bind data by calling the Procedures qfs.databinder.bindList
or qfs.databinder.bindSets in the standard library qfs.qft. These take as pa-
rameters strings with lists or sets of values to split and iterate over. Please see tutorial
chapter 8 for information about the standard library.

And finally, data can be bound directly from Jython (and analogous from Groovy and
JavaScript) with the help of the databinder module, which offers the following meth-
ods:

void bindDict(Object rc, String loopname, Map dict, String
counter=None, String intervals=None)
Create and register a databinder that binds data from a dictionary. The keys of the
dictionary are the names of the variables and the values are sequences of values to be
bound.
Parameters
rc The current run context.
loopname The name under which to bind the data, equivalent to the

Name attribute of a Data binder node.
dict The dictionary to bind.
counter An optional variable name for the iteration counter.
intervals Optional ranges of indices, separated by comma, e.g.

”0,2-3”.

23.4. Advanced use 303

void bindList(Object rc, String loopname, String varname,
Object values, String separator=None, String counter=None,
String intervals=None)

Create and register a databinder that binds a list of values to a variable.
Parameters
rc The current run context.
loopname The name under which to bind the data, equivalent to the

Name attribute of a Data binder node.
varname The name of the variable to bind to.
values The values to bind. Either a sequence type or a string to

split.
separator Optional separator character to split the values at in case

they’re a string. Default is whitespace.
counter An optional variable name for the iteration counter.
intervals Optional ranges of indices, separated by comma, e.g.

”0,2-3”.

void bindSets(Object rc, String loopname, Object varnames,
Object values, String separator=None, String counter=None,
String intervals=None)

Create and register a databinder that binds a list of value-set to a set of variables.
Parameters
rc The current run context.
loopname The name under which to bind the data, equivalent to the

Name attribute of a Data binder node.
varnames The names of the variables to bind to. Either a sequence

type or a string to split.
values The value-sets to bind. Either a sequence of sequences -

each inner sequence being one set of data to bind - or a
string to split.

separator Optional separator character to split the varnames and the
values of a value-set at in case they’re a string. Default is
whitespace. Value-sets are separated by line-breaks.

counter An optional variable name for the iteration counter.
intervals Optional ranges of indices, separated by comma, e.g.

”0,2-3”.

Some examples:

23.4. Advanced use 304

import databinder
Three iterations with the values "spam", "bacon" and "eggs"
bound to the variable named "ingredient"
databinder.bindList(rc, "meal", "ingredient", ["spam", "bacon", "eggs"])
Same with string values
databinder.bindList(rc, "meal", "ingredient", "spam bacon eggs")
Same with string values and special separator
databinder.bindList(rc, "meal", "ingredient", "spam|bacon|eggs", "|")
Two iterations, the first with item="apple" and number="5",
the second with item="orange" and number="3"
databinder.bindSets(rc, "fruit", ["item", "number"],

[["apple",5], ["orange",3]])
Same with string values, note the linebreak
databinder.bindSets(rc, "fruit", "item number", """apple 5
orange 3""")
Same as before with the data stored in a dict
databinder.bindDict(rc, "fruit",

{"item": ["apple", "orange"],
"number": [5,3]})

Example 23.1: Examples for use of the databinder module

Chapter 24

Reports and test documentation

Besides test suites and run logs QF-Test can create a number of additional documents.
Most important of these is the report, which summarizes the overall results of a test
run along with an overview over the test suites executed and their individual results.
The report is easy to read and understand without further knowledge about QF-Test
and thus complements the run log which is geared towards error analysis and requires
some QF-Test experience to fully understand.

Following is an example of a report summary:

24.1. Reports 306

Figure 24.1: Example report

The other documents are more static in nature, describing the content of test suites
instead of test run results. The testdoc document gives an overview over the structure
of Test set(566) and Test case(558) nodes in a given set of test suites. It is intended for the
test architect or QA project manager and documents the current state of test devel-
opment. The pkgdoc documentation is similar, but focuses on Package(635), Procedure(627)

and Dependency(589) nodes instead. The result is a library reference comparable to Java’s
JavaDoc. The target audience for pgkdoc are test implementers requiring information
about already existing procedures and their parameters.

24.1 Reports

Before we can start explaining how to create reports, some basic terms and concepts
need to be defined.

24.1. Reports 307

24.1.1 Report concepts

A report represents the results of one or more test runs. A test run comprises the
execution of either a single test suite or multiple test suites, typically executed together
in one batch-run. A test run is identified by a runid. It is possible to execute a test run in
several steps by assigning the same runid to the resulting run logs.

A report is identified by a report name. For a report that covers a single test run, the
report name is usually the same as the runid. For reports summarizing the results of
several test runs a distinct report name can be specified.

Reports can be created in multiple variants: XML, HTML and JUnit. Most users will
probably use the HTML variant which can be viewed in a browser, printed and archived.
The XML variant can serve as the basis for collecting the results of a test run for further
processing, for example to collect test results in a database or to create customized
HTML reports. We suggest that you always create both HTML and XML reports unless
you have a good reason to do otherwise. JUnit reports base on the JUnit XML format
as created by Apache Ant by use of its JUnitReport task. This format is not as pretty
and detailed as the first two report variants QF-Test offers but it is directly understood
by many continuous integration tools and may prove useful for a quick integration with
those.

A report consists of one summary document, plus one document per run log. These files
are collected together with complementary files like icons, stylesheets and screenshot
images in a directory. At the file level, this directory represents the report.

The layout of the files inside the report directory depends on some command line options
explained below. Basically there are two ways to lay out the files: Based on the file
structure of the original test suites or based on the file structure of the run logs.

24.1.2 Report contents

In advance to the overall test result, a report as shown above starts with a summary
containing informational system data and a legend describing the meaning of counter
icons used in the report (see Running tests(37)).

The difference between ”Time spent in tests” and ”Elapsed time” are explicit delaysNote
introduced in nodes via the ’Delay before/after’ attribute or user interrupts.

The contents of a report are based on the original structure of the executed test suites.
The main structure is created from Test set(566) and Test case(558) nodes. The Comment(572)

attributes of the root node as well as the Test set and Test case nodes share the doctags
with testdoc documents as explained in section 24.2(310). In addition to those doctags
the ’@title’ doctag can be specified in the comment of the root node to set a title for the
report document created for the respective test suite.

24.1. Reports 308

If -report-teststeps(924) is specified in batch mode (true by default) or the respective
option is active in the interactive dialog, Test cases can be further broken down into steps
with the help of Test step(580) nodes. In addition to explicitly wrapping steps into a Test
step, any node can be turned into a test step by specifying the doctag ’@teststep’ in its
Comment, followed by an optional name for the step. For Test step nodes the ’@author’,
’@version’ and ’@since’ doctags are also applicable. The names, comments and tag
values of the various nodes can contain variables that will be expanded at execution
time so that the expanded value is shown in the report. This is especially useful for test
steps within a procedure.

If listing of test steps is active, Setup, Cleanup and Dependency nodes are also listed
and checks, screenshots and messages, including warnings, errors and exceptions are
properly integrated into the nested steps. If the test suites are set up properly the
resulting report can serve as a very readable summary of what was going on during the
execution of a test.

Whether warnings and checks are listed is determined by the command line arguments
-report-warnings(924) and -report-checks(922) or the respective interactive options.
Warnings from component recognition are never listed because they are too technical
and could easily flood the report. For checks one must distinguish between checks that
represent an actual verification step and those that are used solely for control flow, for
example to check whether a checkbox is already selected and click it only in case it is
not. By default QF-Test lists those Check nodes in the report that have the default result
settings, i.e. the Error level of message is ’Error’, no exception is thrown and no result
variable bound. All others are treated as helpers for control flow and not listed in the
report. For cases where this default treatment is not appropriate, you can force a Check
into the report via the doctag ’@report’ in its Comment attribute or prevent its listing
via ’@noreport’. Of course failed checks are treated as warnings, errors or exceptions
(depending on their Error level of message) and cannot be excluded from the report if
messages at the respective level are shown.

Additional messages, checks and screenshots can be added to the report by scripts via
the methods rc.logMessage, rc.logImage and rc.check and its variants, which
have an optional report parameter. For details, please see the run context API docu-
mentation in section 50.5(963).

24.1.3 Creating reports

There are three ways to create reports:

• Interactively from a run log through the menu item File→Create report... .

• In batch mode as the result of a test run.

24.1. Reports 309

• In batch mode by transforming already existing run logs.

The interactive variant is easy to use. Just select the target directory for the report and
whether you want the XML and/or the HTML variant.

For report creation in batch mode there are a number of command line options which
are listed and explained in section 44.2(913). Let’s look at the variant of creating reports
as the result of a test run first:

The command line syntax for plain test execution in batch mode is qftest -batch
<test suite> [<test suite>...]

To create a combined XML and HTML report, use -report <directory>(922).
To create only one version or to separate the XML, HTML variants, use
-report-xml <directory>(924) and/or -report-html <directory>(923). For
JUnit reports -report-junit <directory>(923) works respectively.

The runid of a test run is specified with -runid <ID>(925), the name of the report with
-report-name <name>(923). If the report name is unspecified it will default to the runid.

To lay out the files in the report directory according to the file structure of the test suites,
use -sourcedir <directory>(926). To use the file structure of the run log as the
basis, use -runlogdir <directory>(925).

The following is a typical example of a command line for a batch run making use of the
placeholders explained in section 44.2.4(930):

qftest -batch -runid +M+d -runlog logs/+i -report report_+i
-sourcedir . suite1.qft subdir/suite2.qft

Example 24.1: Creating a report as the result of a test run

Creating a report as a separate step by transforming a set of run logs is similar in many
respects. The run logs to transform have to be specified instead of the test suites to ex-
ecute and the -runid <ID> and -sourcedir <directory> command line options
have no effect. The following is an example for how to create a weekly summary report
based on the assumption that you have collected all run logs below the directory named
logdir, possibly in subdirectorys thereof:

qftest -batch -genreport -report report_+M+d
-report.name week_of_+y+M+d logdir

Example 24.2: Creating a weekly summary report

24.2. Testdoc documentation for Test sets and Test cases 310

24.1.4 Customizing reports

The XML and HTML reports are created from the run log via XSLT. By changing the
XSLT stylesheets used it is possible to change the content and structure of the resulting
documents.

You can find more on this possibility in our blog
article ”Creating custom HTML/XML/Junit reports” at
https://www.qftest.com/en/blog/article/2019/02/28/creating-custom-htmlxmljunit-
reports.html

As an alternative it is possible to customize the display of the HTML report using es-
tablished web techniques via JavaScript. A file named user.js is copied to the report
directory and included in all pages of the HTML report. To change the report layout you
can replace this file with your own version after creating the report. See the comments
in the default user.js file for examples.

24.2 Testdoc documentation for Test sets and Test cases

The type of test documents called testdoc provide overview and detailed information
over the Test set(566) and Test case(558) nodes of one or more test suites. When Test cases
contain Test steps(580) those steps will be included in the testdoc. By default QF-Test
ignores Test call(572) nodes during testdoc creation. By setting the option
-testdoc-followcalls(928)=true the real targets Test case, Test set or the whole test
suite are processed as if they were part of the original test suite.

This documentation is a valuable tool for QA project managers to keep track of the
current state of test development. Similar to reports, testdoc documents are laid out as
directories with one summary file and one detailed file per test suite.

A testdoc document for a single suite can be created interactively from a test suite by
selecting Create testdoc documentation... from the File menu. This is very useful
during test development to quickly check whether all tests are properly documented.

For actual use as a reference it is preferable to create complete sets of documents
spanning multiple test suites for a whole project. This can be done by running QF-Test
in batch mode with the -gendoc(918) command line argument. In its simplest form, a call
to create testdoc documentation for a whole directory tree would look as follows:

qftest -batch -gendoc -testdoc test_documentation
directory/with/test suites

Example 24.3: Creating testdoc documentation

24.2. Testdoc documentation for Test sets and Test cases 311

Please see chapter 44(908) for detailed information about the available command line
arguments.

To get optimal results you can use HTML markup in the Comment(572) attributes of Test
set and Test case nodes and also make use of doctags. A doctag is a keyword beginning
with ’@’, sometimes followed by a name and always by a description. This is a proven
concept in JavaDoc, the standard documentation format for Java programs
(see http://www.oracle.com/technetwork/java/javase/documentation/index-
137868.html#tag).

All doctags must appear after the main description. Description after the doctags will beNote
ignored, as well doctags inside the descripiton are not allowed.

The following doctags are supported for Test set and Test case nodes:

@deprecated
If a Test set or Test case is no longer to be used, this description should explain

when and why the node was deprecated and especially which replacement
should be used.

@condition
Non-formal explanation of the condition under which the node is executed or

skipped.

@param
Description for a parameter. Following are the name of the parameter and its

description.

@charvar
Description for a characteristic variable. Following are the name of the variable

and its description.

@author
Author of the Test set or Test case.

@version
Version of the Test case or Test case.

@since
The version since which this Test set or Test case has been available.

In addition to the doctags described above, the doctag ’@title’ in the comment of the root
node can be used to specify a title for the testdoc document created for the respective
test suite.

24.3. Pkgdoc documentation for Packages, Procedures and Dependencies 312

24.3 Pkgdoc documentation for Packages, Procedures
and Dependencies

The concepts of and methods for creation of pkgdoc documents are nearly identical to
testdoc, so this section is brief. Instead of Test set and Test case nodes, pkgdoc docu-
ments cover Package(635), Procedure(627) and Dependency(589) nodes. They are intended for
the test developer to keep track of the procedures available for use in implementing
tests.

Please refer to the standard library qfs.qft as a good example how a pkgdoc may
look like.

A pkgdoc document can also either be created interactively using
File→Create HMTL/XML pkgdoc... or in batch mode. Again, please see chapter 44(908)

for detailed information about the available command line arguments.

As the following example shows, testdoc and pkgdoc can even be created together in a
single batch run:

qftest -batch -gendoc -testdoc tests -pkgdoc procedures
directory/with/test suites

Example 24.4: Creating testdoc and pkgdoc documentation in a single run

Of course pkgdoc also supports HTML markup and doctags. The following doctags are
supported for Package, Procedure and Dependency nodes:

@deprecated
If a Procedure, Dependency or Package is no longer to be used, this description

should explain when and why the node was deprecated and especially which
replacement should be used.

@param (Procedure and Dependency only)
A parameter of a Procedure or Dependency. Following are the name of the

parameter and its description.

@charvar (Dependency only)
Description for a characteristic variable of a Dependency. Following are the name

of the variable and its description.

@return (Procedure only)
The return value of the procedure.

@result (Procedure and Dependency only)
Can be used to document side-effects of the Procedure or Dependency like setting

a global variable.

24.3. Pkgdoc documentation for Packages, Procedures and Dependencies 313

@throws (Procedure only)
Expected exception. Following are the name of the exception and a description

of its cause.

@catches (Dependency only)
An exception being caught by the Dependency. Following are the name of the

exception and a description of the handler.

@author
Author of the Package, Procedure or Dependency.

@version
Version of the Package, Procedure or Dependency.

@since
The version since which this Package, Procedure or Dependency is available.

In addition to the doctags described above, the doctag ’@title’ in the comment of the root
node can be used to specify a title for the pkgdoc document created for the respective
test suite.

Chapter 25

Test execution

When talking about test execution, there are two aspects to be considered. On one
hand you need to run tests while they are developed to check them for proper operation.
This situation has already been described in section 4.2(37). Basically all you have to do
to run a test interactively is invoking Run→Start from the main menu.

On the other hand you want to run your tests periodically to ensure the stability of the
system under test, for example in nightly regression tests. Instead of launching QF-Test,
loading the test suite and running it from the graphical user interface, it is much more
convenient here to execute tests from the command line in batch mode. This kind of
running tests is explained in the first section of this chapter (Test execution in batch
mode(314)).

Sometimes, for instance when you want to run the test on a remote computer, a second
variant comes into play: the daemon mode. This type of test execution, which uses a
running QF-Test instance to execute tests, is the topic of the second section (Executing
tests in daemon mode(320)).

For integration of QF-Test with build tools like ant, maven or Jenkins, please refer to
chapter 29(370).

25.1 Test execution in batch mode

There are a lot of command line arguments when running QF-Test in batch mode; an
overview can be found in chapter 44(908). Here we will present examples showing the
most important of them.

The examples are written for the Windows operating system, but you may easily adapt
them for the Linux platform. What is different is the path specification and also the
syntax for placeholders (section 44.2.4(930)): On Linux you can use +X as well as %X.
On Windows there’s a separate console application qftestc.exe. In contrast to its

25.1. Test execution in batch mode 315

GUI variant qftest.exe, it waits until the execution of QF-Test has terminated and
also displays print output from a Server script(670). You can use qftestc.exe in place of
qftest.exe wherever you’ll find it convenient.

25.1.1 Command line usage

Let’s start with the most simple QF-Test command to execute a test:

qftest -batch -run c:\mysuites\suiteA.qft

Example 25.1: Test execution from the command line

The argument -batch makes QF-Test start without a graphical user interface. The
second argument, -run, is the specifier for test execution. Finally, at the end of the
command line, you find the test suite to be executed.

The argument -run is optional, i. e. the test execution is defined as default for the batchNote
mode.

When running the above command, all top-level Test case and Test set nodes of
suiteA.qft will be executed one after another. After the test run you will find a run
log file in the current directory; it has the same name as the test suite (except from the
extension, which can be .qrl, .qrz or .qzp). The run log file shows the result of the
test run.

By specifying -nolog you can suppress the creation of a run log. Probably this only
makes sense, if you have extended your test by your own log output (written to a file).
Otherwise you’d have to check the result code of QF-Test, whereas 0 means that every-
thing is alright. A positive value in contrast indicates that warnings, errors or exceptions
occurred during the test run (see section 44.3(931)). That’s why in most situations you’ll
probably prefer to create a run log and save it at a fixed place in the file system. This
can be achieved with the parameter -runlog:

qftest -batch -compact -runlog c:\mylogs\+b c:\mysuites\suiteA.qft

Example 25.2: Test execution with run log creation

A run log file suiteA.qrz will now be created in the specified directory c:\mylogs.
The placeholder +b is responsible for its name being identical with that of the test suite.
The additional switch -compact prevents the run log from growing too large: Only the
nodes needed for a report and those immediately before an error or an exception are
kept in the run log. Especially in case of very long test runs this may help to reduce

25.1. Test execution in batch mode 316

the amount of required memory. The newer method of using split run logs is even more
powerful. For more information about that see section 7.1(124).

Whether the file is indeed created as compressed run log (to be distinguished from theNote
above ”compact”) with extension .qrz, depends on the system settings. To force the
creation of a particular format you can set the file extension explicitly. With -runlog
c:\mylogs\+b.qrl, for example, an uncompressed XML file will be produced.

Sometimes you may want to execute not the whole test suite but only parts of it. By
using the parameter -test you can run a specific node of the test suite:

qftest -batch -runlog c:\mylogs\+b -test "My test case" c:\mysuites\suiteA.qft

Example 25.3: Executing a specified node

The parameter -test expects the QF-Test ID attribute of the node to follow or the qual-
ified name of a Test case or Test set. If you want to execute several nodes, you can define
-test <ID> multiple times. Apart from the node’s QF-Test ID, -test accepts also the
numerical index of a top-level node. For example, -test 0 will run the first child of the
Test suite node.

The run log provides a rather technical view of the test run; it is helpful mainly when
analyzing errors (cf. section 7.1(124)). The report in contrast contains a summary of the
executed test cases and errors (cf. chapter 24(305)) in XML or HTML format. It is created
from the run log either in a separate step after running the test or automatically with the
test run:

qftest -batch -runlog c:\mylogs\+b
-report c:\mylogs\rep_+b_+y+M+d+h+m
c:\mysuites\suiteA.qft

Example 25.4: Creating a report

In this example the XML and HTML files are saved in a directory which name consists
of the test suite and a timestamp like c:\mylogs\rep_suiteA_0806042152. When
replacing the argument -report with -report.xml or -report.html respectively,
only an XML or HTML report will be created.

Test cases often uses variables to control the execution of the test. For example, you
may have defined the variable myvar in the Test suite(555) node of the suite. You can
overwrite its default value when running the test suite from the command line:

qftest -batch -variable myvar="Value from command line"
-runlog c:\mylogs\+b c:\mysuites\suiteA.qft

Example 25.5: Test execution with variables

25.1. Test execution in batch mode 317

If needed, you can specify -variable <name>=<wert> multiple times to set values
for different variables.

25.1.2 Windows batch script

Running tests from the command line is fundamental for integrating QF-Test in test
management systems (see Interaction with Test Management Tools(346)). Otherwise, liv-
ing without such a tool, you may find it convenient to embed the command for the test
execution into a script. A simple Windows batch script (qfbatch.bat) looks like this:

@echo off
setlocal
if "%1" == "" (

echo Usage: qfbatch Testsuite
goto end

) else (
set suite=%~f1

)
set logdir=c:\mylogs
pushd c:\programs\qftest\qftest-9.0.4\bin
@echo on
.\qftest -batch -compact -runlog %logdir%\+b %suite%
@echo off
if %errorlevel% equ 0 (

echo Test terminated successfully
goto end

)
if %errorlevel% equ 1 (

echo Test terminated with warnings
goto end

)
if %errorlevel% equ 2 (

echo Test terminated with errors
goto end

)
if %errorlevel% equ 3 (

echo Test terminated with exceptions
goto end

)
if %errorlevel% leq -1 (

echo Error %errorlevel%
goto end

)
:end
popd

Example 25.6: Batch script qfbatch.bat to execute a test suite

25.1. Test execution in batch mode 318

Now you can simply run that script with only the file name of the test suite as parameter.
Everything else is done automatically: The test suite will be executed, the run log file
stored in logdir and finally the script will print out the state of the test run (depending
on the QF-Test result code).

25.1.3 Groovy
3.0+

Since version QF-Test 3 the language Groovy is part of the release (cf. chapter 11(168)).
It is meant mainly for scripting inside QF-Test (Server and SUT scripts), but it can, like
Jython, also be used outside of QF-Test. Groovy is probably well suited to create a little
test execution management system by yourself. By the way, Groovy simplifies working
with Ant, too: Instead of dealing with bulky XML files, which makes it hard to define
conditions, you can work with the Groovy AntBuilder. However, that’s out of scope
here, the following example doesn’t rely on Ant but only on the basic Groovy features:

25.1. Test execution in batch mode 319

def suite = ''
if (args.size() == 0) {

println 'Usage: groovy QfExec Testsuite'
return

}
else {

suite = args[0]
}
def qftestdir = 'c:\\programs\\qfs\\qftest\\qftest-9.0.4'
def qftest = qftestdir + '\\bin\\qftest.exe'
def command = [qftest,

"-batch",
"-compact",
"-runlog", "c:\\mylogs\\+b",
suite]

def printStream = { stream ->
while (true) {

try {
stream.eachLine { println it }

} catch (IOException) {
break

}
}

}
println "Running command: $command"
def proc = command.execute()
new Thread().start() { printStream(proc.in) }
new Thread().start() { printStream(proc.err) }
proc.waitFor()
switch (proc.exitValue()) {

case '0': println 'Test terminated successfully'; break
case '1': println 'Test terminated with warnings'; break
case '2': println 'Test terminated with errors'; break
case '3': println 'Test terminated with exceptions'; break
default: println "Error ${proc.exitValue()}"

}

Example 25.7: Groovy script QfExec.groovy to execute a test suite

If you have Groovy installed on your computer independently of QF-Test, you can run
the example test suite simply via groovy QfExec c:\mysuites\suiteA.qft. Oth-
erwise you can use the Groovy jar file from the QF-Test installation, preferably again with
help of a batch script:

25.2. Executing tests in daemon mode 320

@echo off
setlocal
if "%1" == "" (

echo Usage: qfexec Testsuite
goto end

)
set qftestdir=c:\programs\qftest\qftest-9.0.4
set scriptfile=QfExec.groovy
java -cp %qftestdir%/lib/groovy-all.jar groovy.ui.GroovyMain %scriptfile% %*
:end

Example 25.8: Batch script qfexec.bat to run a Groovy script (here:
QfExec.groovy)

Now execute the test suite with qfexec c:\mysuites\suiteA.qft.

25.2 Executing tests in daemon mode

In daemon mode QF-Test listens to RMI connections and provides an interface for re-
mote test execution. This is useful for simplifying test execution in a distributed load-
testing scenario (chapter 33(408)), but also for integration with existing test management
or test execution tools (chapter 28(346)).

GUI tests require an active user session. Chapter Hints on setting up test systems(443)Note
contains useful tips and tricks to set-up the daemon process. In FAQ 14 you can find
technical details.

25.2.1 Launching the daemon

!!! Warning !!!

Anybody with access to the QF-Test daemon can start any program on the machine
running the daemon with the rights of the user account that the daemon is running
under, so access should be granted only to trusted users.

If you are not running the daemon in a secure environment where every user is trusted
or if you are creating your own library to connect to the QF-Test daemon, you definitely
should read section 55.3(1210) about how to secure daemon communication with SSL.

To work with a daemon, you must first launch it on any computer in your network (of
course, this host can also be localhost):

25.2. Executing tests in daemon mode 321

qftest -batch -daemon -daemonport 12345

Example 25.9: Launching a QF-Test daemon

Important compatibility note:Note

Starting with QF-Test version 3.5, SSL is used for daemon communication by default.3.5+
To interact with a QF-Test version older than 3.5 you must start the daemon with an
empty -keystore <keystore file>(919) argument in the form:

qftest -batch -keystore= -daemon -daemonport 12345

Example 25.10: Launching a QF-Test daemon without SSL

If you omit the argument -daemonport, the daemon will listen on QF-Test’s standard
port 3543. You may check whether the daemon is running by means of the netstat
utility:

netstat -a -p tcp -n | findstr ”12345”Windows

netstat -a --tcp --numeric-ports | grep 12345Linux

If you want to launch a daemon on a remote host, you may use for instance ssh or VNC.
Your network administrator knows whether and how this works. To follow the examples
below, a local daemon will be sufficient.

25.2.2 Controlling a daemon from QF-Test’s command line
3.0+

The easiest way to get in touch with a daemon is running QF-Test from the command
line in the calldaemon mode. The following example checks if a daemon is listening at
the specified host and port:

qftestc -batch -calldaemon -daemonhost localhost -daemonport 12345 -ping

Example 25.11: Pinging a QF-Test daemon

In contrast to the netstat command from above -ping also works between different
computers (if you check the daemon on your local computer, you can omit the argument
-daemonhost).

What you actually want from a daemon is executing your test case(s) and getting back a
run log file. It sounds and indeed looks quite similar to what you have seen before when
running a test in batch mode:

25.2. Executing tests in daemon mode 322

qftest -batch -calldaemon -daemonhost somehost -daemonport 12345
-runlog c:\mylogs\+b
-suitedir c:\mysuites
suiteA.qft#"My test case"

Example 25.12: Running a test case with the QF-Test daemon

In contrast to the batch mode, a Test case or a Test set node is always referenced hereNote
by its qualified name, for instance ”My Test set.My Test case” (just to remember: -test
<ID> may be used in batch mode). To execute the complete suite suiteA.qft, you
can simply omit the test case or write suiteA.qft#..

If the daemon is running on a remote host, you have to specify it explicitly via
-daemonhost (default is -daemonhost localhost). Note that the parameter
-suitedir refers to the remote host (where the daemon is running) while -runlog
defines a local file.

In case you cannot easily observe the test running on a remote host, you may find3.4+
it convenient to add the argument -verbose to get status output in the console (on
Windows, use qftestc to see the output).

A running daemon, no matter whether local or remote, can be terminated with the call-
daemon command -terminate:

qftest -batch -calldaemon -daemonport 12345 -daemonhost localhost -terminate

Example 25.13: Terminating a QF-Test daemon

A complete list of the calldaemon parameters can be found in the chapter Command
line arguments and exit codes(908).

25.2.3 Controlling a daemon with the daemon API

Using the QF-Test command line to control a daemon was quite easy. On the other
hand, to get all capabilities of a daemon, you have to deal with the daemon API. In this
section we will concentrate on some basic examples, the whole interface is described in
chapter 55(1193).

To get started with the daemon API, insert a Server script node with the following code:

25.2. Executing tests in daemon mode 323

from de.qfs.apps.qftest.daemon import DaemonRunContext
from de.qfs.apps.qftest.daemon import DaemonLocator
host = "localhost"
port = 12345
Leading r means raw string to allow normal backslashes in the path string.
testcase = r"c:\mysuites\suiteA.qft#My test case"
timeout = 60 * 1000
def calldaemon(host, port, testcase, timeout=0):

daemon = DaemonLocator.instance().locateDaemon(host, port)
trd = daemon.createTestRunDaemon()
context = trd.createContext()
context.runTest(testcase)
if not context.waitForRunState(DaemonRunContext.STATE_FINISHED, timeout):

Run did not finish, terminate it
context.stopRun()
if not context.waitForRunState(DaemonRunContext.STATE_FINISHED, 5000):

Context is deadlocked
raise UserException("No reply from daemon RunContext.")

rc.logError("Daemon call did not terminate and had to be stopped.")
result = context.getResult()
log = context.getRunLog()
rc.addDaemonLog(log)
context.release()
return result

result = calldaemon(host, port, testcase, timeout)
rc.logMessage("Result from daemon: %d" %result)

Example 25.14: Daemon API in a Server script

The script shows the basic mechanisms to control a daemon:

• First find a running daemon with locateDaemon.

• Provide an environment for test runs by calling createTestRunDaemon.

• To run a test, you need a context object (createContext). The creation of that
object requires a QF-Test run-time license.

• Now the context enables you to start a test run (runTest) and to query about its
current state. waitForRunState waits during the defined timeout (in millisec-
onds) until the specified state has occurred. In the example above, we wait for the
test to terminate within one minute.

• Finally, when the test run has terminated, the context can query the test result with
the method getResult (cf. Exit codes for QF-Test(931)).

• Moreover, you can use the context to get the run log of the daemon test run. It can
be included in the local run log by means of the rc method addDaemonLog.

25.2. Executing tests in daemon mode 324

To keep it small and simple, the example script does not contain any error handling.Note
However, particularly when working with a daemon, you should check every method
call.

Driving a daemon from a Server script has the disadvantage of consuming an additionalNote
QF-Test license to run the script node interactively or in batch mode. However, this
doesn’t apply nor for the above-mentioned calldaemon mode neither for the case when
controlling a daemon outside QF-Test (see below).

The usage of the daemon API is not restricted to Server scripts. Outside QF-Test a
daemon can be contacted by means of a Java program or, more easily, a Groovy script.
The following Groovy script works with several running daemons and may serve as a
starting point for load tests. Suppose we have started some daemons in our network,
each on a separate machine. We want to execute a test case simultaneously by all of
the daemons and we want to save a run log for every single test run (daemon1.qrl,
..., daemonN.qrl). The test suite containing the test case to be executed may be
available for all daemon instances via the network drive z:).

25.2. Executing tests in daemon mode 325

import de.qfs.apps.qftest.daemon.DaemonLocator
import de.qfs.apps.qftest.daemon.DaemonRunContext
def testcase = "z:\\mysuites\\suiteA.qft#My test case"
def logfile = "c:\\mylogs\\daemon"
def timeout = 120 * 1000
def keystore = "z:\\mysuites\\mydaemon.keystore"
def password = "verySecret"
def locator = DaemonLocator.instance()
locator.setKeystore(keystore)
locator.setKeystorePassword(password)
def daemons = locator.locateDaemons(10000)
def contexts = []
// Start tests
for (daemon in daemons) {

def trd = daemon.createTestRunDaemon()
trd.setGlobal('machines', daemons.size().toString())
def context = trd.createContext()
contexts << context
context.runTest(testcase)

}
// Wait for tests to terminate
for (i in 0..<contexts.size()) {

def context = contexts[i]
context.waitForRunState(DaemonRunContext.STATE_FINISHED, timeout)
byte[] runlog = context.getRunLog()
def fos = new FileOutputStream("$logfile${i + 1}.qrl")
fos.write(runlog)
fos.close()
context.release()

}

Example 25.15: Groovy daemon script CallDaemon.groovy

To run that Groovy script, you need the QF-Test libraries qftest.jar,
qfshared.jar, and qflib.jar as well as the Groovy library, which is also part of
the QF-Test installation. The following batch script shows how it works:

@echo off
setlocal
set qftestdir=c:\programs\qftest\qftest-9.0.4
set qflibdir=%qftestdir%\qflib
set classpath=%qftestdir%\lib\groovy-all.jar
set classpath=%classpath%;%qflibdir%\qftest.jar;%qflibdir%\qfshared.jar;

%qflibdir%\qflib.jar
java -cp %classpath% groovy.ui.GroovyMain CallDaemon

Example 25.16: Batch script calldaemon.bat to run Calldaemon.groovy

When accessed from externally, the DaemonLocator can only determine the default

25.3. Re-execution of nodes (Rerun) 326

keystore to encrypt the daemon communication automatically, if the qftest.jar file
is loaded from the QF-Test directory (as shown in the batch script). Alternatively (as
seen in the groovy script), the keystore can be specified explicetly by calling
setKeystore and setKeystorePassword, or indirectly with the system properties
javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword.

To make the daemon example a load test (cf. chapter 33(408)), you have to synchronize
the test runs inside ”My test case” (e.g. after starting the SUT). This can be done by
means of the rc method syncThreads:

def machines = rc.getNum('machines')
rc.syncThreads('startup', 60000, -1, machines)

Example 25.17: Groovy Server script node to synchronize the test runs

The variable machines denotes the number of hosts with a daemon running on them.
Best define it in the Test suite node of the test suite with a default value of 1. When
running the Groovy script, it will be overwritten with the correct value.

25.3 Re-execution of nodes (Rerun)
4.1+

25.3.1 Triggering rerun from a run log

When a test run has finished, the run log or report is a good entry point for evaluating
the results. In case of errors you may face various challenges. You might want to re-
execute the failed test cases to investigate the reason for the error or because you want
to perform an official re-test of this failing situation after removing the error condition.
If the re-test results are to be shown in the test-report, you may want to replace the
previous results or append them to the existing ones. Or you might just want to repeat
the test case with the previous variable settings and keep the new run logs and reports
separately.

To that end QF-Test offers the capability to trigger re-execution from the run log. You
can trigger a rerun via selecting the run log node or any test set node and choose
Rerun test cases from the Edit menu or from the context menu. Alternatively you

can select the nodes to rerun it the error list and use the context menu entry
Rerun test cases of selected nodes . The dialog then shown lets you select the test

cases for the rerun and choose how to handle run logs via the selection box Mode for
merging run logs with the following options:

25.3. Re-execution of nodes (Rerun) 327

Choice Meaning
Replace test cases Replace the test cases from the original run log

with the results from the rerun, i.e. the previous
results will get lost. The previous run log will be
saved in a backup copy.

Merge run logs The new test results will be merged into the exist-
ing structure.

Append run log The new test results will be appended to the end
of the run log. The test set structure will be ig-
nored.

Keep run logs separated The new test results will be written to a new run
log, the original one remains unchanged.

Table 25.1: Choices for handling the run log of a rerun

25.3. Re-execution of nodes (Rerun) 328

Figure 25.1: Dialog to rerun test cases

For each test case the variable values are taken from the run log of the original test
run. Since only the String value of the variables is stored in the run log, all values are
of type ”String” during rerun from long. During re-execution the variable
${qftest:isInRerunFromLog} is set to true, making it possible to distinguish
between a normal test run and a rerun.

25.3. Re-execution of nodes (Rerun) 329

Merging of run logs makes use of names of test cases and test sets. Therefore, thoseNote
names should be unique. In case of data-driven testing you should take care to keep
those names unique via the attributes Name for separate run log or Characteristic variables.

25.3.2 Rerunning failing nodes immediately

During your test automation project you can sometimes face situations where some test
steps don’t provide reliable results, failing sometimes but not always. Most of the time
such cases depend on timing and can be stabilized using Wait for component to appear(818)

nodes, or checks for conditions, delays, scripts or other control structures. As an alterna-
tive or additional approach QF-Test offers the capability to repeat such steps whenever
they fail.

This automated rerunning in case of error can be applied to every executable node using
a certain doctag in the comment attribute. This doctag can look like this:

@rerun attempts=3;errorlevel>=ERROR;newerrorlevel=WARNING;
handler=handlers.errorhandler

Example 25.18: Example for a rerun definition

In the example above a failed node will be repeated up to three times until an attempt
succeeds. Failed attempts will be downgraded to ”warning” in the run log. In case all
attempts fail, the last attempt will be reported as an error or exception. After every failed
attempt QF-Test will execute the procedure handlers.errorhandler.

If you are interested in the number of the current rerun attempt, you can use the variable
reruncounter from the qftest variable group, see section 6.8(114).

The @rerun doctag offers the following parameters:

attempts
The maximum number of attempts.

errorlevel (optional)
Defines the error states to be handled. Possible values are EXCEPTION, ERROR

or WARNING with = for an exact match or > or >= for a range. Specifying
errorlevel=ERROR means to rerun that node only in case of an error whereas
errorlevel>=ERROR triggers the rerun in case of errors or exceptions. If this
parameter isn’t specified the value errorlevel>=ERROR will be taken as
default.

newerrorlevel (optional)
Specifies the error-level in the run log for the initial run and possible additional

25.3. Re-execution of nodes (Rerun) 330

failed runs. You can again choose between EXCEPTION, ERROR or WARNING with
the additional options NOLOG and KEEP. The level NOLOG stands for removing the
failing results from the run log entirely. NOLOG should be used with extreme care.
Using the level KEEP doesn’t override the original error level and reports it
unchanged. If this parameter isn’t specified the value WARNING will be taken as
default.

handler (optional)
The name of the procedure which should be called in case a caught error state

occurs. This procedure will be called after each failed attempt.

reusevariables (optional, default=true)
Specifies whether to reuse the variable values from the beginning of the first run.

When set to false the current variable values will be used.

logmessages (optional, default=true)
If that parameter is set to true a message will be written into the run log, when

an attempt begins and when the execution of that sequence terminates. In
addition, every node gets an annotation in the run log with the current attempt.

logmessagesintoreport (optional, default=true)
If this parameter and the parameter logmessages are set to true, all

messages will be written to the report as well.

keepfirst (optional, default=false)
If this value is set to true the first failing attempt will be logged with its original

error level. In case of further failing attempts those errors will be logged with the
newerrorlevel level.

exceptiontype (optional)
In case you want to catch only one specific exception you can specify the

exception type here, e.g. CheckFailedException or just
ClientNotConnected for a ClientNotConnectedException. This
parameter should only be used if you set Exception as value for the parameter
errorlevel. Please see the Catch(661) node for details about exceptions.

exceptionmessage (optional)
In case you want to catch only one specific exception with one text, you can

specify the text here. This parameter should only be used if you set Exception
as error level. Please see the Catch(661) node for details about exceptions.

exceptionregex (optional)
If true, the value of exceptionmessage is a regular expression. This

parameter should only be used if you set Exception as error level and an
exception message. Please see the Catch(661) node for details about exceptions.

25.3. Re-execution of nodes (Rerun) 331

exceptionlocalized (optional)
If true, the value of exceptionmessage should be the localized exception

message, e.g. mostly the full text. This parameter should only be used if you set
Exception as error level and an exception message. Please see the Catch(661)

node for details about exceptions.

Chapter 26

Distributed test development

The previous chapters all focused on creating and organizing sets of reliable tests in a
single test suite. However, when testing a large application, a single suite may not be
enough. There are at least two scenarios where splitting tests into multiple test suites
becomes essential:

• Multiple developers are creating and editing tests. To avoid redundancy and du-
plication of code, separately developed tests should use common Procedures and
Components where possible, but only one person can edit a test suite at a time.

• Tests are simply getting too large. Run logs for extensive test runs may cause the
system to run out of memory and organizing a large number of tests in a single
suite is difficult. Things may become unwieldy. It may also be desirable to be able
to run some of the tests as part of the whole test as well as standalone.

QF-Test provides a set of advanced features that make it possible to split and arrange
tests across a set of test suites. Multiple developers can work on separate parts of
a test, then coordinate their efforts, merge the Components of their suites and create
libraries of shared Procedures.

This chapter first explains the various mechanisms for distributed test development and
how they interact. The final section then summarizes these in concise step-by-step
instructions on how to approach large testing efforts with QF-Test.

26.1 Referencing nodes in another test suite

It is possible to reference Procedures(627) and Components(869) in a test suite other than the
current one. These references can be explicit or implicit through included files:

26.1. Referencing nodes in another test suite 333

• Explicit references use a syntax similar to the one used in URLs to specify an
item inside a web page. The referenced suite must be prepended to the
Procedure name(631) attribute of a Procedure call(630) of the QF-Test component ID
attribute of a Component dependent node, separated by a ’#’ character. The usual
packagepath.procedure becomes suite#packagepath.procedure.

• Implicit references make use of the Include files(556) attribute of the Test suite(555) node.
Whenever a node is not found in the current suite, QF-Test will search for a match-
ing Procedure or Component within all the suite’s directly or indirectly included files
(a file is considered indirectly included by a suite if it is found as an included file
within one of the suite’s own included files; for example, if suite A includes B, and
suite B includes C, then C is indirectly included by A).

A test suite that references a node in another test suite becomes dependent on that
suite. If the Name of a Procedure or the QF-Test ID of a Component in the referenced suite
changes, the suite with the reference must get updated, otherwise the link is broken
and the suite will no longer work correctly. In such cases QF-Test will automatically
update references if it knows about them. The best way to ensure that is to have both
test suites in a common project because QF-Test automatically tracks all includes and
all explicit references within a project. Alternatively you can list the calling suite in the
Dependencies (reverse includes)(557) attribute of Test suite root node of the referenced suite.

While implicit references are more convenient in most cases, they can make tests harder
to understand because it is not immediately obvious where the Procedure or Component
referenced by some node is actually located. One possibility to find out is to select
”Locate procedure” (

�� ��Ctrl-P) or ”Locate component” (
�� ��Ctrl-W) from the context menu.

Additionally, QF-Test provides the menu items Operations→Make references explicit

and Operations→Make references implicit which let you toggle quickly between the
two modes without changing the actually referenced nodes.

In both cases, the referenced suite can either be given a relative or absolute filename.
Relative filenames will be resolved relatively to the directory of current suite, or - if that
fails - relatively to the directories on the library path (see option Directories holding test
suite libraries(469)). Always use the forward ’/’ as the directory separator, even under
Windows. QF-Test will map it to the correct character for the system it runs on. This
keeps your test suites independent from the operating system.

Your Package and Procedure names as well as Component QF-Test IDs should not containNote
any ’\’ or ’#’ characters. If they do, you need to include an escape character in the
Procedure call or the QF-Test component ID attribute. See section 49.5(958) for details about
escaping and quoting special characters.

When choosing the Procedure for a Procedure call or the Component for some event in the
dialog, QF-Test offers a selection of all currently opened test suites. If a Procedure or
Component from another test suite is selected, QF-Test automatically creates the correct

26.2. Managing Components 334

reference, taking included suites into account. When the test is run at a later time, the
referenced test suite is loaded automatically if necessary.

During execution QF-Test keeps a stack of currently executing suites. Whenever a Pro-
cedure is called in another suite, the called suite is pushed on to the top of this stack and
removed when execution returns to the calling suite. Whenever during the execution of
a Procedure a Window or Component is referenced by its QF-Test ID, QF-Test searches
through this stack of suites from the top to the bottom, i.e. first in the test suite of the
called Procedure and then in the calling suite, always checking any included files along
the way. This process is quite complicated and you should take care to keep your include
hierarchies simple. In case you encounter problems anyway, a detailed explanation is
given in section 49.6(959).

26.2 Managing Components

As we have emphasized in chapter 5(42), the Components are the essential part of a
test suite. If the SUT changes between releases, these will likely be affected most. If
changes are so massive that QF-Test cannot adapt automatically, the Components will
have to be updated manually. This is why you should try to avoid redundancy in the
Component hierarchy of your tests more than in any other part.

Therefore, when splitting your tests across multiple test suites you should try to keep
the Components together in one central test suite and include this suite from the other
suites. For very large applications you may want to split the Component hierarchy into
parts, each related to a separate part of the SUT’s GUI.

Maintaining this central Component library is not trivial. The problems that will arise can
be resolved with QF-Test as follows:

• When multiple test developers are recording new Components simultaneously, they
cannot be integrated immediately into the central suite, because only one user
can edit the central suite at a time. Instead, Components must be integrated later
by importing them into the central suite when the new tests have stabilized. This
is explained in the following section.

• When the SUT changes, Components in the central suite may need to be up-
dated. If this involves changing any Component QF-Test IDs, this will break any
references to these Components from other suites. To avoid that, QF-Test must
update those references and it will do so, provided that the suites that depend on
the central suite are currently loaded, belong to the same project or are listed in
the Dependencies (reverse includes)(557) attribute of the Test suite(555) node of the central
suite.

26.3. Merging test suites 335

26.3 Merging test suites

test suites can be merged by importing one test suite into another with the
File→Import... menu item.

You can select the areas of the test suite, which should be imported.

You have to take care about a correct Include/Reverse-Include of your test suites to
ensure, that all calls and component references are still valid. See chapter 37(432) for
details.

26.3.1 Importing Components

During import, all Windows and Components of the imported test suite are integrated into
the component hierarchy of the importing suite. Components that already exist are not
copied. A QF-Test ID conflict (identical components with different QF-Test IDs or differing
components with identical QF-Test IDs) is resolved automatically by changing the QF-Test
ID of the imported component.

Afterwards, all Windows and Components are removed from the imported suite. All nodes
in the imported suite that referred to these Components are updated accordingly. Ideally,
the imported suite should include the importing suite so no explicit suite references will
have to be created.

26.3.2 Importing Procedures and Testcases
3.3+

As you can import Components QF-Test also allows to import Procedures, Packages, De-
pendencies and Test cases as well as Test sets by choosing ’Procedures’ or ’Tests’ in the
import dialog. You should take care about keeping all calls consistent, e.g. in most
cases it does not make sense to import Procedures without their required Components.

In case you only want to import one dedicated Procedure or Test case you can use the
button ’Detailimport’ on the importdialog. Here you can choose any node you want to
import separately.

26.4 Strategies for distributed development

There is no single best way of test development or organization, but one approach that
works well is the following:

• Start with a central test suite that has the functionality needed to start and stop the

26.4. Strategies for distributed development 336

SUT and a basic set of Tests and Procedures. This will become your master suite
which will contain all Components.

• Make sure that your developers have understood the importance of assigning
names with setName() and that unique names are assigned consistently
where needed. Where setName() is not an option, try to implement
ComponentNameResolvers to achieve this (see section 54.1.7(1082)). You should
be able to record and replay sequences without much ado and without ”polluting”
the Component hierarchy after trivial changes in the user interface.

• Move as much functionality as possible into Procedures, especially commonly-used
stuff and the setup and cleanup routines for the SUT.

• To create new tests, start with an empty test suite. Include the master test suite by
editing the Include files(556) attribute of the Test suite(555) node of the new suite. Create
the Setup and Cleanup nodes to start and stop the SUT by calling the respective
Procedures in the master suite.

• Create your tests as required. When recording sequences, the Components of the
master-suite will be used if possible. New Components are added to the new suite,
so the master suite will not be modified at this stage.

• Where possible, call Procedures in the master suite for common operations.

• When your new set of tests is complete and you are satisfied that they work well,
import any required nodes of your new test suite into the master suite. You have
to ensure that all new Component nodes that you recorded are imported into the
master suite’s Component hierarchy in any case. The master suite’s existing Com-
ponents will not be affected by this, so other suites that depend on the master suite
will not need to be modified.

• After importing Components you can import all or only the required Procedures into
the master suite.

• You now have various options of how to arrange the actual sequences of events
and checks that form your tests. In any case it is a good idea to move everything
to Procedures and Packages structured after your test-plan. Then the top-level Test
set or Test case nodes of the master suite and your new suite will only contain the
required hierarchy of Test set, Test case, Test step and Sequence nodes filled with Pro-
cedure calls to the actual test cases. Such an arrangement has several advantages:

– All your tests are structured cleanly.

– You can easily create different sets of tests with varying complexity and run-
time.

26.5. Static validation of test suites 337

– You have the option to keep the test cases in separate test suites and have the
master suite call them. These ”test case-libraries” must include the master-
suite, so they need not contain any Components themselves. You can organize
your tests so that the master-suite will run the whole set of tests, while each
separate suite can also be run standalone.

– The tests can be maintained by several developers as long as modifications
to the master suite are coordinated.

• If you decide to keep your new tests in the newly created test suite instead of
moving them to the master suite, modify the master suite to tell QF-Test that there
is a new test suite that depends on it. To do so, either ensure that both test suites
belong to the same project or add the new test suite to the Dependencies(557) attribute
of the master suite’s Test suite node.

• If you need to modify or extend the new test suite later, proceed as before. You can
record new sequences as needed. When you are done, merge any newly created
Components back into the master suite.

• If your SUT changes in a way that requires updates or adaptions to the master-
suite’s Component hierarchy, you must coordinate your test developers. Before you
start updating the Components, make sure that all suites that directly or indirectly
include the master suite belong to the same project as the master suite or are
listed in the Dependencies attribute of the master suite’s Test suite node. If modifying
the Components of the master suite involves any QF-Test component ID changes,
QF-Test will update the depending test suites accordingly, so they should not be
edited simultaneously by others.

• The file format for QF-Test test suites is XML and thus plain text. As a result, test
suites can be managed very well by version control systems like CVS. Changes
to some QF-Test component ID attributes of the depending suites can typically be
merged with other changes without conflicts, alleviating the need for coordination.

Of course, the above scheme can be extended to have several master suites for testing
different parts or aspects of an application. It may be a good idea to ensure that the
component hierarchies in these suites don’t overlap too much though. This will save
you the effort of maintaining all these hierarchies in case the user interface of the SUT
changes significantly.

26.5 Static validation of test suites
3.1+

Working in a project over time will cause modifications, refactoring or deletion of steps in
your test suite structure, e.g. you may consider renaming Procedures or simply removing
them once they are not required anymore.

26.5. Static validation of test suites 338

26.5.1 Avoiding invalid references

In such cases it is quite important that you adapt all references of the according Pro-
cedure in order to guarantee that the remaining tests keep running. For this purpose
QF-Test automatically updates all references during the process of renaming or moving
elements on demand.

If you want to ensure that your created test structure doesn’t contain any call of non-
existing Procedures anymore, you can also use the ”Analyze references” command of
QF-Test in order to perform a static validation of your test suite. This command will
open a dialog showing all references and whether they are still okay or something is
missing.

You can trigger the analysis via a right mouse-click and selecting
Additional node operations→Analyze references... or selecting the according entry

from the main menu under Operations . This method is also available in batch mode.

26.5. Static validation of test suites 339

Figure 26.1: Result of analyzing references

QF-Test also provides features to search through your test suites for duplicate nodes,3.5+
empty Packages or Procedures or to analyze for nodes having invalid characters in their
names.

This kind of static validation is available for Procedures, Dependencies, Test cases, Test sets
and Components and their references.

26.5. Static validation of test suites 340

26.5.2 Unused procedures
4.0.3+

During test development it could happen that procedures, which were used in the first
version of your tests will not be used in newer versions due to re-factoring of tests.
If those procedures won’t get deleted immediately they will stay in the test suite and
the test suite will grow and grow. Sometimes you could get the feeling that you have
too many procedures or that you have lost the overview of your procedures. In or-
der to check for such unused procedures or dependencies in your test suite you can
open the context menu via a right mouse click at Test suite or Procedures and select
Additional node operations→Find unused callables... . This operation creates a report

showing any procedures or dependencies which had been created but haven’t been
used yet. Now you could decide what you want to do with those.

Sometimes you might simply remove all of those unused nodes immediately via
Additional node operations→Remove unused callables .

Chapter 27

Automated Creation of Basic
Procedures

3.0+

27.1 Introduction

At the beginning of a typical QF-Test project the tester records the first tests and starts
them. After a couple of such recordings and first success stories he notices that only
recording or performing copy/paste bares some hidden pitfalls in maintaining the tests.
Just think about a possible workflow change in a main panel, then the tester might have
to adapt all test cases. That’s why we recommend to make use of the modularization
concept using procedures and variables as early as possible in a project. For more
information about the modularization concept, please see section 8.5(142).

In projects containing a lot of dialogs and graphical components it might be sufficient to
split those procedures into component-specific ones, e.g ”press button ok” and separate
workflow procedures, e.g. ”create a vehicle” combining the component-specific steps
together. This approach enables the tester to create new test cases very fast. However,
he has to put a lot of efforts into creating those basic procedures first.

QF-Test comes with a Procedure Builder, which will create those basic procedures for
you. Using the Procedure Builder will drastically decrease the efforts of recording and
creating procedures for graphical components. So the tester can solely concentrate on
his main focus, i.e. designing the workflow of the test itself and the according test data.

27.2 How to use the Procedure Builder

For creating the basic procedure automatically, you have to perform following steps:

• Start the SUT from QF-Test.

27.2. How to use the Procedure Builder 342

• Navigate to the window or frame you want to create procedures for in the SUT.

• Press the ’Record Procedures’ button, select the according menu item in QF-
Test or use the Hotkey for procedure recording(492).

• Perform a right mouse-click on the respective component in the SUT.

• Select the according recording-mode.

• Stop procedure recording by releasing the ’Record Procedures’ button, by des-
electing the according menu item in QF-Test or using the Hotkey for procedure
recording(492).

Now you should be able to find a newly created package in the Procedures(637) node of
the test suite where you stopped the recording, containing the created procedures for
the components. By default this is called procbuilder. If the package procbuilder
already exists, a package procbuilder1 will be created and so on. When you open
the package you will see a set of packages for functions like check, get, select, wait
and so on. These contain the procedures created for the components you selected when
running the procedure builder, apart from the check package, where another level with
packages for the various check modes is inserted. This is the default structure, which
you can adapt to your needs by modifying the definition file for the procedure builder as
described in the following section.

27.3. Configuration of the Procedure Builder 343

Figure 27.1: Recorded procedures

27.3 Configuration of the Procedure Builder

The act of building procedures is controlled by a template suite, which is located at
qftest-9.0.4/include/procbuilderdef.qft. This file should be copied to any
project-specific location, if you want to adapt it to your project. You can define its location
in the options at Configuration file for recorded procedures (493).

The template suite contains procedures for the most common GUI elements and ac-
tions. If you require other test steps, you can add the according procedure to this test
suite.

The file itself is a test suite with a dedicated structure. You can find a detailed expla-
nation of this structure in the subsection section 27.3.1(344). The definition file allows the
tester to define procedures for components of dedicated classes or to define procedures

27.3. Configuration of the Procedure Builder 344

for working with all components of one certain window.

You can find some demo configurations at qftest-9.0.4/demo/procbuilder.

27.3.1 The Procedure Builder definition file

The automated creation of basic procedures delivers different procedures depending
on the components. A text-field requires a setter procedure for setting its text, a button
requires a press procedure for pressing it or a window could require a setter which calls
the setter procedures of all text-fields or combo-boxes on that window to call just one
procedure for using the window etc..

Figure 27.2: The Procedure Builder definition file

The topmost package in the Procedures(637) node is the name of the target package for the
newly created packages. By default this is called procbuilder. This package will be
inserted below the Procedures(637), when you have finished recording procedures. If the
package procbuilder already exists, a package procbuilder1 will be created and
so on.

The next level is the class level. Here you can define a package per class. The package

27.3. Configuration of the Procedure Builder 345

name represents the full class name, but with ’_’ as separators instead of ’.’. That’s
because ’.’ is not allowed in package names. The Procedure Builder creates the pro-
cedures also for descendants of specified classes. In case the names of your classes
contain a ’_’, you have to mark this via ’_’.

The following levels can be chosen freely because those levels are intended to structure
the procedures.

At the last level you have to define the steps of the procedure itself.

Of course there are a lot of variable data in that definition, e.g. like <COMPID>.

Using those you can specify variables for the procedure names, like the QF-Test ID of
the current component or the component-name. You can also record the current value
of the text-field or the current selected status of a checkbox. It’s even possible to keep
the package structure variable. For an overview of all possible variables, please see
chapter 56(1212).

Chapter 28

Interaction with Test Management
Tools

3.0+

QF-Test contains some pragmatic test management approaches, like creating a test
case overview or documenting test cases within QF-Test. In bigger projects it might
be necessary to make use of an own dedicated test management system to track the
development status of test cases or to link test cases and their results to defects, use
cases or features. Besides support for planning of test cases and tracking their results a
test management system could also contain a test execution engine, which supervises
the occupation of test systems during different test runs.

As QF-Test doesn’t come with all of those features though continuously improving in
that area, it is very easy to integrate QF-Test with such a test management or test
execution system using the QF-Test Batch mode or the QF-Test Daemon mode. For
more information about the Batch mode or the Daemon mode, please see chapter 25(314).

The following chapters describe some exemplary solutions which we provide for es-
tablished test management systems. If you cannot find your test management system
in that list, please contact our support team to get hints about a possible integration
approach.

28.1 HP ALM - Quality Center

28.1.1 Introduction

The current integration of QF-Test and HP ALM - Quality Center utilizes the built-in
VAPI-XP-TEST type of Quality Center.

28.1. HP ALM - Quality Center 347

Figure 28.1: Integration with ALM - QualityCenter

The VAPI-XP-TEST type is intended to be an automated test case for any test-tool.
QF-Test comes with a template file for the VAPI-XP-TEST script, which is
qcVapiXPTemplate.txt, see qftest-9.0.4/ext/qualitycenter. This script
can be used as template for all QF-Test tests in Quality Center. Please see section
28.1.2(348) for a detailed step-by-step description.

The QF-Test VAPI-XP-TEST template script employs an external worker VBScript
script, called qcTemplate.vbs. This script is also part of the QF-Test distribution
(see qftest-9.0.4/ext/qualitycenter) and has to be adapted to your specific
needs. So we encourage you to copy that file to a project specific location and adapt it
according to your needs.

The worker script launches QF-Test in batch mode on each test system locally, i.e. it
has to be accessible for each test system. As the test suite files and the configuration
files have to be available on the test system too, we recommend to put all those files on
a shared network drive or into the version management system.

After the execution of the test the run log of QF-Test will be appended to the test instance
as well as the status of the test will be set to the result.

You can also change the worker script to make use of a daemon call (for details about
the daemon mode, please see chapter 55(1193)). In this case QF-Test will establish the
network connection to the test system and launch the test by itself. In case of the normal
batch call Quality Center establishes the connection to the test system and triggers the
local QF-Test installation to perform the test. If you make use of the daemon call, the
worker script has to be located on the Quality Center system, but the test suite still
needs to be accessible on each test system.

If you do not make use of VBScript in your project, feel free to port the QF-Test demo

28.1. HP ALM - Quality Center 348

scripts to JScript or any other supported language.

The following figure shows the VAPI-XP-TEST test case in Quality Center:

Figure 28.2: QF-Test VAPI-XP-TEST test case in HP ALM - QualityCenter

28.1.2 Step-by-step integration guide

General steps to be performed on the the test system:

1. Copy the template worker script from
qftest-9.0.4/ext/qualitycenter/qcTemplate.vbs to your project
location and rename it to a proper name. We recommend to use the same path
on all test systems. Perhaps you should use a shared network drive.

2. Within the worker script you can define certain default option, e.g. whether the
batch or daemon mode should be used as default and what should be the name

28.1. HP ALM - Quality Center 349

for the default run log file. This also can be done at a later stage, which might be
recommendable when initially starting with the integration process to keep things
simple.

Steps in Quality Center to create a test case:

1. Start Quality Center and log in to your project.

2. You might want to create a new test set e.g. called ”DemoTestSet” in the ”Test
plan” area.

Figure 28.3: In Test plan create new Test set

3. In this test set create a new test with type VAPI-XP-TEST.

28.1. HP ALM - Quality Center 350

Figure 28.4: Create new test of type VAPI-XP-TEST

4. On the HP VAPI-XP Wizard window just press finish without any modifications.Note
(That means you have VBScript as script language and COM/DCOM Server Test
as test type).

28.1. HP ALM - Quality Center 351

Figure 28.5: HP VAPI-XP Wizard

5. You will then get a new test as shown below.

28.1. HP ALM - Quality Center 352

Figure 28.6: Test details

6. Change to the ’Test script’ tab of the test and copy the content of the template
file qftest-9.0.4/ext/qualitycenter/qcVapiXPTemplate.txt into the
Script Viewer’s text area.

28.1. HP ALM - Quality Center 353

Figure 28.7: Copy template content to script text area

7. Within the script please do following adaptations:

• Change the pathToModule variable to the location you have copied the
worker script qcTemplate.vbs to.

• Change the testSuiteFile variable to your desired test suite file.

• If you want to execute one specific test, you can also change the testCase
variable to the desired test case name.

Please read the comments in the script carefully, because you can also use test case
specific settings optionally.

Steps to be performed to run the sample test case

1. Change to the ”Test lab” section in Quality Center.

28.1. HP ALM - Quality Center 354

2. You might want to create a new sample test set.

Figure 28.8: New test set in Test lab section

3. Add the test case to the new test sets’ execution grid by choosing it from the test
plan structure.

28.1. HP ALM - Quality Center 355

Figure 28.9: Add test to execution grid

4. Now you can launch the test case. Ensure the ”Run all tests locally” checkbox
is activated unless you really have a remote system with a QF-Test environment
already set up.

28.1. HP ALM - Quality Center 356

Figure 28.10: Run the test

5. Now Quality Center should start the test run - possibly on your machine, then
you should see the SUT coming up after some time, actions being performed and
closed at the end. When the run has finished, the result is noted down with the
test: Passed or Failed.

28.1. HP ALM - Quality Center 357

Figure 28.11: Test result

6. After the test has terminated, in addition to the result the run log of the test will be
uploaded as attachment to the test instance.

7. To view the run log, please double-click to the test in the execution grid, then
change to ”Runs” and again double-click at the paper-clip attachments symbol for
the respective test run.

28.1. HP ALM - Quality Center 358

Figure 28.12: Uploaded run log

28.1.3 Troubleshooting

First of all we need to state that we are not QualityCenter experts. Therefore there might
be better and advance options for troubleshooting. Hence we want to at least provide
some hints we used so far.

Unfortunately the process output during the test execution in QualityCenter is only visible
for a fraction of time, not allowing a direct analysis. Therefore we need to find a work
around.

The text editor of the VAPI-XP-TEST node in the ”Test plan” area allows to directly
execute the script. Then in the output area below the output gets visible permanently
showing possibly something helpful.

28.1. HP ALM - Quality Center 359

Figure 28.13: Script debug run

But the direct execution from the script node needs to be handled with care. Of course
it is not considered as a real test run, so no run log can be uploaded which results in a
respective Run-time error ”Object required” in the output. Don’t get confused by that!

For more debugging, additional statements like TDOutput.Print ”Some text” can
be added to both the test script and the worker script. By this you can see how far the
script runs until a possible error occurs.

The text script editor has a ”Syntax check” button which is helpful for validation after
every change.

28.2. Imbus TestBench 360

28.2 Imbus TestBench

28.2.1 Introduction

The current integration of QF-Test and the TestBench consists of two parts:

• Creating a QF-Test template file using the TestBench interactions.

• Importing QF-Test results into TestBench.

You can find all required libraries and test suites in the folder
qftest-9.0.4/ext/testbench/Version_1.1_TestBench_2.3. Please take
care to copy all test suites to a project-related folder first and modify them there.

The following section provides a short overview about the integration concept.

28.2.2 Creating QF-Test template from interactions

After planning your tests and designing the interactions in the TestBench, you can create
a template QF-Test file using the QF-Test export plug-in for interactions. Imbus will
provide all required information, how to install this plugin.

After exporting the interactions you will find all interactions as procedures and their
structure as packages in the QF-Test file. Now you can start recording the respective
steps in QF-Test and fill the empty procedures.

The completed file has to be saved in your project-specific test suite folder, because
this file should be used as input file for the test execution later. We recommend to use
a project-specific location, perhaps a shared network drive or the version management
system.

28.2.3 Importing test execution results

For running tests you need specific test cases and procedures,
which can be found in the provided test suites in the folder
qftest-9.0.4/ext/testbench/Version_1.1_TestBench_2.3/suite.
Please take care to copy all test suites to a project-related folder first and modify them
there.

You can also find a demo implementation for the CarConfigurator in the folder
qftest-9.0.4/ext/testbench/Version_1.1_TestBench_2.3/suite/demo.
You have to take care that you need to include the test suite
TestBench_Automation.qft to your test suite. If you have created procedures via

28.3. QMetry 361

the iTEP exporting as described in chapter section 28.2.2(360) you will need to include
that test suite as well.

The next step is to adapt the configuration for the output files. This can be achieved by
modifying the files testaut.properties and user.properties.

Now you are ready to call the test case Standalone test executor from
TestBench_Automation.qft.

When the test run has been completed, you can import all those results using the iTEP
or iTORX import plug-in into the TestBench. The single QF-Test run logs will then be
attached to the test-instances.

28.3 QMetry

28.3.1 Introduction

The current integration between QF-Test and QMetry relies on planning the tests and
its steps within QMetry and forwarding the actual test execution to QF-Test. Once the
the test run terminates the QF-Test run log and its HTML report will be automatically
uploaded to QMetry to the respective result area as well as the state of the test case in
QMetry will be set to the according result.

You need to prepare your test system in order to run QF-Test tests. Please perform the
following steps:

• In the ’Admin’ area of the QMetry Testmanagement view install a test execution
agent at the ’Agent’ view.

• Download the required agent and configuration files to install the QMetry execution
agent on your test system.

• Install the respective QF-Test QMetry Launcher at your test-agent.

• Install and set-up a platform at the ’Platform’ view, which is also located in the
’Admin’ area of QMetry.

• Configure QMetryAgent.properties correctly to use the required environment
variables of QMetry’s QF-Test wrapper.

• Configure QMetryConfig.properties correctly to show to the right QF-Test
executable.

• Configure additional parameters for the QF-Test call in
QMetryConfig.properties, see next section for details.

28.3. QMetry 362

• Launch the QMetry agent. Please do not launch the agent as Windows-Service
to avoid running GUI-Tests within the service-session. If you launch the agent as
service you should run the QF-Test tests via the QF-Test daemon, which shouldn’t
run in a service session then.

After setting up the agent and launcher, you need to plan the test execution. QMetry
supports several ways of integrating QF-Test test cases. You can find all supported
integrations in QMetry’s integration guide document. Please perform following steps for
a simple integration:

• In the Testmanagement view change to ’Test Cases’ and plan the test cases there.

• At the individual test case you have to set the value ’Test Script Name’ to the path
of the required QF-Test test suite holding the actual implementation of the test
case.

• The name of the test case must be exactly the same as the specified value for the
QF-Test ID attribute in QF-Test.

• Add the test case to an executable test suite in the ’Test Suites’ view.

Now you are ready to run the test cases:

• Open the ’Test Suites’ view and select the required test suite for execution.

• Select the ’Execute TestSuite’ tab.

• Run or schedule a test run via assigning an agent to the ’Automation’ column.

• The next time when the local QMetry agent is polling the QMetry server it will get
the necessary information to run the test case.

• Once the test run terminates you will find the run log of QF-Test and its HTML
report attached to the ’Execution History’ of the executed test suite. The state of
the test case will also be updated accordingly.

The following figure shows the ’Execution History’ tab in ’Test Suites’ holding the run
log:

28.3. QMetry 363

Figure 28.14: QF-Test run log in QMetry

You will find a more detailed description of how to setup QMetry in the manual of QMetry
and in QMetry’s integration guide document.

28.3.2 Sample Configuration

It’s recommended to set following values in the configuration file
QMetryConfig.properties:

• Set the value of generic.adapter.success.code to 0,1.

• Set qftest.additional.arguments to -test ${QMTestCaseName} in
case of local test execution.

• In case of using QF-Test’s daemon set qftest.additional.arguments
to -test ${QMTestCaseName} -calldaemon -daemonhost
<testsystem> -daemonport <daemonport> .

As already mentioned in the previous section, you need to use the same name for the
test case within QMetry and for the value of the QF-Test ID attribute within QF-Test.

Further ways for integrating QMetry and QF-Test can be found in the integration guide
document provided by QMetry.

28.4. Klaros 364

28.4 Klaros

28.4.1 Introduction

Klaros is a test management tool developed and supported by verit Informationssysteme
GmbH, Kaiserslautern, Germany.

Klaros is available in two kinds of editions, a free community edition and an enterprise
edition with an extended set of functionality, individual configuration options and full
customer support.

The current integration of QF-Test with Klaros comprises:

• Import of QF-Test results into Klaros.

28.4.2 Importing QF-Test results into Klaros

After creating the XML report file as described in chapter 24(305), you can upload the
results to Klaros. An example for a QF-Test import URL may look like this, where the
result file is contained in the HTTP request body.

http://localhost:18080/klaros-web/seam/resource/rest/importer?
config=P00001&env=ENV00001&sut=SUT00001&type=qftest&
time=05.02.2013_12:00&username=me&password=secret

Example 28.1: Importing test results into Klaros

The curl command line tool can be used on Linux or Windows/Cygwin to trigger an
import in a single command line.

curl -v -H "Content-Type: text/xml" -T "my_qftest_report.xml" \
"http://localhost:18080/klaros-web/seam/resource/rest/importer\
?config=P00001&env=ENV00001&sut=SUT00001&type=qftest\
&time=05.02.2013_12:00&user=me&password=secret"

Example 28.2: Using curl command to import test results into Klaros

Further information can be found within the Klaros online manual at https://www.klaros-
testmanagement.com/files/doc/html/User-Manual.Import-Export.html.

28.5. TestLink 365

28.5 TestLink

28.5.1 Introduction

The current integration of QF-Test with the open-source tool TestLink consists of two
parts:

• Generating template test suites for QF-Test from the planned test cases of
TestLink.

• Importing QF-Test results into TestLink.

If you use TestLink 1.9.4 or newer you can use the TestLink API for interacting with3.5.1+
TestLink. The TestLink API requires a valid development key. Therefore open TestLink
and go to ’My Settings’. In the settings you can generate a development key by pressing
’Generate key’ under the ’API interface’ section.

For TestLink 1.9.3 or older versions the integration mechanism accesses the database
of TestLink directly. This approach requires a JDBC database driver to use the provided
scripts. You can download those drivers from the web page of their providers.

Exporting the planned test cases including its test steps from TestLink to QF-Test sup-
ports the test-creator to implement the test cases exactly as planned.

Importing the test results into TestLink provides a better overview over all executed
manual and automated tests-cases in one tool.

Test results can also be uploaded to TestLink without exporting them before. ThereforeNote
you have to take care, that the ID of the test case from TestLink is part of the test case’s
name in QF-Test. The name has to be called like this: <TestLink-ID>: Name of
the test case.

28.5.2 Generating template test suites for QF-Test from test cases

QF-Test offers the capability to generate template test suites following the same struc-
ture as the planned tests in TestLink to guarantee a synchronized structure of automated
tests and test planning.

In the QF-Test file you can find one Test case node per test case and one Test set node
per suite from TestLink. If you have specified the fields ”Steps” and ”Expected Results”
of a test case, the generating-script will also create an empty Test step for each test step
in the according test case. The expected result will be shown in the Comment attribute
of the Test step node.

Now the template test suite has to be filled by the test automation engineer with the
according steps by adding QF-Test steps to the generated Test step nodes.

28.5. TestLink 366

In case you use TestLink 1.9.4 or newer you need to perform following steps:3.5.1+

1. Take care that test automation is enabled in TestLink. Therefore set the
respective enable_test_automation key to ENABLED in the configuration file
config.inc.php.

2. Copy the folder qftest-9.0.4/ext/testlink/api to a project-specific loca-
tion.

3. Open the launcher script you want to use with a text editor. The launcher scripts
are exportTests.bat for Windows and exportTests.sh for Linux.

4. Adapt the paths of the variables JAVA, QFTDIR and TESTLINKINTEGRATOR.

5. Open the file TestLinkUserSpecifics.py with a text editor.

6. Adjust the variables serverurl and devkey.

7. If you want to export custom fields from TestLink, also adjust the variable
custom_fields.

8. Run the adapted export script, like shown below.

exportTests.bat --testproject projectname
--targetsuite /path/to/testsuite.qft

Example 28.3: Sample call of exporting test cases from 1.9.4

If you use TestLink 1.9.3 or older, please perform those steps:

1. Copy the folder qftest-9.0.4/ext/testlink/export to a project-specific
location.

2. Open the launcher script you want to use with a text editor. The launcher
scripts are exportTestLinkToQFT.bat for Windows and
exportTestLinkToQFT.sh for Linux.

3. Adapt the paths of the variables JAVA, QFTDIR and TESTLINKINTEGRATOR.

4. Open the file TestLinkDBIntegrator.py with a text editor.

5. Adjust the variables dbdriver, conncetionstr, dbuser and dbpass accord-
ing to your database connection.

6. If you want to export custom fields from TestLink, also adjust the variable
custom_fields.

28.5. TestLink 367

7. Run the adapted export script, like shown below.

exportTestLinkToQFT.bat --testproject projectname
--targetsuite /path/to/testsuite.qft

Example 28.4: Sample call of exporting test cases till 1.9.3

28.5.3 Execution of test cases

Executing the QF-Test tests can be performed as usual. But you should create a XML-
report at the end of the test run, because the import mechanism is using this report.
Therefore you have to use the ’-report.xml’ parameter during test execution. If you
create the reports via the GUI, you have to check the checkbox ’Create XML report’.

In case you did not export test cases from TestLink the ID of the test case from TestLinkNote
has to be part of the test case’s name in QF-Test. The name has to be called like this:
<TestLink-ID>: Name of the test case.

qftest -batch -report.xml reportFolder testsuite.qft

Example 28.5: Sample execution to create a XML report

28.5.4 Importing QF-Test results into TestLink

After creating the XML report file, you can upload the results to TestLink.

Per default the import mechanism creates a new build for every test run. The build
number of TestLink will be created by the run-ID of the QF-Test report. You can change
the run-ID, by setting the parameter ’-runid’ when launching the tests with QF-Test. But
you can also set the ’-build’ parameter during import to specify a custom build name.

In case you use TestLink 1.9.4 or newer you need to perform following steps:3.5.1+

1. Take care that test automation is enabled in TestLink. Therefore set the
respective enable_test_automation key to ENABLED in the configuration file
config.inc.php.

2. Copy the folder qftest-9.0.4/ext/testlink/api to a project-specific loca-
tion. (If you have copied them already for exporting you can use the same files.)

3. Open the launcher script you want to use with a text editor. The launcher scripts
are importResults.bat for Windows and importResults.sh for Linux.

28.5. TestLink 368

4. Adapt the paths of the variables JAVA, QFTDIR and TESTLINKINTEGRATOR.

5. Open the file TestLinkUserSpecifics.py with a text editor.

6. Adjust the variables serverurl and devkey. (If you have adapted them already
for exporting you can use the same values.)

7. Run the adapted import script, like shown below.

importResults.bat --testproject projectname
--resultfile qftestReport.xml --testplan testplanname

--platform system1

Example 28.6: Importing test results into TestLink from 1.9.4

If you want to overwrite the build name you can use the ’-build’ parameter.>

importResults.bat --testproject projectname
--resultfile qftestReport.xml --testplan testplanname

--platform system1 --build myBuild

Example 28.7: Importing test results into TestLink from 1.9.4 with custom build

If you use TestLink 1.9.3 or an older version, please perform following steps:

1. Copy the folder qftest-9.0.4/ext/testlink/import to a project-specific
location.

2. Open the launcher script you want to use with a text editor. The launcher scripts
are importToTestLink.bat for Windows and importToTestLink.sh for
Linux.

3. Adapt the paths of the variables JAVA, QFTDIR and TESTLINKINTEGRATOR.

4. Open the file ReportParser.py with a text editor.

5. Adjust the variables dbdriver, conncetionstr, dbuser and dbpass accord-
ing to your database connection.

6. If you want to export custom fields from TestLink, also adjust the variable
custom_fields.

7. Run the adapted import script, like shown below.

28.5. TestLink 369

importToTestLink.bat --testproject projectname
--resultfile qftestReport.xml --testplan testplanname
--tester tester

Example 28.8: Importing test results into TestLink till 1.9.3

Chapter 29

Integration with Development Tools

Automating GUI testing is just one part of the development cycle. Requirements like
automating the compilation or build process, running tests, creating documentation or
providing a deliverable package led on to a variety of different development tools like
IDEs (e.g. Eclipse) or build tools (e.g. make, ant, maven) or so called continuous
integration systems (like Jenkins, Cruise Control, Continuum).

In general, by use of QF-Test’s command line interface as documented in chapter 25(314)

and chapter 44(908) a straight forward integration with those tools should be possible.

GUI tests require an active user session. Chapter Hints on setting up test systems(443)Note
contains useful tips and tricks to set-up your test systems. In FAQ 14 you can find
technical details.

The following sections contain examples for integrations with a some of the tools men-
tioned above.

29.1 Eclipse

Eclipse (http://eclipse.org) is an Open Source software developer tool for java applica-
tions.

QF-Test offers an Eclipse plugin enabling you to start an application directly from Eclipse
and run tests on it - anything from whole test sets, single test cases or even just a mouse
click.

Video instructions:Video

’The QF-Test Eclipse Plugin’
https://www.qftest.com/en/yt/eclipse-42.html

29.1. Eclipse 371

29.1.1 Installation

For the installation please copy the Eclipse plugin file de.qfs.qftest_9.0.4.jar
from the subdirectory qftest-9.0.4/misc/ of the QF-Test installation directory to
the subdirectory ’dropins’ of the Eclipse installation directory. Then (re-)start Eclipse
and the plugin will be available.

29.1.2 Configuration of the test nodes

Open the Eclipse menu Run→Run Configurations . Enter the QF-Test nodes to be
started in the tab ’Main’ and if necessary enter parameters in the tabs ’Settings’ and
’Initial Settings’. (The tabs ’Environment’ and ’Common’ are standard Eclipse tabs that
are not needed for the configuration of the QF-Test Plugin.)

Then save the configuration by pressing ’Apply’. To start a test run press ’Run’.

Tab ’Main’

Figure 29.1: Eclipse plugin configuration - tab ’Main’

29.1. Eclipse 372

Enter the fully qualified path to the QF-Test executable ’qftest.exe’ in
the field QF-Test executable, e.g. C:\Program Files
(x86)\qfs\qftest\qftest-4.1.0\bin\qftest.exe.

’Run configuration to be used as SUT’ is an optional entry. You may enter an existing
Eclipse ’Run Configuration’ for starting the application to be tested. At the start of the
application the QF-Test plugin sets up the connection to QF-Test so you can replay or
record tests on the application. Use this option when you specify QF-Test nodes in
the ’Startup nodes’ section which do not start the application themselves. Please be
aware that the run configuration to be used as SUT will be started and then right away
the listed ’startup nodes’ will be executed. So, to make sure the SUT is started when
executing the ’startup nodes’ the first action of the first ’startup nodes’ should be to wait
for the SUT. This can be done either by inserting a Wait for client to connect node at the
beginning of the first ’startup node’ or by adding a first ’startup node’ just calling a Wait
for client to connect node in QF-Test.

Enter all QF-Test nodes to be executed in the table ’Startup nodes’. You need to specify
the QF-Test ID of the node as well as its test suite. Please be aware that the QF-Test ID
is a separate attribute of the node and not its name. The QF-Test ID attribute is empty
by default and has to be set before use.

29.1. Eclipse 373

Tab ’Settings’

Figure 29.2: Eclipse plugin configuration - Tab ’Settings’

Variables specified in this tab will be read each time before executing the run configura-
tion.

’Path to run log folder’ specifies the directory where to save the run logs of the test runs
of the run configuration. It is optional. When empty the run logs are saved as configured
in QF-Test itself.

If required enter variables to be passed to QF-Test on command line level in the table
’Variables’. This will overwrite default values of the variable.

29.2. Ant 374

Tab ’Initial Settings’

Figure 29.3: Eclipse plugin configuration - Tab ’Initial Settings’

The values set in this tab are optional and only read in once before the start of QF-Test
When changing them you need to restart QF-Test before they take effect.

Path to license file: Path of the license file to be used.

Path to qftest system config file: Path of the qftest.cfg file to be used.

Path to qftest user config file: Path of the user configuration file to be used.

29.2 Ant

People who are using Apache Ant (http://ant.apache.org) as build system may easily
integrate QF-Test in their build file:

29.3. Maven 375

<project name="QF-Test" default="runtest">
<property name="qftest"

location="c:\Program Files\qfs\qftest\qftest-9.0.4\bin\qftest.exe" />
<property name="logdir" value="c:\mylogs" />
<target name="runtest" description="Run a test in batchmode">

<echo message="Running ${suite} ..." />
<exec executable="${qftest}" failonerror="false"

resultproperty="returncode">
<arg value="-batch" />
<arg value="-compact" />
<arg value="-runlog" />
<arg value="${logdir}\+b" />
<arg value="${suite}" />

</exec>
<condition property="result"

value="Test terminated successfully.">
<equals arg1="${returncode}" arg2="0" />

</condition>
<condition property="result"

value="Test terminated with warnings.">
<equals arg1="${returncode}" arg2="1" />

</condition>
<condition property="result"

value="Test terminated with errors.">
<equals arg1="${returncode}" arg2="2" />

</condition>
<condition property="result"

value="Test terminated with exceptions.">
<equals arg1="${returncode}" arg2="3" />

</condition>
<echo message="${result}" />

</target>
</project>

Example 29.1: Ant build file build.xml to execute a test suite

The above example assumes the test suite to
be defined as property when running ant: ant
-Dsuite=”...\qftest-9.0.4\demo\carconfigSwing\carconfigSwing_en.qft”.

29.3 Maven

People who are using Apache Maven (http://maven.apache.org) as build system may
easily integrate QF-Test in their build. This can be achieved by using the antrun plugin
of Maven. A demo pom.xml file, where QF-Tests tests are executed in the test phase

29.3. Maven 376

could look like this:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<artifactId>testant</artifactId>
<packaging>jar</packaging>
<name>testant</name>
<groupId>de.qfs</groupId>
<version>1</version>
<properties>
<qf.exe>"C:\Program Files\qfs\qftest\qftest-9.0.4\bin\qftest.exe"</qf.exe>
<qf.reportfolder>qftest</qf.reportfolder>
<qf.log>logFile.qrz</qf.log>
<qf.suite>"c:\path\to\testsuite.qft"</qf.suite>

</properties>
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-antrun-plugin</artifactId>
<executions>

<execution>
<phase>test</phase>
<configuration>

<tasks>
<exec executable="${qf.exe}">

<arg value="-batch"/>
<arg value="-report"/>
<arg value="${qf.reportfolder}"/>
<arg value="-runlog"/>
<arg value="${qf.log}"/>
<arg value="${qf.suite}"/>

</exec>
</tasks>

</configuration>
<goals>

<goal>run</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

Example 29.2: Maven build file pom.xml to execute a test suite

29.4. Jenkins 377

In your project it might become required to run the tests during another build phase,
than the configured test phase in the example. In this case you have to configure the
plugin accordingly, like described in the Maven documentation.

29.4 Jenkins
3.3+

The videoVideo

’QF-Test Jenkins Plugin’
https://www.qftest.com/en/yt/jenkins-plugin-40.html

shows installation and configuration of the plugin.

Jenkins (jenkins-ci.org) is a continuous integration build tool. It is used to control and
monitor the build process within a software project. One important step in this build
process is automated testing.

There are number of benefits to be gained when integrating QF-Test with Jenkins:

• In case Jenkins is already used for the continuous integration process, integration
of automated GUI tests can be easily achieved.

• Easy-to-use administration of scheduled test runs and notification of results via
email or RSS.

• Jenkins’ web-based UI provides good overview and control of test results.

• By use of the HTML Publisher Plugin it is possible to embed QF-Test’s HTML
reports directly into the Jenkins GUI.

• Results generated during the test run such as run logs and reports can be archived
automatically. Therefore maintaining an own directory structure is not needed
anymore.

29.4.1 Install and start Jenkins

For GUI tests, Jenkins must not be configured to run as a service but within a realNote
user session. On Windows the .msi installer unfortunately directly installs Jenkins as
service without any further inquiry. Please beware of it therefore and ensure Jenkins is
started as real user process as described below.

To install Jenkins download the war Archive (which can be found here) and start it via
java -jar jenkins.war.

29.4. Jenkins 378

As soon as Jenkins is started its web interface can be accessed via
http://localhost:8080. It should look like the following:

Figure 29.4: Jenkins after start-up.

29.4.2 Requirements for GUI tests

GUI testing requires an unlocked, active desktop. That is the only way to ensure that
the SUT behaves the same as if a normal user interacts with it. Chapter Hints on setting
up test systems(443) contains useful tips and tricks to set up the Jenkins process.

Jenkins allows execution of tasks on remote machines. This is of course also relevant for
GUI testing. Due to its nature GUI tests are typically not intended to run on the central
build server. In addition, tests might need to be executed for different environments,
operating systems and SUT versions.

On a remote machine, a Jenkins agent needs to be launched in order to connect to

29.4. Jenkins 379

the Jenkins server and wait for jobs to be processed. As described in the Jenkins
documentation, there are several options to launch this agent, but for the GUI tests to
properly work the only possible launch method is to use Java Web Start.

For GUI tests it is vital to have an active, unlocked user session. Therefore it is not
possible to start the agent via a windows service but a real (test) user must be logged in
(e.g. via auto login) using Windows Autostart to launch the Jenkins agent. Furthermore
screen locking needs to be disabled.

Please see also FAQ 14 for more technical background details.Note

29.4.3 Install QF-Test Plugin

The QF-Test Plugin enables QF-Test to interact with Jenkins. To install the plugin open
the Jenkins dashboard and navigate via ”Manage Jenkins” to ”Manage Plugins”. Select
the QF-Test Plugin from the ”Available” tab. When installing the QF-Test Plugin the
JUNIT and HTML-Publisher Plugin will also be downloaded automatically, in case they
were not already installed. Finally restart Jenkins to complete the installation. Now the
QF-Test Plugin will show up under the Installed tab, as shown in Figure 20.2.

Jenkins will automatically use the latest installed version of QF-Test. In case you want toNote
use a different version, you can provide its path under the QF-Test section in the Jenkins
configuration (Manage Jenkins -> Configure System).

Figure 29.5: Install QF-Test Plugin.

29.5. JUnit 5 Jupiter 380

As soon as the QF-Test Plugin has been installed successfully, test execution with
QF-Test can be included in the build jobs. A detailed explanation about the
configuration of jobs can be found in the QF-Test Plugin documentation at
https://www.qftest.com/en/jenkins.

29.5 JUnit 5 Jupiter
7.0+

In chapter 12(196) we described how to integrate JUnit tests into a QF-Test test suite,
which creates a common run log combining the results from the unit tests with those
from the other QF-Test test cases. With the help of the Java annotation @QFTest.Test
it is possible to go the opposite way and include QF-Test test suites into a Junit 5 test
case, integrating the results from the QF-Test test run into the JUnit test results. This
simplifies the inclusion of QF-Test test runs into Maven or Gradle builds, as well as
software development environments like Eclipse or IntelliJ IDEA.

To do so, extend the test class, which should include the execution of
one or several QF-Test test suites, with a method annotated with
de.qfs.apps.qftest.junit5.QFTest.Test. The method must return an object
of the type de.qfs.apps.qftest.junit5.QFTest, which is created using the
static method QFTest.runSuite or QFTest.runSuites. If required, this object can
be further configured e.g. to include QF-Test options or variables. The provided
methods are documented in the file doc/javadoc/qftest-junit5.zip inside the
QF-Test installation.

import de.qfs.apps.qftest.junit5.QFTest;
import java.io.File;
public class QFTestDemoTest
{

@QFTest.Test
QFTest demoTest() throws Exception {

// Get location of demo testsuite
final File qftestVerdir = QFTest.getVersionDir();
final File demo = new File(qftestVerdir,

"demo/carconfigSwing/carconfigSwing_en.qft");
return QFTest.runSuite(demo)

.withVariable("buggyMode","True")

.withArgument("-verbose")

.withReportOpen();
}

}

Example 29.3: Example of a JUnit 5 test case including a QF-Test test suite.

To execute the test it is required to include the following libraries from the QF-Test in-

29.6. TeamCity CI 381

stallation into the classpath:

• lib/truezip.jar

• qflib/qflib.jar

• qflib/qfshared.jar

• qflib/qftest.jar

If the project is based on Gradle build, you can apply the de.qfs.qftest gradle plugin
to automatically resolve those dependencies. For more information, refer to the plugin
homepage.

plugins {
id 'java'
id 'de.qfs.qftest' version '1.1.0'

}
repositories {

mavenCentral()
}
test {

useJUnitPlatform()
}

Example 29.4: Excerpt from a gradle.build file, which calls QF-Test during the JUnit
test run.

29.6 TeamCity CI

QF-Test can easily be integrated with TeamCity CI, so that tests are automatically ex-
ecuted by TeamCity CI and test results, run logs and HTML reports can be inspected
right through the TeamCity UI.

You can find step-by-step instructions for how to set this us in our blog post Integrating
QF-Test with TeamCity in three easy steps .

Chapter 30

Integration with Robot Framework

6.0+

30.1 Introduction

Robot Framework is a very popular framework for test automation and robotic process
automation (RPA). Based on Python, it comes with a plethora of ready-to-use keyword
libraries for many scenarios. Most of the time the decision will be to use either QF-Test
or Robot Framework, but there are situations where an integration makes perfect sense:
If you have an existing infrastructure based on Robot Framework or testers with in-depth
Robot Framework knowledge combined with the need for QF-Test’s unique abilities in
UI automation.

30.2 Prerequisites and installation

You need a current version of Python 3 installed.

If not already available, Robot Framework can be installed via pip install
robotframework. Robot Framework version 4 or higher is required.

The integration requires a bridge between Python and Java. JPype serves that role very
well. It needs to be installed via pip install JPype1.

QF-Test comes with a Robot Framework library called qftest that
Robot Framework needs to know about. It is located in the directory
.../qftest-9.0.4/ext/robotframework. You can either add that
directory to your PYTHONPATH environment variable or create a file called
qftest_robot.pth in the site-packages of your Python 3 installation - i.e
.../python3/Lib/site-packages/qftest_robot.pth - with just one line, the
full path to that directory.

30.3. Getting started 383

30.3 Getting started

Robot Framework talks to QF-Test via its daemon mode, so you need to start QF-Test
with daemon mode enabled as described in chapter 55(1193). For test development it is
best to use interactive daemon mode in which you can activate the QF-Test debugger
and step through your keywords at QF-Test level in addition to using the debugger of
whichever IDE you run your Robot Framework scripts from. So please start QF-Test
from the command line with

qftest -daemon -daemonport 5454 -keystore=

The port 5454 is just an example, choose whatever you like, but make sure you use the
same in your robot file as described below.

As explained in the documentation for the -keystore <keystore file>(919) com-
mand line argument, -keystore= tells the daemon to use unsecured communication,
which speeds up communication setup and should be OK for internal use on your local
machine. The third argument to the qftest library shown below should be ”false” if the
QF-Test daemon is started with -keystore= and ”true” otherwise.

Before creating your own Robot Framework tests with QF-Test you should try to run
the demo robot script provided with QF-Test to ensure that your setup is complete. It
is provided in the directory .../qftest-9.0.4/demo/robotframework. Please
change to that location and run

robot carconfigSwing_en.robot

The script should launch the Swing Carconfig demo application and perform a few clicks
and checks. If you run it several times you’ll see another great advantage of this integra-
tion: Becaus the application is started via the QF-Test daemon its lifetime is no longer
dependent on that of the Python process running the Robot Framework script. Sub-
sequent scripts can make use of the already running application and rely on QF-Test
dependencies (section 42.3(589)) to ensure a well-defined state.

SmartIDs (see section 5.6(72)) are ideal for specifying target components in Robot Frame-
work keyword calls. Unfortunately the leading ’#’ of SmartIDs introduces a comment in
Robot Framework so that it would always need to be escaped which significantly re-
duces readability. There is an option in QF-Test that makes it possible to treat every
Comment reference automatically as a SmartID if no Component(869) node exist with that
ID. Because the option is only for use with Robot Framework it can only be set at script
level as shown in the procedure ”use smartids without marker” in the robot.qft demo
test suite:

rc.setOption(Options.OPT_SMARTID_WITHOUT_MARKER, true)

30.4. Using the library 384

30.4 Using the library

As you can see in the file resource.txt in the Robot Framework demo directory, the
qftest library should be initialized as follows:

Library qftest localhost 5454 false ${SUITE}

The arguments are optional with the first three defining the host and port of the QF-Test
daemon to contact and whether to use a keystore or not. The fourth one defaults to
robot.qft and specifies the primary test suite from which to determine the keywords
that Robot Framework can use.

30.5 Creating your own keywords

The keywords for Robot Framework are determined by parsing the primary test suite
specified as argument in the Library definition of the robot script as well as all test suites
included directly or indirectly from that suite.

The @keyword doctag is used to designate a Procedure or an entire Package hierarchy
as keywords. Details are explained in section 62.2(1273).

Chapter 31

Keyword-driven testing with QF-Test

31.1 Introduction

The concept of keyword-driven testing allows business analysts and testers to describe
test cases without any deep QF-Test knowledge. Those test cases can either be de-
scribed in a meta-language or directly in a testmanagement system. QF-Test will then
read and execute those test cases. The implementation of the underlying test steps
inside QF-Test needs to be done by engineers having QF-Test knowledge.

Business testers and QF-Test engineers are free in defining the way how to describe test
steps. They can define a wide range of keywords like simple action-related keywords
(e.g. click a button) or more complex business-related keywords (e.g. create an object
inside the SUT). Combining test steps into a test case could be achieved by a strict
table-oriented approach like clickButton=OK or formulating the test steps in continuous
text like ”Close the dialog via click on ok”.

The following examples illustrate the most popular variants of defining test cases in a
keyword-driven manner. The demo test case will create a vehicle in the CarConfigurator
demo application of QF-Test.

Option 1: Business-related test steps (see section 31.2.1(388)). You find a sample at
qftest-9.0.4/demo/keywords/simple_business.

31.1. Introduction 386

Test step
Launch SUT, if necessary
Open vehicles dialog via Options -> Vehicles
Enter data (name and price)
Press new in order to create the vehicle
Press OK in order to close the dialog
Check creation of vehicle in table

Table 31.1: Test case using business-related keywords

Option 2: Atomic test steps (see section 31.2.2(391)). You find a sample at
qftest-9.0.4/demo/keywords/simple_atomic.

Test step
Launch SUT, if necessary
Select menu ’Options’
Select menu ’Vehicles...’
Fill text-field ’Name’
Fill text-field ’Price’
Press button ’New’ in order to create the vehicle
Press button ’OK’ in order to close the dialog
Check table, whether new created vehicle appears

Table 31.2: Test case using atomic keywords

Option 3: Behavior-Driven Testing (BDT) from a technical
perspective (see section 31.4.1(396)). You find a sample at
qftest-9.0.4/demo/keywords/behaviordriven.

31.1. Introduction 387

Test step
Given SUT is running
Given vehicles dialog is opened
When vehicle name is set to <name>
And vehicle price is set to <price>
And button new clicked
And button ok clicked
Then row with <name> and <formatted-price> appears in table
And column model has value <name>
And column price has value <formatted-price>

Table 31.3: Test case with Behavior-Driven Testing from a technical perspective

Option 4: Behavior-Driven Testing (BDT) with business
keywords (see section 31.4.2(399)). You find a sample at
qftest-9.0.4/demo/keywords/behaviordriven_business.

Test step
Given application is ready to enter vehicle data
When vehicle created with <model> and <price>
Then <model> with <formatted price> appears in table

Table 31.4: Test case with Behavior-Driven Testing from a business perspective

In the subsequent sections you will find a more detailed description of those variants
of keyword-driven testing with QF-Test. The concept of Behavior-driven testing (BDT)
is described in section 31.4(396). From a perspective of QF-Test BDT is just a special
variation of keyword-driven testing.

All samples use the CarConfigurator of QF-Test which is also provided by the instal-
lation. You can find all samples in the folder qftest-9.0.4/demo/keywords/. In
order to show the test planning aspects we provide Excel files containing the required
test steps. Of course you can also go ahead and use your testmanagement tool to plan
test steps. We are using Excel files as Excel is a very common piece of software and
reading Excel file is quite simple in QF-Test.

The section keywords with dynamic components (see section 31.3(392)) describes how
to use QF-Test just as test-executor without really recording steps within QF-Test. You
need to interact with QF-Test only in rare cases when applying this scenario.

Please take care to copy all test suites to a project-related folder first and modify them
there.

31.2. Simple Keyword-driven testing with QF-Test 388

31.2 Simple Keyword-driven testing with QF-Test

The simplest way of using keywords is to use existing procedures. Procedures can be
designed as business-related procedures or as atomic component-oriented procedures.
Business-related procedures perform real workflow in the application, e.g. creating a
new vehicle. Atomic component-oriented procedures perform very basic steps like click
the ok-button.

31.2.1 Business-related Procedures

As stated in the previous section business-related procedures represent a
real business workflow in your application. You can find a sample
at qftest-9.0.4/demo/keywords/simple_business/
SimpleKeywords.qft. The respective test-plan can be found at
qftest-9.0.4/demo/keywords/simple_business/ simple_keywords.xlsx.
Please take care to copy the demo folder to a project-related folder first and modify
them there.

The sample shows the ”Create vehicle” test case of the QF-Test CarConfigurator. It
consists of following test steps:

1. Launch SUT, if necessary

2. Open vehicles dialog via Options -> Vehicles

3. Enter data (name and price)

4. Press new in order to create the vehicle

5. Press OK in order to close the dialog

6. Check creation of vehicle in table

Let’s take a look at the Excel file now:

31.2. Simple Keyword-driven testing with QF-Test 389

Figure 31.1: Excel file business-related keywords

As QF-Test can read excel files row by row, we have decided to go for that excel struc-
ture. Reading that file follows the data-driven concept (see section 42.4(603)). It’s also
possible to use another structure of the excel file, but then we lose the advantage of
using the QF-Test functionality directly without any scripts or if-conditions.

In the first row we find the values teststep, value1 and value2. That row will
be interpreted as variable names by QF-Test. Every subsequent row will then contain
respective values for those variables. This mechanism allows QF-Test to walk through
that Excel file in order to execute the planned test steps.

Now let’s take a look at the test suite SimpleKeywords.qft. The test suite looks like
this:

31.2. Simple Keyword-driven testing with QF-Test 390

Figure 31.2: Test suite business-related keywords

31.2. Simple Keyword-driven testing with QF-Test 391

Node Purpose
Test set ”Scenario” Represents the container node for the test execu-

tion. This node could be omitted theoretically.
Dependency reference dependencies.sutStarted The concept of dependencies allows QF-Test to

manage the starting and stopping process of your
application in an intelligent way. Dependencies
can contain a strategy in case of any unexpected
behavior during test run. See section 42.3(589) for
details.

Test case ”Create vehicle” This node represents the implemented test case.
Teststep ”Walk through test steps” This node is required to read the excel file with a

data driver node.
Data driver ”steps from excel” A data driver reads the content of the Excel file row

by row.
Excel file ”steps from excel” Points to the Excel file.
Test step ”Generic test step” This node will be filled with the current test step

name from Excel during execution. This approach
will create a readable report.

Call procedure ”business.$(teststep)” Here the respective procedure defined in Excel is
called. The variable teststep will be filled with
the planned data of Excel because of the data
driver mechanism.

Table 31.5: Structure of SimpleKeywords.qft

All required procedures are implemented in the package business. In order to allow
a simple variable definition any steps in Excel use the variables value1 and value2.
Every procedure maps those generic names to the specific parameters of the procedure
itself.

31.2. Simple Keyword-driven testing with QF-Test 392

Figure 31.3: Procedure fillDialog

This concept requires that any used keyword has to be implemented in QF-Test already
before using it. If your steps require more than two parameters you need to extend the
excel file with more columns. In addition you need one test case node in QF-Test per
test case in Excel. You can make this more flexible, see section 31.5(400).

31.2.2 Atomic component-oriented procedures

Besides the already known business-related procedures representing workflows
you can describe every action individually. Applying this concept

31.3. Keyword-driven testing using dynamic or generic components 393

results in a very detailed description. You can find the sample test
suite at qftest-9.0.4/demo/keywords/simple_atomic/
SimpleAtomicKeywords.qft. The respective test-plan can be
found at qftest-9.0.4/demo/keywords/simple_atomic/
simple_atomic_keywords.xlsx. Please take care to copy the demo folder to a
project-related folder first and modify them there.

Let’s take a look at the ”Create vehicle” test case of the CarConfigurator again. The test
case now consists of the following steps:

1. Launch SUT, if necessary

2. Select menu ’Options’

3. Select menu ’Vehicles...’

4. Fill text-field ’Name’

5. Fill text-field ’Price’

6. Press button ’New’ in order to create the vehicle

7. Press button ’OK’ in order to close the dialog

8. Check table, whether new created vehicle appears

Similar to the business-related keywords you need to specify an Excel file containing
the planned test steps and you need to create the procedures in QF-Test as well. You
can find the implemented procedures in the package atomic of the test suite
qftest-9.0.4/demo/keywords/SimpleAtomicKeywords.qft. In case you
choose this approach you can also think about using the automated procedure
generation (see chapter 27(341)).

The next section describes how to use dynamic procedures. This means that we will
still write atomic component-oriented procedures in our test-plan, but there will be no
need to create a procedure for each and every step or component. Instead of individual
procedures we will create procedures like clickButton or setText. Those procedures will
then be re-used every time.

31.3 Keyword-driven testing using dynamic or generic
components

The previous section shows how we can apply keyword-driven testing to call various
procedures depending on the test-plan. But the graphical components and their recog-

31.3. Keyword-driven testing using dynamic or generic components 394

nition still stays in QF-Test and the respective procedures. This approach requires that
every procedure needs to be recorded or created before actually running the tests.

However, it’s also possible to specify the actual component
information directly in the test-plan. This plan should then be
interpreted by QF-Test. You can find a sample test suite at
qftest-9.0.4/demo/keywords/generic/Keywords_With_Generics.qft.
The respective test-plan can be found at
qftest-9.0.4/demo/keywords/generic/keywords-generic.xlsx. Please
take care to copy the demo folder to a project-related folder first and modify them there.

This approach depends on the concept of generic component recognition in QF-Test.
Generic component recognition allows the user to apply variables to the recorded com-
ponent information or to move components out of hierarchical component structure.
Please see section 5.8(81) for details.

Let’s go back to our sample test case. The test case ”Create vehicle” looks like this.

1. Launch SUT, if necessary

2. Select menu ’Options’

3. Select menu ’Vehicles...’

4. Fill text-field ’Name’

5. Fill text-field ’Price’

6. Press button ’New’ in order to create the vehicle

7. Press button ’OK’ in order to close the dialog

8. Check table, whether new created vehicle appears

As you can see the test case follows the same description like in the previous section
about atomic keywords.

The Excel file looks like this:

31.3. Keyword-driven testing using dynamic or generic components 395

Figure 31.4: Excel file of generic components

The used Excel file contains values like selectMenu or
dialog.clickButton for the teststep column. Additionally a new column
target was introduced. That new variable will be explained later. Like
in the previous samples you can find a demo implementation at
qftest-9.0.4/demo/keywords/generic/Keywords_With_Generics.qft.
You can find the respective procedures in the package generic. Please take care to
copy the demo folder to a project-related folder first and modify them there.

31.3. Keyword-driven testing using dynamic or generic components 396

Figure 31.5: Test suite for generic components

Let’s investigate the procedure selectMenu first. This procedure consists of a
mouse-click at the component GenericMenuItem. If we analyze that component in
the test suite, we see that the attribute class is set to MenuItem. We also see that
the attributes Name and Feature are empty, but there is one entry for the Extra
features table. This entry has the name qfs:label with the state Must match
and the value $(target). The next attributes Structure is empty again and the
values for Geometry are set to ’-’. You can details about the ’-’ at section 5.8(81).

This way of defining a component means that the recognition of that component relies
on the variable target. The variable itself is used in the extra feature qfs:label.
That extra feature qfs:label represents the best describing text of a component, e.g.
the text on a button or a label close to a text-field. The excel file got the column target
which contains the exact label of the respective target components. This method has
been applied to all other components as well.

31.4. Behavior-driven testing (BDT) 397

Another noteworthy aspect is the package dialog under the package generic. This
has been introduced because QF-Test also takes the window or dialog objects into
account in order to recognize the graphical components correctly. QF-Test also distin-
guishes between windows and dialogs. Standard windows which allow the user to work
within a second window of the application as well and so-called modal windows prevent-
ing the user to work in a second window of your application. In most cases it’s simpler to
separate those two kinds of windows in several packages. If you want, it might be possi-
ble to unify them in one window, but that’s not shown in the current samples. By the way,
you don’t need to separate between those window types if you test web applications as
there every component is part of a web-page.

In this section we have seen how to make the component recognition more flexible
using variables. Additionally we have created one procedure per action and type of
target component. This concept allows us to define all test cases within Excel. The
required procedures including the generic components have to be created at the be-
ginning of the project. Of course you can also mix this approach with some recorded
procedures. Those recorded procedures can then be used like business-related proce-
dures described in section 31.2.1(388))

31.4 Behavior-driven testing (BDT)

Besides the traditional concept of keyword-driven testing a second concept called
Behavior-driven testing (BDT) is widely being used. Tools for behaviour driven testing
like Cucumber/Gherkin can easily be integrated into QF-Test (please contact Quality
First Software GmbH for a description about how to set up and configure BDT with
QF-Test). Using this approach allows testers to describe test cases more or less in
continuous text and sentences. But the tester needs to follow a predefined vocabulary
at the beginning of the sentence. Test cases described like this can be more readable
for persons without any knowledge of the test cases. Test cases can be described from
a technical perspective (see section 31.4.1(396)) or from a business perspective (see
section 31.4.2(399)) like in keyword driven testing. You find samples for both variants in
the following sections.

31.4.1 Behavior-Driven Testing (BDT) from technical perspective

Describing a test case from a technical perspective using Behavior-Driven Testing
(BDT) uses more or less elementary actions for designing a test case. You can find a
sample test suite at qftest-9.0.4/demo/keywords/behaviordriven/
BehaviorDrivenTesting.qft. The respective test-plan can be found at
qftest-9.0.4/demo/keywords/behaviordriven/ createvehicle.xlsx.

31.4. Behavior-driven testing (BDT) 398

Please take care to copy the demo folder to a project-related folder first and modify
them there.

The ”Create vehicle” test case looks like this if it’s described in the BDT manner from a
technical view:

1. Given SUT is running

2. Given vehicles dialog is opened

3. When vehicle name is set to <name>

4. And vehicle price is set to <price>

5. And button new clicked

6. And button ok clicked

7. Then row with <name> and <formatted-price> appears in table

8. And column model has value <name>

9. And column price has value <formatted-price>

BDT requires to use the terms Given, When, And and Then at the beginning of any
sentence. You will find more information about this approach in the testing literature.

QF-Test requires matching procedures for above test steps, so we need to build re-
spective procedures again. It’s an established method to divide the BDT-keywords in
separate packages. The provided test suite therefore contains the packages Given,
When_And and Then.

31.4. Behavior-driven testing (BDT) 399

Figure 31.6: Test suite Behavior-driven testing technical

The provided sample test suite contains all procedures in the respective packages, e.g.
a procedure vehicles dialog opened inside the package Given. In order to pre-
vent annoying typos a Server-script read test steps and fix typos formats any
steps to lower case and tries to replace multiple blanks by one. This script is called di-
rectly before the procedure call of $(teststep).

In order to run the test case on multiple test data the sample was extended.

Of course you can apply the concept of generic component recognition as described in
the previous section (see section 31.3(392)). To that end you would need to specify a very
exact description or implement a script filtering the target components from the test step

31.4. Behavior-driven testing (BDT) 400

itself.

31.4.2 Behavior-Driven Testing (BDT) from business perspective

Describing test cases from business perspective using Behavior-Driven Testing (BDT)
requires actions from a user’s point of view. So those actions contain several
interactions likes mouse-clicks or text-inputs. You can find a sample test suite
at qftest-9.0.4/demo/keywords/behaviordriven_business/
BehaviorDrivenTesting-Business.qft. The respective test-plan can be found
at qftest-9.0.4/demo/keywords/behaviordriven_business/
createvehicle-business.xlsx. Please take care to copy the demo folder to a
project-related folder first and modify them there.

The ”Create vehicle” test case looks like this if it’s described in the BDT manner from a
business perspective:

1. Given application is ready to enter vehicle data

2. When vehicle created with <model> and <price>

3. Then <model> with <formatted price> appears in table

This approach uses the keywords Given, When, And and Then at the beginning of any
sentence like the technical one. The provided test suite therefore contains the packages
Given, When_And and Then.

31.5. Scenario files 401

Figure 31.7: Test suite Behavior-driven testing from business perspective

In order to prevent annoying typos a Server-script read test steps and fix
typos formats any steps to lower case and tries to replace multiple blanks by one.
This script is called directly before the procedure call of $(teststep).

In order to run the test case on multiple test data the sample was extended.

31.5 Scenario files

Apart from defining single test cases you can also specify the entire test scenario in
Excel files or even within your test management tool. In our sample we will go on using
Excel to keep things simple. Of course it’s also possible to use your testmanagement
tool there. For reasons of simplification we have used Excel files again. You can find a

31.5. Scenario files 402

sample test suite at qftest-9.0.4/demo/keywords/generic_with_scenario/
Keywords_With_Generics.qft. The scenario itself can be found in
qftest-9.0.4/demo/keywords/generic_with_scenario/
scenario.xlsx. All used test cases are described in a separate excel file,
see qftest-9.0.4/demo/keywords/generic_with_scenario/
keywords-generic-testcases.xlsx. Please take care to copy the demo folder to
a project-related folder first and modify them there.

The provided scenario consists of two test cases using the concept of generic proce-
dures and components (see section 31.3(392)). You can use any other approach, if you
want.

Let’s take a look at the scenario Excel file.

Figure 31.8: Excel file as scenario file

The worksheet ”Scenario” contains a column ”testcase”. This value will be used as vari-
able later. Each subsequent row represents a test case name. Those test cases cor-
respond with the worksheets in keywords-generic-testcases.xlsx. The work-
sheets ”tc_createvehicle” and ”tc_createvehicle_cheap” contain the respective test case
description.

How does the test suite look like?

31.5. Scenario files 403

Figure 31.9: Test suite scenario file

31.6. Custom test case description 404

Node Purpose
Test set ”Generic samples with scenario” Represents the container node for the test execu-

tion. This node could be omitted theoretically.
Dependency reference dependencies.sutStarted The concept of dependencies allows QF-Test to

manage the starting and stopping process of your
application in an intelligent way. Dependencies
can contain a strategy in case of any unexpected
behavior during test run. See section 42.3(589) for
details.

Data driver ”scenario” Here we read the required test cases to execute.
Excel file ”test cases” Points to the scenario excel file.
Test case ”Generic test case” This node represents the implemented test case.
Teststep ”Walk through test steps” This node is required to read the test steps from

the excel file with a data driver node.
Data driver ”steps from excel” A data driver reads the content of the Excel file

describing the test case row by row.
Excel file ”steps from excel” Points to the Excel file describing the test case.
Test step ”Generic test step” This node will be filled with the current test step

name from Excel during execution. This approach
will create a readable report.

Call procedure ”generic.$(teststep)” Here the respective procedure defined in Excel is
called. The variable teststep will be filled with
the test data of Excel because of the data driver
mechanism.

Table 31.6: Structure of Keywords_With_Generics.qft

31.6 Custom test case description

The previous sections show all samples using Excel files. As already mentioned it’s also
possible to use different file-types, e.g. XML or CSV files. But you can also think about
evaluate the result of a web-service. Therefore, you will need to implement Server-
scripts reading the required information like test step name, component names or vari-
ables for QF-Test. Setting variables can be achieved by the methods rc.setLocal
bzw. rc.setGlobal.

Once those variables have been set it will become necessary to call test case or pro-
cedures. Therefore, you can use the methods rc.callTest or rc.callProcedure.
You can find a full API description at chapter 11(168).

You can also find a few samples in the provided test suite of the manual tester
(qftest-9.0.4/demo/manualtester) or in the integration of the imbus TestBench
(qftest-9.0.4/ext/testbench).

31.7. Adapting to your software 405

31.7 Adapting to your software

All examples make use of the CarConfigurator of QF-Test. You can use those samples
as templates to adapt the existing concept to your strategy of keyword-driven testing.
The provided samples can only act as templates because of the huge variety of ways of
creating applications and the many different testing strategies. They will never serve as
out-of-the-box solution without any need of adapting them. In order to find a matching
solution to your project you can also get in touch with our support team.

Nevertheless you can find a full sample for the CarConfigurator at
qftest-9.0.4/demo/keywords/ full_sample_for_carconfig. The sample
uses the concept of scenario files as described in section 31.5(400).

31.7. Adapting to your software 406

Technology Necessary Adjustments
JavaFX

1. Replace the value awt with fx in the attribute GUI engine on all window com-
ponents.

2. Perhaps you need to extend the recorded window components with additional
variables.

3. You need to adapt the procedure startStop.startSUT in order to start your
application. Simply copy the created steps from the quickstart wizard.

4. You might possibly have to create some resolver scripts to tune component
recognition.

Java/Swing

1. Perhaps you need to extend the recorded window components with additional
variables.

2. You need to adapt the procedure startStop.startSUT in order to start your
application. Simply copy the created steps from the quickstart wizard.

3. You might possibly have to create some resolver scripts to tune component
recognition.

Java/SWT

1. Replace the value awt with swt in the attribute GUI engine on all window com-
ponents.

2. Perhaps you need to extend the recorded window components with additional
variables.

3. You need to adapt the procedure startStop.startSUT in order to start your
application. Simply copy the created steps from the quickstart wizard.

4. You might possibly have to create some resolver scripts to tune component
recognition.

Web

1. Replace the window component with a Web page node.

2. As dialogs are already part of the web page you don’t need to keep them sepa-
rated and can create a component within the web page..

3. You need to adapt the procedure startStop.startSUT in order to start your
application. Simply copy the created steps from the quickstart wizard.

4. You might possibly have to tune component recognition using the CustomWe-
bResolver concept.

Table 31.7: Necessary adaptions to your SUT

Chapter 32

Usage of QF-Test in Docker
Environments

32.1 What is Docker?

Docker is a free virtualization software that makes it very easy to install and run arbitrary
applications on physical computers or in the cloud.

Docker was originally developed for the Linux operating system. Docker is now also
available for other platforms, including Microsoft Windows and macOS. The virtualiza-
tion software also runs on cloud services such as Amazon Web Services (AWS) and
Microsoft Azure.

Unlike virtual machines, Docker containers are much more resource-efficient, as they
do not require the installation of a guest operating system.

32.2 QF-Test Docker Images

Since QF-Test version 6.0.3 official Docker images have been available, which allow to
virtualize QF-Test relatively easy. To enable different application scenarios, there are
currently 4 different Docker images per QF-Test version on Docker Hub. The exact
details and application possibilities for those individual images are also described there.

There is an image with and without preinstalled web browser especially for web tests as
well as a variant with or without additional VNC server, which allows the visual control
of the test execution as well as possibly necessary debugging of tests.

The provided images only serve as a basis for your own application scenarios and can
be extended accordingly by using them as a base image in a Dockerfile.

32.2. QF-Test Docker Images 408

In February 2023, a special webinar took place about using Docker with QF-Test. After
a bit of theory the detailed steps of using the QF-Test images from Docker Hub.

Here you can find theVideo

special webinar video recording
https://www.qftest.com/en/yt/docker-special-webinar.html

available on our QF-Test YouTube Channel.

Chapter 33

Performing GUI-based load tests

Video:Video

Load testing
https://www.qftest.com/en/yt/loadtests-5.1.html

33.1 Background and comparison with other
techniques

In addition to functional and system tests, QF-Test can also be used to perform load
tests, stress tests or performance tests. The idea is to test the performance of some
server applications by running a number of GUI clients concurrently.

Performance is measured by running multiple GUI clients in parallel. QF-Test enables
you to measure the actual end-to-end response times (the time span from user action
until the result shows up). For the following paragraphs we will use the term load testing.

There are many different ways for setting up and performing load tests, most of which
are not using real GUI clients. Instead they directly make use of the protocol between
the client and server, e.g. by sending HTTP request or performing RMI or other kinds of
remote procedure calls.

There are a number of pros and cons for protocol-based or GUI-based load testing:

• Use of resources:
Protocol-based testing uses very little resources at the client side, so it can easily
scale up to the breaking point of the server without requiring too much hardware.
GUI-based tests incur the full memory and performance overhead for each client,
which can be quite significant, especially in case of Swing- or JavaFX-based rich
clients. In addition, every client creates a GUI and, therefore, a real active user

33.1. Background and comparison with other techniques 410

session is required.

• Efforts creating tests:
Rich clients typically represent a complex user interface, which correlates with a
certain complexity of the client/server API. Creating protocol-based tests that cover
most of that API can be quite an effort. On the other hand, GUI-based tests that
have already been implemented for functional testing may be available for reuse.
If not, it is still much easier to automate complete use cases with QF-Test than at
protocol level.

• Measuring response times:
With GUI-based testing, actual end-to-end response times (the time span from
user action until the result shows up) are measured, while protocol-based tests
measure only the times for the server call. Either can be useful, depending on the
situation.

In some cases it can be quite reasonable to combine both approaches. You can think
about running GUI tests on a few systems in order to measure those end-to-end times
and in parallel you can trigger protocol-based tests in order to create some load.

In summary, GUI-based load tests can be very useful and efficient - especially if func-
tional tests can be reused - provided that either the number of clients that need to be
simulated is not too high, or that sufficient hardware is available for the client side.

At the end of this section here is a overview diagram showing all involved systems.

33.2. Load testing with QF-Test 411

Figure 33.1: Load testing scenario

33.2 Load testing with QF-Test

As load testing is a sophisticated subject QF-Test provides a demo tests-suite which
can be used as initial point for your project. You can find that demo solution at
qftest-9.0.4/demo/loadtesting/. This folder contains the following files:

33.2. Load testing with QF-Test 412

File Purpose
Systems.xlsx You can configure which test systems are involved in the test run.

Furthermore you can configure global variables for the test run
there.

carconfig_Loadtesting.qft This test suite contains the GUI tests which will get executed on
the test systems.

daemonController_twoPhases.qft This test suite represents the controlling test suite for the entire
test run. Using this test suite allows you to launch and co-ordinate
the test run on multiple systems.

checkForRunningDaemons.qft This test suite contains test cases to check for running daemon
processes on individual test systems.

Table 33.1: Content of load testing directory

The test suites and files mentioned above can be applied to a load testing project which
makes use of multiple test systems. Please take care to copy the demo folder to a
project-related folder first and modify them there. The subsequent figure shows an
illustration:

33.2. Load testing with QF-Test 413

Figure 33.2: Overview load testing project

The provided sample test suite for controlling the test run looks like this:

33.2. Load testing with QF-Test 414

Figure 33.3: Sample test suite daemonController_twoPhases.qft

In order to execute load tests with QF-Test you should take care of the following:

1. Provision of test systems

2. Conception of the test run

3. Preparing test systems prior to the test run

4. Test execution

5. Evaluating results

You can find brief explanations as well as some hints for each item in the following
sections.

For tips on how to do parallel website testing with QF-Test read our blog post RunningNote
Website Tests in Parallel with QF-Test .

33.2. Load testing with QF-Test 415

33.2.1 Provision of test systems

You perform load tests with QF-Test via the GUI. GUI tests require an active user session
and shouldn’t get executed in parallel at the same desktop. That’s why we recommend
to set-up a virtual or physical system for every client involved. It’s indeed possible to run
multiple GUI tests in parallel on the same desktop, but this can end up in very subtle
problems, e.g. issues with the current focus. That’s why running multiple GUI tests on
the same desktop is not recommended and should only be taken into consideration in
exception.

QF-Test needs to be installed on every system. In addition, the required test suites,
the configuration file of QF-Test and necessary test data files need to be deployed to
the test systems as well. You can either copy those files to every system locally or you
establish a common network share. Furthermore, every test system requires at least a
runtime license in order to run the tests. QFS offers to lease such runtime licenses even
for a certain period of time.

33.2.2 Conception of the test run

The simplest case is to run the same test on all involved test systems. However, many
load testing projects require different sets of GUI tests to be executed. You can think
about running tests for various roles of users or user groups. A possible group can
represent standard users another some kind of administrator users.

Besides designing the test run for multiple roles load tests are often split into several
phases. A phase represents a certain thematic priority. As an example you can divide
your project into four phases. The first phase stands for the ”Launch” phase. There,
the SUT is getting launched on all involved test systems and some initial actions as
the log-in can take place. During the second phase 50 clients perform their specific
test-scenario. The third phase is performed using 100 clients and the final fourth phase
downgrades to 50 clients again. This kind of scaling is also called ramp-up phase (in-
crementally increasing load) and ramp-down phase (incrementally decreasing load).

Such a conception using several phases increasing the load allows you to test the load
capacity of your application in several steps. Like this you will get the information that
your application was ok in phase one and problems occurred in the second phase, rather
than just a statement about all or nothing.

Using several phases makes sense if multiple roles are the actual focus of your tests.
In some cases launching the application on all involved test system can break the envi-
ronment. So you can think about splitting your project at least into a ”launch” phase and
”test” phase.

You should create one test suite per role to keep track of your test cases.

33.2. Load testing with QF-Test 416

Implementation in the sample test suite:
You can find a sample project with two phases in the provided controller test suite
daemonController_twoPhases.qft The first phase (Launch Phase Phase)
launches the application. The second phase (Test Phase) represents the actual test
phase. You can configure the required test suite in the corresponding Run...Phase
test nodes of each phase.

The provided sample focuses on several roles instead of phases. In case you would
like to create a third phase, simply copy the test node Test Phase and rename it
accordingly.

33.2.3 Preparing test systems prior to the test run

You need to launch the QF-Test daemon before you can start your test run. This QF-
Test daemon requires a vacant network port. In order to work effectively we recommend
to use the same port on all systems, e.g. 5555.

You can launch the daemon like this:

qftest -batch -daemon -daemonport 5555

Example 33.1: Launching QF-Test daemon

Please note, that the daemon needs to be started in an active user session. You can
accomplish this using tools like the task planer. You can find further details about the
daemon at section 25.2(320). Chapter Hints on setting up test systems(443) contains useful
tips and tricks to set-up the daemon process. In FAQ 14 you can find technical details.

If you want to check whether the daemons are up and running you can either run
individual ping commands of the daemon or you run the provided test suite
checkForRunningDaemons.qft.

qftest -batch -calldaemon -ping -daemonhost localhost -daemonport 5555

Example 33.2: Ping of QF-Test daemon at localhost

On Windows you should use the command qftestc.exe instead of qftest.exe forNote
every command.

33.2.4 Test execution

During test execution you will need some scripts that will contact the various QF-Test
daemons in order to co-ordinate the test run. Such scripts can use QF-Test’s daemon

33.3. Hints on test execution 417

API (see section 55.2(1194)) or its command line (see chapter 44(908)).

Implementation in the sample test suite:
The provided test suite daemonController_twoPhases.qft allows you to run such
a load testing scenario and collect the run logs of the test runs afterwards. In the
provided Excel file Systems.xlsx you can configure which test systems should be
involved. That files also contains some variables to organize your tests in roles as de-
scribed in section 33.2.2(414).

Once all test systems have been correctly configured you can start the test run via
running the entire test suite.

Besides the pure execution of such a load testing project you can also meet further
requirements. The provided test suites shows samples for the following aspects:

1. Synchronizing the test run on several test systems, see section 33.3.1(416).

2. Measure end-to-end times, see section 33.3.2(418).

33.2.5 Evaluating results

Evaluating results can become quite challenging just because of that huge amount of
data. You can analyze the QF-Test run logs as well as the QF-Test reports. Perhaps
you receive some measurements at server side or you find a couple of logs which you
can analyze by specific tools.

During test execution you can also create custom log-files with QF-Test as described in
section 33.3.2(418) for details.

33.3 Hints on test execution

33.3.1 Synchronization

To get consistent results, it may sometimes be necessary to coordinate the tests in the
parallel threads, either to make sure that all clients access the server simultaneously,
or to prevent just that. Furthermore, a role (see previous section) might require all test
systems to be in a certain state before running a specific action.

Test runs can be synchronized with the help of a Server script(670) node. That script should
contain the following:

rc.syncThreads("identifier", timeout, remote=3)

33.3. Hints on test execution 418

identifier is a name for the synchronization point, timeout is the maximum time in
milliseconds to wait for all threads to reach the given synchronization point and remote
specifies how many systems should wait for that synchronization point.

If the timeout is exceeded without the expected number of threads reaching the syn-
chronization point, a TestException(896) is thrown. To log an error instead of raising
an exception, set the optional parameter throw to 0 (default value 1) or you pack that
Server script(670) step into a Try step.

rc.syncThreads("case1", 120000, remote=3, throw=0)

You can find a sample implementation in carconfig_Loadtesting.qft.

Figure 33.4: Call of rc.syncThreads in demo test suite

33.4. Troubleshooting 419

33.3.2 Measuring end-to-end response times

It’s a very common requirement for GUI tests to measure end-to-end response times.

QF-Test logs those times into its run log. Instead of having to parse that run log in order
to retrieve those values you can implement a so-called TestRunListener to write a
dedicated log file, which just contains the required measurements.

In order to measure the interesting parts, you will need to mark your test steps or se-
quence using a dedicated keyword. The provided sample implementation uses the key-
word @transaction for that purpose. If you want to use another keyword, you have to
change the code of the provided TestRunListener.

In the provided sample test suite all measurements will be logged into a simple CSV file.
That CSV file can be used later for the actual evaluation by another tool. Furthermore,
writing that CSV file doesn’t brake the test run. If you want to create Excel files or fill
databases in order to evaluate the results you should do that after the test run due to
performance reasons.

You can find details about the TestRunListener at section 54.6(1140). The sample imple-
mentation can be found in carconfig_Loadtesting.qft.

The created CSV file looks like this:

open vehicles;118;20150921145057;OK
close vehicles;84;20150921145057;OK

Example 33.3: CSV file for time measurements

In that CSV file the first value represents the name of the measurement, the second
value stands for the duration of the action in milliseconds, the third shows the time when
the step was performed, the fourth value shows whether the step was successful.

33.4 Troubleshooting

Due to the complexity of load testing projects you may face issues in several areas.

1. Why are wrong test cases executed?

Adapt the variable testsuite in the respective test case. You can also address
a test case directly via testsuite#testset.testcase.

2. The QF-Test daemon cannot be started.

Is the network port vacant? You can check this using the netstat command.
Here is a sample for the port 5555.

33.5. Web load testing with headless browsers 420

netstat -a -p tcp -n | findstr ”5555”Windows

netstat -a --tcp --numeric-ports | grep 5555Linux

3. The test systems cannot be reached although the QF-Test daemon is running.

Check whether the QF-Test daemon can be reached on the test-sytem, see
section 33.2.1(414). If the QF-Test daemon is running, please perform following
steps:

(a) Can you reach the QF-Test daemon on the local systems using the ping com-
mand, see section 33.2.3(415)?

(b) Ensure that the daemon or its Java process is not blocked by your system
firewall.

(c) Perhaps there are issues resolving the host name of your test system. Then
try to launch the daemon with the additional parameter -serverhost
localhost or -serverhost IP address or -serverhost <host
name>. In case you use the IP address, please also access that system
using the IP-address, otherwise use the host name.

33.5 Web load testing with headless browsers

For loadtesting of web applications you may also use a browser in headless mode. The
advantage is the browser does not have a GUI and therefore does not need its own
user session. The drawback is that the GUI test then has some restrictions compared
to ’normal’ browser tests:

• Hard and semi hard mouse clicks as well as drag and drop operations have to
be simulated via the browser interface and thus may have a somewhat different
behaviour from ’normal’ browser tests.

• Screenshots can be generated, but may have a slightly different optic from the one
with a normal browser as there is no GUI where the picture could be taken from.

• The application itself has to be runnable on several browser instances in the same
user session.

For further informationen on headless browsers please see section 14.7(213).

Chapter 34

Executing Manual Tests in QF-Test

3.0+

34.1 Introduction

QF-Test is primarily a tool for the creation and execution of automated tests. However, it
is rarely possible - or economical - to automate 100% of the required tests for a project.
In most projects some manual tests need to be performed as well. One of the biggest
challenges in testing a project is consolidating the different results and reports of auto-
mated and manual testing to get an overview about the execution status of all tests. To
facilitate reporting the results of manual test execution along with those of automated
testing, QF-Test now offers the capability of tracking manual tests from within itself.

The steps to be performed during a manual test have to be defined in an Excel file which
is read by a test suite called ManualTestRunner.qft. This test suite is provided
along with a sample specification file in the directory demo/manualtester below the
QF-Test installation directory. The test designer has to specify each step in that Excel file
including the expected result. After stepping through the manual tests QF-Test provides
the usual results - a run log, HTML and XML reports. Additionally, a newly created
Excel file with the results of the respective test run is created. For a detailed description
please see section 34.2(421).

The dialog used for the test execution is called ManualStepDialog and looks like this:

34.2. Step-by-step Guide 422

Figure 34.1: Example for a ManualStepDialog

The title of the dialog shows the name of the test case. The detailed step description
and the expected result are shown in the first two text-boxes. After performing the test
the tester has to specify whether the test succeeded or not. In case the test failed the
tester also has to enter the received result which is intended to show the differences
between the actual and the expected result. This dialog can also be used for your own
purposes, see section 57.1(1218).

34.2 Step-by-step Guide

Please perform the following steps on your system to launch a manual test from QF-
Test.

• Copy the definition Excel file from
qftest-9.0.4/demo/manualtester/SampleTestDescription.xlsx to
your project location and rename it to a suitable name. We recommend to use the
same path on all test systems. Perhaps you can make use of a shared network
drive.

34.3. Structure of the Excel file 423

• Also copy the execution test suite from
qftest-9.0.4/demo/manualtester/ManualTestRunner.qft to your
project location. You may want to rename it as well.

• Open the Excel file and define the test steps.

• After saving the changes to the Excel file, open the execution test suite and adapt
the global variable testFile variable to target your specific Excel file.

• Turn off the QF-Test debugger. It would only interfere with the steps of the manual
tester.

• Start the test suite via selecting the test suite node and pressing ”Start test run”.

• QF-Test will now read the data from the Excel file and open a dialog containing the
first test step.

• Enter the result of the test step and proceed with executing each test step.

• At the end of the test execution QF-Test will write a new Excel file containing the
test description and the according results. You can also store the run log of that
execution or create an HTML report.

Please read the comments in the test suite and Excel file carefully, because you can
adapt this concept according to your needs. It is even possible to start only specific
tests.

34.3 Structure of the Excel file

The Excel file has a specific structure which allows you to describe the manual test
steps quite flexibly. The meaning of the columns is explained in the following table:

Column Description
TestCase A unique identifier for each test case. If the step belongs to the same test case as

the previous step, just leave this column empty.
Type of Test Optional definition of the kind or function of the test or step, e.g. a functional test

or a usability test, startup, etc.
Comment An individual comment for the test case. This comment will be shown in the run

log of QF-Test.
Short Description A short description about the content of the test.
Step Description The detailed description of the manual step.
Expected Result The description of the expected result of that test step.

Table 34.1: Description of the Excel file for the definition of manual tests

34.4. The ManualTestRunner test suite 424

The Excel file with the results of the manual test execution will contain two additional
columns as follows:

Column Description
Received Result The result the tester received during test execution. If a test step fails, the tester

must specify a received result.
State The state of the test, i.e. PASSED, FAILED, CANCELED or SKIPPED.

Table 34.2: Description of the Excel file with the results of manual tests

34.4 The ManualTestRunner test suite

The ManualTestRunner.qft test suite contains some global variables at suite-level
which provide fine-grained control over test run. These are explained in the following
table. All variables not listed here are used internally by the test suite and should not be
changed.

Global Variable Description
testFile The path to the test step definition Excel file.
testSheet The worksheet of the Excel file containing the test steps.
resultSheet The name of the worksheet for the results.
tests A list of tests to be intended to execute. If this variable is empty, all tests will be

executed. If you want to execute only test 5 and 6, you can specify 5,6 or 5-6.
It is even possible to specify things like: 1,3-5,7 to execute the tests 1, 3, 4, 5
and 7.

defaultState The default selection of the state. You can set it either to PASSED or FAILED. All
other states will be converted to FAILED.

testCaseColumn The heading of the column containing the test case number.
commentColumn The heading of the column containing the comment.
shortDescColumn The heading of the column containing the short step description.
stepDescColumn The heading of the column containing the full step description.
expResultColumn The heading of the column containing the expected result.
recResultColumn The heading of the column containing the received result.
stateColumn The heading of the column containing the state of the test.

Table 34.3: Description of the global variables in the ManualTestRunner test suite

34.5. Results 425

34.5 Results

An executed test step can be set to one of the following states:

Result Description
PASSED The test step was successful.
FAILED The test step failed.
CANCELED The test step was canceled.
SKIPPED The test step was skipped.

Table 34.4: States of manual test execution

Part II

Best Practices

Chapter 35

Introduction

This part of the manual describes best practices based on lessons learned from several
customer projects and user feedback. The concepts described should assist you in
finding the best strategy for using QF-Test in your projects.

QF-Test is a very generic tool. The hints and experiences described here are just sug-Note
gestions from our point of view, which we hope will support you in working efficiently
and successfully with QF-Test in your project. But they are just one way of doing things
and you will have to find your own solution that works best for your specific project.

Chapter 36

How to start a testing project

This chapter talks about the most important aspects that should be considered before
you start to use QF-Test widely in your testing project. It mostly raises questions and
gives general answers with references to more detailed information.

The aim of this chapter is to provide hints about issues which you should take care of in
order to make your GUI tests reliable, stable, repeatable and especially maintainable.

36.1 Infrastructure and testing environment

Before you start creating and running automated tests you should think about some
general matters pertaining to the environment where the tests have to run. In order to
make tests reliable and repeatable you have to take into account that you must be able
to bring your SUT into a well-defined state, which includes the state of its backend, e.g.
a server and/or a database. If you do not think about such aspects it might become very
difficult and sometimes quite tricky to rerun a test or simply to analyze test results and
maintenance of tests can become a nightmare.

Please consider the following topics:

1. What is the initial state of your SUT?

• Which user is the actual user running the tests in your SUT? Most projects
work with dedicated test users for running tests. Another approach could be
to have one test user per test engineer.

• Which language setting of your SUT is the primary one? Is it really required
to reach a full coverage of all supported languages or is it sufficient to run the
bulk of the tests in one primary language and create only a few tests to specifi-
cally test localization? In most cases repeating tests in several languages just

36.1. Infrastructure and testing environment 429

covers the same functionality, so you gain no real new information after run-
ning them. However, unless you take precautions, the language setting will
influence the component recognition of QF-Test, please see section 5.3(49) for
details.

2. What is the initial state of your database?

• Can you work with an extra test database or do you have to use a produc-
tion database? Test databases contain test data with designed and planned
content whereas production databases contain real-life data. Is the latter pre-
dictable and reliable? What about the danger that tests can mess with and
possibly destroy production data? If at all possible you should avoid running
automated tests in a production environment.

• Can you clean up or reset the environment after one test run for rerunning the
test? Is it possible to undo changes in the database or is it required to use
new test data for the next regression phase?

• How can you read or write test data? Do you want to use standard SQL
scripts or can you reuse libraries from development? Some projects even
reinstall the whole database before every test run because they cannot reuse
any test data or clean the database correctly.

3. Do you want to integrate QF-Test with other tools, e.g. build tools or test manage-
ment tools?

• How to integrate QF-Test with a test management tool? If you can reuse
already planned test steps you can avoid redundant work in planning tests
and creating them. For the standard integration for such tools, please see
chapter 28(346).

• Should test’s be launched by a build-tool? If you have created tests you
can run them unattended and trigger the run by a build-system like Ant or
CruiseControl. Please see chapter 25(314) for details about test execution.

• Should test results be uploaded to a reporting system or into a test manage-
ment system or is it more sufficient to put the HTML reports and run logs on
a centralized HTTP-server?

4. Who will work with QF-Test?

• Do only one or two engineers work with QF-Test or do all developers and
business testers participate in test development? You can find some hints
about working in a team with different roles in section 37.5(436).

• What are the skills of the engineers? It is recommended to have at least
one dedicated person with a good QF-Test knowledge in the team, who is
also capable of implementing scripts and understanding software develop-
ment principles.

36.2. Location of files 430

Of course there will be more issues to take care about which are specific for your project.
Try to figure them out.

36.2 Location of files

You should also think about following aspects of saving or installing files:

1. Where to install QF-Test to? QF-Test can be installed locally on every system but
this forces you to update every system manually whenever you need to upgrade
to a new version. You can also install QF-Test on a shared network drive, if your
network is reliable, see section 36.2.1(430) for details.

2. Where to store the configuration file qftest.cfg? Among other things that file
contains information about how QF-Test should recognize components or what
should go into the run log. These options have to be the same for every QF-
Test user, otherwise you cannot share tests in your team. To ensure that you
can either use a shared network installation for QF-Test or specify the config file
via command line parameters when launching QF-Test. Make sure the shared
config file is write-protected unless you explicitly want to change it. For details,
see section 1.6(11).

3. Where to store the license file license? You should put the license file to a
central place in order to update the license only once when you receive an update
for it. Again, you can either have a shared network installation for QF-Test or can
use command line parameters to specify the location of that file when launching
QF-Test. For details, see section 1.5(9).

4. Where to store the test suites? The best place to store test suites is a version
management system where you can track the changes and access any version of
the files. If this is not possible you should store them on a shared network drive.

5. Where to store the test data files? Test data files are associated with test suites
so you should store them closely to the suites, i.e. either in the same version
management system or on a shared network drive.

6. Where to store the HTML reports and run logs? You should put those files in a
centralized place where any engineer can take a look at them to evaluate the test
results. Most people tend to use an HTTP server or a shared network drive for
that.

36.3. Component Recognition 431

36.2.1 Network installation

If you plan to install QF-Test on a shared network drive you have to take care about
some specific things.

The main source of conflict is the system settings file qftest.cfg. It is actually a good
(and necessary) thing to have all users use the same system settings, especially for
the recognition options. Sharing the system settings file facilitates this. However, this
file should be made read-only so that one user will not inadvertently change the system
settings for everyone. If the file is read-only, QF-Test will not save the system settings
upon exit. Any change to these settings will have to be made by explicitly making that
file writable, then exiting QF-Test and then making it read-only again. Alternatively each
user could specify a different system settings file via -systemcfg <file>(927) but that’s
not advisable.

The running QF-Test instances will also share the log directory (internal logging, not a
problem) and the Jython package cache which can occasionally cause problems so that
QF-Test cannot initialize its Jython interpreter. This doesn’t happen often and can be
fixed by clearing (not removing) the Jython cachedir.

For Windows, each user should also execute the setup.exe for the primary QF-Test
version, located in the installed qftest-x.y.z directory, to get proper registry settings and
documentation links on his machine.

In the rare case when a QF-Test patch overwrites existing jar files of QF-Test, running
instances based on those jars may crash on Windows.

36.3 Component Recognition

The most important aspect of a GUI testing tool is a stable and reliable recognition of
the graphical components. In that area QF-Test is very flexible and can be configured
in several ways. In most cases the default configuration for the component recognition
works well, but sometimes you may have to change it.

If you change the component recognition options after creating lots of test cases, those
test cases may break. Therefore you should try to find the most appropriate settings for
your project as early as possible. It is worth spending time in that area before starting
to implement a huge amount of tests because in the worst case you might have to re-
record or at least update all or most of the existing test cases after a critical change of
the recognition options.

Best start by recording some demo test cases and figure out how QF-Test recognizes
your SUT’s components. The recognition mechanism is described in chapter 5(42) and
section 5.9(82). If you rerun those demo test cases - ideally on different versions of your
SUT - and run into recognition problems, you have to ask yourself following questions

36.3. Component Recognition 432

about those tests:

1. Are there enough synchronization points, like Wait for component to appear or Check
nodes with timeouts to execute test steps only if the SUT is ready for them?

(a) Sample 1: After opening a window you can only work in that window, if it is
really there -> Use a Wait for component to appear node.

(b) Sample 2: After pressing on a search button, you can only continue with the
test when the search is really over -> Use a Check node with a timeout.

Another important aspect besides synchronization points is the correct approach of rec-
ognizing components. You have to ask yourself the following questions to determine,
which recognition approach might be the most appropriate one:

1. Do the developers use unique and stable names for their components? Please
take a closer look at section 42.13(857).

2. Perhaps it is sufficient to use a regular expression for the Feature attribute of the
component of the main window under the Windows and components node. Please
see section 5.4.3(64) for details.

3. If development did not set useful or even dynamic names it may be required to
implement a NameResolver. Please take a closer look at section 5.3(49).

4. Do any of the QF-Test recognition options need to be changed? These are de-
scribed in section 5.3(49).

5. Is it possible to use generic components? See section 5.8(81) for details.

In some cases it is sufficient to change the default configuration. Let us assume the
developers have set unique and stable names for the target components, i.e. buttons,
textfields, checkboxes etc. In such cases it may be sufficient to just change the ’Name
override mode’ setting of QF-Test to ’Name overrides everything’. This setting tells QF-
Test to ignore any changes in the component hierarchy and just work with the target
components and the window directly.

You have to change this option in two places: Once at ’Record’ -> ’Components’ ->Note
’Name override mode’ and at ’Replay’ -> ’Recognition’ -> ’Name override mode’. See
section 5.3(49) for more details.

Chapter 37

Organizing test suites

One of the most challenging tasks in a project is keeping the test suites maintainable
over a long period of time. Especially if some window or workflow changes significantly
the maintenance effort should be kept to a minimum.

It is also worth thinking about how to minimize the creation efforts of tests that contain
a lot of similar or even the same steps. A typical use case is launching the SUT or the
login process or a very important and basic workflow like navigating to a certain part of
the SUT.

Another aspect to think about is how to efficiently organize test suites if different people
work in your testing project.

In any case you should create your test suites within a QF-Test project as described in3.5+
chapter 9(163). This feature provides a better overview over your test suites and directo-
ries.

The following sections show some best practices how to keep your tests maintainable,
extensible and well-organized.

37.1 Organizing tests

In chapter section 8.2(138) we describe the concepts of Test set and Test case nodes. A Test
case node stands for one dedicated test case and its test data. A typical Test case could be
derived from a use case, a requirement or a defect description in your environment, e.g
’Calculate the price for vehicle xyz at 10% discount’ for the CarConfigurator application.

Test set nodes are collections of Test sets and Test cases which can be used for organizing
test cases, e.g. ’Tests for calculating prices’.

Test step nodes represent the individual test steps of a Test case like ’Open window’ or
’Check calculation’.

37.2. Modularization 434

If you have an external description of the Test case or any other associated informa-
tion which might be important for it, it is recommended to add an HTML link to it
in the Comment attribute of the Test case. You will see that link in the report later.
It is even possible to create a separate test documentation using the menu action
File→Create testdoc documentation . More details about documentation can be found

in chapter 24(305).

The report and test documentation also contain the Test step nodes which are used in a3.1+
Test case.

If a Test case consists of lots of Procedure calls or Sequences, you should organize the
single test steps in Test step nodes. Those Test step nodes have the advantage that you
can really see every significant step in the QF-Test window and also in the report later.

If you want to put several nodes into a Test step you can pack the respective nodes into
a Test step via selecting them, perform a right-mouse click and selecting
Pack nodes→TestStep .

37.2 Modularization

One of the most important concepts for effective test automation is modularization. Mod-
ularization here means placing reusable sequences in a dedicated location and calling
these whenever possible. This concept enables you to create a sequence only once
and reuse it as often as you require it in your tests without re-recording the same steps
all the time. Changes in the SUT that require an update of the tests that rely on such a
sequence, e.g. a change to some basic workflow, can then be handled by updating just
the procedure in a single location instead of many identical sequences spread all over
the test suites.

The modularization concept in QF-Test is implemented via Procedure nodes. Procedures
are well described in section 8.5(142).

If you have lots of test cases, it is best to have almost every test step as a Procedure and
create those procedures up front, if possible. With those procedures in place you can
fill your test cases very fast by just adding the respective Procedure call nodes.

In larger projects it is useful to have Procedures at different level, e.g. component specific
procedures like ’Click OK’ and workflow oriented procedures like ’Create a vehicle’.

37.3 Parameterization

The concept of modularization enables you to maintain test steps at a single location in
your test suites. But how to use different test data for different tests?

37.4. Working in multiple test suites 435

If you have a Procedure that can be called with different test data, e.g. a typical ’Login’
process with name and password or the ’Select accessory’ procedure of the CarCon-
figurator, you can use variables within the QF-Test nodes. Those variables should be
used at places where test data is usually being accessed. In most cases variables will
be used for Text input nodes or for selections of items in a list or a table or tree nodes.

If a procedure requires variables you should define the required variables in its list of
Variable definitions(628). This is to ensure that you get a list of all required parameters
whenever you add a respective Procedure call node for that Procedure to your tests. Some
customers even set dummy default values for parameters so they can recognize imme-
diately when a parameter has not been initialized by the calling test.

The next step is to move those variables from the Procedure call either into the
Variable definitions(564) section of the Test case node or to put the test data into a Data
driver node with a Data table or using an external data source.

The usage of variables and parameters is well described in section 8.5(142). Parameters
can also be created automatically, please see section 8.5.4(145). You can find more details
about the data driver concept for loading test data from a data source in chapter 23(295).

37.4 Working in multiple test suites

Up to now you have read about using the modularization and parameterization concept
to avoid unnecessary and redundant work in the creation process of your tests. You
should have recognized that those concepts will reduce the maintenance efforts of your
test suites by changing or updating only one single sequence instead of several ones.
But we still do not know how to organize our work for different test engineers or for a
very large project with a lot of GUI elements.

The answer for an effective working organization comes again from the software devel-
opment area and it is to use several ’libraries’ for different areas and different responsi-
bilities.

Importing other test suites into a test suite enables you to follow that encapsulation
approach. A typical organization of test suites in your project could look like this:

37.4. Working in multiple test suites 436

Figure 37.1: Structure of multiple test suites

Level 0 is the level that contains test steps (i.e. Procedures) which are required for nearly
all test cases in your projects. Such test steps could be ’Launch SUT’ or ’Perform the
login’.

Level 1 contains test steps for a specific part of the SUT. For the CarConfigurator you can
think about a test suite ’Vehicles’ containing Procedures like ’Create a vehicle’, ’Remove
a vehicle’ and another test suite ’Accessories’, which contains Procedures like ’Create an
accessory’ or ’Remove an accessory’.

Level 2 is the test case level. It contains Test cases and Test sets for the respective area
of your software, e.g. ’Tests for vehicle creation’ or ’Tests for accessory creation’. Of
course you could also have a test suite like ’Integration tests’ which refers to test steps
from different test suites at level 1 and level 0.

Level 3 is the so called scenario level. Those test suites usually just contain Test calls
to level 2 and stand for different scenarios within your test project, e.g. ’Nightly test
scenario’, ’Defect verification scenario’ or ’Quick-test build verification’.

The structure described in this document is of course just one possible solution forNote
handling test suites in a project and is not a strict rule you have to follow. You could also
think about splitting level 1 into a GUI-element level and a workflow level or merge level

37.5. Roles and responsibilities 437

2 and level 3 to one level. Which structure you finally implement also depends on the
experience and knowledge of the test-engineers working in your project.

The including area of level 1 test suites looks like this:

Figure 37.2: Including test suites of level 1

You can find a detailed description of how to include test suites in section 26.1(332) and
section 49.6(959).

In section 38.5(441) you can find a step-by-step description how to extend an already
existing test suite and in section 38.4(440) you can find strategies of handling components
in such a scenario.

37.5 Roles and responsibilities

If you take a closer look at the organization shown in the previous section section 37.4(434)

you may recognize that it is also possible to organize your test suites based on different
knowledge levels of test engineers.

37.5. Roles and responsibilities 438

Figure 37.3: Structure of different test suites with roles

Level 0 and level 1 require a good knowledge in working with QF-Test but not a deep
knowledge of the SUT. On the other hand level 2 and level 3 require a very good knowl-
edge of the SUT and the planned test cases but those engineers usually do not require
a very deep knowledge of QF-Test as long as they just use procedures from level 0 and
level 1.

Test engineers working in level 0 and level 1 should be capable of implementing scripts
or control structures like the Try/Catch concept which enables them to create strong
and powerful test libraries. At least the engineers working on level 0, but also recom-
mended for engineers working on level 1, should have a good knowledge about compo-
nent recognition in QF-Test. Please see chapter 5(42), section 5.9(82) and section 5.3(49).

Even if you are working alone on a project it is strongly recommended to split the testsNote
and procedures into different levels because maintenance will become easier than with
everything kept in one huge test suite.

37.6. Managing components at different levels 439

37.6 Managing components at different levels

If you follow the approach suggested in the previous section (section 37.4(434)) you have
to define where the components belong. There are two possibilities:

1. Put all components into level 0.

2. Split the components like the procedures into several levels.

Storing all components in level 0 is the most simple solution but this could cause you to
update level 0 very often, just because one single component in your project changes.
You have to assign responsible persons to keep that structure cleanly.

In big projects you may consider storing the common components like the login dialog or
the main frame menus, that are important for everyone, in level 0. Components specific
to a certain area, e.g. a dedicated vehicle dialog, appear only in the test suite that holds
the procedures operating on those components.

The workflow for moving components between test suites is described in section 38.4(440)

and the workflow for extending existing test suites is described in section 38.5(441).

37.7 Reverse includes

You don’t need to care about Dependencies(557) of test suites belonging to a QF-Test project3.5+
as described in chapter 9(163), because QF-Test automatically resolves dependent suites.
So, if you use the concept of projects, you can skip this chapter.

If you work in different test suites in your project you might sometimes want to rename
a Procedure or a Test case. If you do that you may encounter some troubles in updating
the references to that Procedure or Test case in other test suites. If you want to keep the
other files also being updated after renaming such an element you have to maintain the
Dependencies(557) attribute of the root node of the library test suite.

If you follow the approach described in section section 37.4(434), you should ensure that
level 0 contains a reverse include to level 1, level 1 should contain one to level 2 and
level 2 should contain another one to level 3. A sample from the provided demo test
suites is shown in figure 37.2(436).

Chapter 38

Efficient working techniques

This chapter will help you in optimizing your working techniques and avoid unnecessary
steps when working with QF-Test.

38.1 Using QF-Test projects
3.5+

The previous chapter describes the creation of several test suites. As you can image
the amount of test suites will increase over time. You can get a better overview over
them using a QF-Test project.

QF-Test projects show all involved test suites in a very nice way. Furthermore projects
automatically take care of propagating modifications to referring test suites. You can
find more information about projects at chapter 9(163).

38.2 Creating test suites from scratch

In the previous chapter we described the concept of creating maintainable test suites by
utilizing procedures and variables within QF-Test. Normally people start recording very
long sequences and splitting those into smaller parts or even procedures later. It is very
hard to split up long sequences as you have really to walk through the whole one to
find proper boundaries. Another disadvantage is that you cannot see parts which have
already been implemented in existing test cases or procedures.

Instead of that described workflow we recommend to plan the tests and their test steps
including procedures first. Then you can start recording procedure by procedure. We
came to the conclusion that anticipatory recording and creation is very helpful especially
for working in bigger teams. A typical workflow for creating those procedures looks like
this:

38.3. The standard library qfs.qft 441

1. Plan the required procedures first.

2. Also plan the required package structure first.

3. Record every procedure as a separate sequence.

4. Rename the recorded sequence like the procedure should be called.

5. Transform the recorded sequence into a Procedure, using the
Transform node into... action from the context-menu of QF-Test.

6. Move the Procedure to the correct location.

7. Replace test data with variables, either manually or by using the parameterizer
(see section 8.5.4(145))

8. Add the variables to the Variable definitions of the Procedure node, possibly specify-
ing default values.

9. Describe the procedure in its Comment attribute, see section 8.7(162).

An alternative approach of creating procedures is the automated creation provided by
QF-Test. This concept is described in chapter 27(341).

38.3 The standard library qfs.qft

QF-Test provides the standard library qfs.qft which is included per default in every
test suite.

This suite contains many useful procedures for accessing components, the file system
or a database. Please take a look at that library before you begin implementing some-
thing that has already been solved by us.

38.4 Component storage

QF-Test records new components in the test suite where you press the ’Stop recording’
button. Therefore it could happen that you record components in the wrong test suite.

If you want to move those components into another test suite you must always use
File→Import from the target suite. Take care to ensure that both suites belong to

the same project or to specify correct ’Include files’/’Dependencies relations in those test
suites. This workflow is described in detail in section 26.2(334).

For cleaning your component structure in a test suite you can first import the test suite3.1+

38.5. Extending test suites 442

into itself. Then you can select the Windows and components step, open the context menu
via a right mouse-click and click at Mark unused components... . You will get a list of all
components which are not used in the project. If you are sure that those components
can be removed, then select the Remove unused components in the context menu of
the Windows and components step.

As soon as a Component’s comment contains any text it is considered used, even if itNote
has no references.

38.5 Extending test suites

Several workflows can be followed to extend existing test suites:

1. Simply record and extend the target test suite directly.

2. Work with a scratch suite as described in chapter 26(332).

If you extend testsuites directly via clicking at ’Stop recording’ in that suite, then you
have to care about the recorded components. In case you have changed the recorded
component hierarchy under Windows and components the newly recorded components
will be recorded in the normal hierarchy again and you have to move the new compo-
nents to the optimized hierarchy. Another aspect is that it could become very difficult for
moving single components into another test suite under the right location there.

If you work in a scratch suite you can create the new test steps temporarily in a com-
pletely new test suite and import the recorded components and the created procedures
and test cases into the target suites together.

A detailed workflow for extending a test suite from level 1 (from section 37.4(434)) could
look as follows:

1. Create a new test suite.

2. Add the test suite to be extended to the Include files area of the new one.

3. Save the new test suite.

4. Ensure that both test suites belong to the same project or add the new test suite
to the Dependencies area of the test suite to extend.

5. Record the new test steps in the scratch suite. Also create Procedures, if required.

6. Then import the components, procedures and tests into the target test suite as
described in section 38.4(440) and section 26.3(335).

A more detailed description of working in multiple test suite can be found in chapter
26(332).

38.6. Working in the script editor 443

38.6 Working in the script editor

The script editor of QF-Test contains some fancy features to avoid too much typing
actions.

If you want to call methods of the run context rc, you can simply type rc. and press�� ��Ctrl-Space , then you will get a list of all available methods.

The autocompletion is also working for several variable names, which are:

Variables Methods
doc Methods of a DocumentNode.
frame Methods of a FrameNode.
iw Methods of the ImageWrapper.
node Methods of a DOMNode.
Options The keys and values of QF-Test options to set.
qf Methods of the qf module.
rc Methods of the Run context.
resolvers Methods of the Resolvers module.
Just press

�� ��Ctrl-Space without typing anything A list of all variables with autocompletion.

Table 38.1: List of variables with autocompletion.

Chapter 39

Hints on setting up test systems

This chapter provides some hints how to set up your test systems and processes in
order to get a stable test execution.

39.1 Using the task scheduler

In order to execute tests or similar processes on a regular basis it is very common to set
up a Windows service. Unfortunately those services have the disadvantage that they
don’t run in an active Windows user session. Because of this such processes should
never be started as services, because running GUI tests without an active user session
brings up very subtle problems during test execution. You can find further technical
details at FAQ 14.

We recommend to define a scheduled task via the task scheduler instead of using ser-
vices. This can be directly applied via the graphical UI of the task scheduler. The fol-
lowing instruction should work on Windows 7, Windows 8, Windows 8.1 and Windows
10. There might be a few differences depending on the exact operation system:

1. Start the Windows Task scheduler via ’System Control Panel’ -> ’Administrative
Tools’ -> ’Task Scheduler’.

2. Click ”Create Task” on the right.

3. At the ”General” tab define a ”Name”, e.g. QF-Test.

4. Now click at the ”Change User or Group” button and select the user for the session
which should be used to run QF-Test. Do not use the System- or Service session
but a real user session.

5. Press OK to close the dialog.

39.2. Remote access to Windows systems 445

6. Now select ”Run only when user is logged in”.

7. Do not select ”Run with highest privileges”.

8. Choose the correct Windows version for your task.

9. Now select the ”Triggers” tab. Click ”New..” and define the desired time/trigger at
”Begin the task”.

10. Click ”OK” to close.

11. Now select the ”Actions” tab, click at ”New.” and specify ”Start a program” as
”Action” and ”Browse” to the .cmd or .bat file you’ve just created.

12. Press ”OK” to close this dialog.

13. You can now have a look at the ”Conditions” and ”Settings” tab if you need anything
else from your side.

14. If you have finished the setup press ”OK” and the task has been created.

It is very important that the user which is configured to run that process is logged in
correctly. This user can be logged in manually or automatically (see section 39.3(445)). It
is recommended to use a virtual system for running GUI tests. On such virtual systems
the user needs to be logged in only on the guest system and the host can be locked.

39.2 Remote access to Windows systems

Accessing remote Windows systems via RDP is subject to some restrictions and re-
quires a dedicated configuration of your systems. That’s because the implemented
RDP server of Windows desktop versions allows only one active user. Thus the (virtual)
monitor will be locked as soon as you access the system via RDP. After closing the
RDP session the monitor of the test system remains locked. Usually you cannot use a
graphical user interface at a locked screen, thus you cannot test it, too.

On Windows 10 or Windows Server 2016 systems you can makeNote
use of RDP if you modify the Registry. Therefore navigate to
HKEY_CURRENT_USER\Software\Microsoft\Terminal Server Client or
HKEY_LOCAL_MACHINE\Software\Microsoft\Terminal Server Client and
add a new value RemoteDesktop_SuppressWhenMinimized as DWORD having the
value 2. Once that setting has been set you are allowed to minimize RDP connections,
but you have to keep the connection alive. The tests will still fail if you disconnect or
close the session.

39.3. Automated logon on Windows systems 446

Instead of this approach you should use the capabilities your virtual server provides.
For VMware server the vSphere client would be the first choice. With VirtualBox you
can connect to VirtualBox with RDP (not with the Windows client). Of course this kind
of RDP connection has not the impacts on the test system as explained above.

39.3 Automated logon on Windows systems

A simple possibility to get an active user session is to logon a test user automatically
after start-up of your system. This chapter describes how to configure your system for
that purpose.

An automatic logon at Windows is always a security risk. Therefore you have to ensureNote
that the corresponding test systems are not accessible from outside the test environ-
ment.

Although this guidance is generally valid it will be used commonly together with virtual
systems which will be accessed remotely. What to keep in mind for this remote access
will be explained at section 39.2(444).

The following method is running with Windows 7, Windows 8, Windows 8.1 and Win-
dows 10. There might be a few differences depending on the exact operation system:

1. Start the command line interface with administrator privileges.

2. Enter control userpasswords2.

3. Now the dialog ’User Accounts’ appears.

4. Remove the check at the checkbox ’Users must enter user name and password’.

5. In the next appearing dialog (’Automatic Logon’) enter the user password twice.

6. Click the ’Ok’ button to finish the configuration.

Of course also other methods exist to get the same result. Thus you could modify
the corresponding registry entry directly. Or you could download the ’Autologon’ tool
from Microsoft from https://technet.microsoft.com/en-us/sysinternals/bb963905. But all
those different methods lead to the same result, which is the modified registry entry. We
recommend to use the method explained above as in this way no download is needed
and a type mismatch in the registry entry is avoided. By the way, an automated logon
will never run for domain users. In fact this would be quite awkward in conjunction with
test system. This may be an information which may calm your administrators down.

39.4. Test execution on Linux 447

39.4 Test execution on Linux

On Linux systems you can set up virtual displays using tools like VNC server. A very
useful window manager for those displays could be xfce.

Chapter 40

Test execution

This chapter gives some hints about how to implement your tests to get stable and
reliable test execution.

40.1 Dependencies

The ’Dependencies’ concept of QF-Test provides functionality to guarantee that all pre-
requisites for a test case are fulfilled before running it. It is also capable of reacting to
unexpected behavior, e.g. closing an error dialog, which pops up and blocks your tests.

The concept is described in section 42.3(589) and a use case can be found in the tutorial
in the chapter ’Dependencies’.

You should at least implement a Dependency which is responsible for launching the SUT,
containing a Setup for launching, a Cleanup for a normal exit and a Catch to react on any
unexpected behavior.

If you implement a Cleanup, try to close the SUT normally first and only if the SUT doesNote
not terminate correctly, kill it via Stop client.

For SWING and SWT applications please use the procedures
qfs.cleanup.swing.closeAllModalDialogs and
qfs.cleanup.swt.closeAllModalDialogsAndShells from the standard library
qfs.qft for closing unexpected error dialogs.

40.2 Timeout vs. delay

Instead of using the ’Delay before’ and ’Delay after’ attributes you should try to use
QF-Test’s synchronization nodes to optimize test execution time.

40.3. What to do if the run log contains an error 449

The first kind of synchronization nodes are the ’waiter’ nodes like Wait for component to
appear, Wait for client to connect, Wait for document to load and Wait for process to terminate.
You can specify the Timeout attribute to wait for a component, process or document. The
Wait for component to appear node even provides the functionality to wait for the absence
of a component.

The second kind are the ’check’ nodes which allow you to specify the Timeout attribute
as well. Those nodes can be used to continue the test when a GUI element of your SUT
has reached a defined state.

40.3 What to do if the run log contains an error

If the test report contains an error message or exceptions, the following steps should be
performed to find the source of that failure very fast:

1. Analyze the run log, especially the screenshots and any other messages.

2. If you cannot find the cause immediately, jump to the failing location in your test
suite by typing

�� ��Ctrl-T in the run log.

3. Set a breakpoint before or at the failing step.

4. Ensure that the debugger of QF-Test is enabled.

5. Run the failing test.

6. When QF-Test reaches the breakpoint and stops, open the debugger window and
check the active variable bindings to wee whether they contain any wrong values.

7. Perhaps at that time you can also see the error immediately in your SUT.

8. If you cannot see any source of that error, run the failing step.

9. If you still encounter errors you might have to re-debug some steps executed be-
fore the failing step. Use the ’Continue execution from here’ menu entry to jump to
previous steps instead of rerunning the whole test again.

Since QF-Test version 3.1 it is possible to mark nodes via the context menu item3.1+

Set mark or setting bookmarks for specific nodes via the menu item Add bookmark .
These features enable you to find important nodes very fast again.

If you encounter problems with component recognition, please see section 5.10(90) and
section 5.3(49).

Part III

Reference manual

Chapter 41

Options

Since QF-Test is a tool that is intended for a wide range of applications, the ”one size
fits all” approach doesn’t quite work. That’s why QF-Test has a great number of options
that control its functionality.

There are two kinds of options for QF-Test: user options and system options. User
options adjust the behavior of QF-Test’s own GUI while system options influence how
tests are recorded and replayed. Each user has its own set of user options whereas
system options are saved in a common system file. See section 1.6(11) for details about
configuration files.

Many options can have their value changed at run time from a script via rc.setOption3.1+
as described in section 50.5(963). Depending on whether the option takes effect in QF-
Test itself or in the SUT, the documentation for those options shows a ”Server script
name” or ”SUT script name” matching the constant from the Options class. Obviously
the option has to be set in a matching Server script(670) or SUT script(673) node. Where the
option’s value can be selected from a drop-down list, the documentation also lists the
constants that can be specified as the option’s value.

Though the number of options may look daunting, don’t let yourself be deterred by it. All
options have reasonable default values, so QF-Test works well out of the box for most
cases. However, if you find you need to change something or simply want to explore the
range of QF-Test’s abilities, this chapter is for you.

The options can be set in the dialog available through the menu item Edit→Options... .
The settings are saved in two configuration files, one for personal settings and one for
system-wide settings (see section 1.6(11)).

Options 452

Figure 41.1: Options tree

41.1. General options 453

To get at an option, first select the appropriate node of the tree. The options for that
topic are then displayed in the right part of the view. When switching from one group to
the other, the current values are verified but not adopted yet. This happens only after
confirmation with the OK button.

41.1 General options

This is the node for general QF-Test settings.

Figure 41.2: General options

Ask before closing (User)

41.1. General options 454

When a test suite or a test run log has been modified, QF-Test asks whether it
should be saved before it closes its main window. That query can be suppressed
by turning off this option. Be warned that auto saving is not implemented yet, so
you may lose data if you forget to save before closing.

Ask before overwriting (User)

When you try to save a test suite or a run log or generate a report, pgkdoc or
testdoc or save the image of a Check image(775) over an existing file or directory,
QF-Test asks for confirmation unless you turn off the option for the respective
type of file.

Restore last session on startup (User)

If this option is set and QF-Test is opened in the workbench view, the previous
session is restored by loading previously opened test suites and selecting the
previously selected node in each suite. If one or more test suites are specified on
the command line, this are loaded in addition to the previous session and receive
the initial focus on startup.

Number of recent files in menu (User)

The File menu offers quick access to recently used test suites or run logs. This
option determines the maximum number of recent file entries in the menu.

Default script language for script nodes (User)

This option can be set to either ”Jython”, ”Groovy” or ”JavaScript” and determines
the default setting for the Script language(672) attribute of newly created
Server script(670) or SUT script(673) nodes.

Default script language for conditions (User)

This option can be set to either ”Jython”, ”Groovy” or ”JavaScript” and determines
the default setting for the Script language(649) attribute of newly created If(647),
Elseif(651), While(642), Test set(566) or Test step(580) nodes.

Literal Jython strings are unicode (16-bit as in Java) (System)
5.3+

Server (automatically forwarded to SUT) script name:
OPT_JYTHON_UNICODE_LITERALS
This option defines how to treat literal strings (explicitly specified string constants
like ”abc”) in Jython scripts in Server script(670) and SUT script(673) nodes,

41.1. General options 455

Condition(648) attributes in If(647) and other nodes as well as the interactive Jython
consoles for QF-Test and the SUT.

If set, it defines that literal Jython strings should be treated as 16-bit unicode
strings, just like in Java itself. Otherwise literal strings are 8-bit Python 2 strings
that don’t integrate well with Java and thus QF-Test. Please see section 11.4.5(182)

for detailed information and examples.

If QF-Test encounters an existing older system configuration, the default value
in QF-Test is off, meaning 8-bit literal strings. For new installations the option is
turned on.

Default character encoding for Jython (System)

Server (automatically forwarded to SUT) script name:
OPT_JYTHON_DEFAULT_ENCODING
This option defines the default encoding for converting between Jython 16-bit
unicode strings and 8-bit byte strings. It applies to explicit conversions like
str(...) and to implicit conversions. If the previous option Literal Jython
strings are unicode (16-bit as in Java)(453) is unset, implicit conversions include all
occurrences of literal Jython strings (explicitly specified string constants like
”abc”). Please see section 11.4.5(182) for detailed information and examples.

Starting with QF-Test 5.3 the default value is ”utf-8” (it used to be ”latin-1”). Existing5.3+
system configurations are not be affected by that change.

Use native file chooser on Windows or macOS systems (User)
3.5+

Server script name: OPT_USE_NATIVE_FILECHOOSER
On Windows or macOS systems the native file chooser is more advanced and
more convenient to use than the Swing file chooser so QF-Test uses the native
one by default. In case you prefer the Swing file chooser you can get it back by
deactivating this option.

Show complete file path and QF-Test version in the title bar (User)
4.1.3+

If set, QF-Test shows the full path of the current test suite and the QF-Test
version in the title bar of the main window.

41.1.1 Project settings
3.5+

There are several options that influence the way QF-Test manages and displays
projects.

41.1. General options 456

Figure 41.3: Projects

Project refresh interval (s) (User)

The interval at which a project automatically gets completely refreshed. You can
refresh a directory at any time by selecting it and pressing

�� ��F5 . To refresh the
complete hierarchy below the selected directory, press

�� ��Shift-F5 instead.

Number of test suites to open in one go without warning (User)

From the project tree you can open all test suites contained in one directory
hierarchy in one go. If you accidentally select too many test suites, QF-Test will
first issue a warning with the number of test suites, allowing you to cancel that
action. This option determines the threshold for that warning.

Project files and directories to exclude (System)

In many cases a directory hierarchy holds files and directories that don’t really
belong to a project, most notably subdirectories created by version control
systems like git, subversion or cvs. In this option you can specify patterns for files
and directories to generally exclude from projects.

The patterns used here are not regular expressions but a simpler form often used
by development tools: An ’*’ stands for any number of characters up to the next
file separator - for compatibility reasons only forward ’/’ is used - while ’**’ means
0 or more characters of any kind, including ’/’. Every pattern is relative to the root
directory of the project. Some examples:

41.1. General options 457

**/.svn
All directories named .svn at any depth.

**/.*
All directories starting with a ’.’ at any depth.

deprecated
A directory named deprecated directly below the project root.

41.1.2 Saving test suites
7.0+

The following options specify the format for saving test suites as XML files. The format
for saving run logs is determined by the option Save run log in current XML format with
UTF-8 encoding(542).

Regardless of the chosen XML format, test suites and run logs can also be opened withNote
QF-Test versions older than 7.0 (although node types introduced later are obviously not
recognized). Saving with an old QF-Test version always causes the old XML format to
be used.

Figure 41.4: Saving test suites

Overwrite XML format of existing test suites (System)
7.0+

Changing the XML file format can lead to a lot of purely syntactical changes the
next time a test suite gets saved. These changes will show up in version control
and possibly hide the real semantic changes. To avoid this, the XML format
defined in these options only applies to new files by default. QF-Test will not
change the format of already existing test suites unless this option is activated.

Changing the XML format should be a project-wide decision and ideally performedNote

41.1. General options 458

in one go with all files checked into version control as a single commit with no other
changes. Conversion can easily be done using QF-Test in batch mode with the
-convertxml(916) command line argument as described in section 44.1(908).

Use UTF-8 encoding for saving test suites (System)
7.0+

If this option is active (the default), test suites are saved using UTF-8 encoding.
Otherwise the encoding is ISO-8859-1.

QF-Test versions older than 7.0 always use ISO-8859-1 encoding.

Number of blanks for indentation when saving test suites (System)
7.0+

XML files that use indentation are easier for humans to read. However, test suites
are mostly processed by QF-Test and the only time a typical QF-Test user need
to work at that level is when resolving merge conflicts. The latter are reduced by
using an indentation level of 0, the new default, because otherwise all lines in the
XML will change for nodes that are wrapped into or moved out of a parent node.

QF-Test versions older than 7.0 always use 2 characters for indentation.

Line length for saving test suites (System)
7.0+

The only lines in test suite XML files that can safely be wrapped are those
containing attributes of XML nodes. Wrapping actual text, e.g. from scripts or
comment attributes would change its meaning so this option does not impose a
hard limit for line length.

Unfortunately there is no ideal default value for this option. The current default of
160 is a compromise between the following two extremes:

A negative or extremely large value results in practically unlimited line length,
enough to always keep all attributes of an XML node on a single line. This is both
compact and good for merging because attribute changes are kept on a single line
that also includes the - typically unique - ID of the node.

The value 0 introduces a special format that causes each attribute and even the
closing > character to be written on its own line. As a result, line-based version
control tools like git blame can show the most recent change of each individual
attribute whereas for a long line only the most recently changed attribute is shown.
Also, it is easier to interpret the changes in diffs between two versions of an XML
file. The downside of this mode is that the context of a change - typically 3 lines
- might not include the ID attribute which increases the chance of an incorrect
merge.

QF-Test versions older than 7.0 always use a line length of 78 characters.

41.1. General options 459

41.1.3 Display

The following options specify the display of the test suite tree and its nodes.

Figure 41.5: Display

41.1. General options 460

UI theme (User)

This option determines which QF-Test UI theme to use. There is a shortcut for
changing this option via the menu View→UI theme .

UI mode - light or dark (User)

This option determines whether the current QF-Test UI theme is displayed in light
or in dark mode. The default setting is to follow the setting of the underlying
operating system. There is a shortcut for changing this option via the menu
View→UI theme .

Paint lines in trees (User)

The option controls whether to display vertical lines between tree nodes of the
same indentation.

Syntax highlighting for tree nodes (User)
4.0+

This option controls activation of syntax highlighting for tree nodes within test
suites and run logs. If active, specific text parts of nodes (e.g. node name,
parameters, client) are outlined in different colors and styles. This significantly
improves readability.

Show step types for named tree nodes (User)
7.0+

If this option is deactivated, labels like ”Test case” are hidden in tree nodes of test
suites and run logs provided the respective node has a name and its icon is
unique.

Show script language for script nodes (User)
7.1+

When you activate the option the script language of a Server script(670) or
SUT script(673) node will be displayed in the test suite tree.

Show result variables (User)
7.1+

When you activate the option the name of the result variable will be shown in the
tree nodes of the test suite and the run log.

Show result values (User)
7.1+

41.1. General options 461

When you activate the option the value of the result variable will be shown in the
node of the run log tree. The option Maximum length for values in trees(460)

determines the maximum length of the value displayed.

Show client name in tree (User)
7.1+

Use the option to display the name of the client the node relates to in the test
suite tree, either ”Always” or ”Never” or only when the value of the Client attribute
is not the default value $(client).

Show class or type of components (User)
9.0+

This options determines what to show for a Component(869) node in the tree: Its
primary class, its specific type or both. A typical example would be just ’Panel’,
just ’TitledPanel’ or the combination of ’Panel:TitledPanel’.

Maximum length for values in trees (User)
7.1+

The option is only relevant when Show result values(459) has been activated. It
determines the maximum length of the result value displayed in a test suite tree
node.

Maximum length for component IDs in trees (User)
7.1+

The option determines the maximum lenght of the QF-Test component ID displayed
in the tree node.

Font size (pt) (User)

This option specifies the font size (as point value) used for display of UI elements
within QF-Test. A change in this value becomes operative after restarting
QF-Test.

Show symbols for tab and line break characters (User)
3.5+

If this option is set, QF-Test shows symbols for tabulator and linebreaks in tables
and relevant textareas.

41.1.4 Editing

These options are used to configure various settings regarding editing in the tree or
detail view.

41.1. General options 462

Figure 41.6: Editing

Warn when modifying a test suite that cannot be saved (User)

If saving test suites is prohibited, for example when working without a license,
QF-Test will warn you that you will not be able to save your changes when a test
suite is modified for the first time. Deactivating this option suppresses that
warning.

Ask before discarding detail modifications (User)
4.0+

When you have started making changes to an existing or newly inserted node
and then abort by pressing

�� ��Escape or clicking the ”Cancel” button, QF-Test asks
for confirmation before discard your modifications. This dialog can be suppressed
by disabling this option. In this case, please be aware that - especially in case of
scripts - a lot of work may get lost in case of a mistake.

Ask before implicitly accepting detail modifications (User)

41.1. General options 463

A very common mistake made while editing a test suite is to forget pressing OK
after making changes in the detail view of a node before switching to some other
node, running a test, etc. If that happens QF-Test can either accept the modified
values automatically or ask for confirmation by popping up a dialog with the detail
view. The following options are available:

Always
Don’t accept values implicitly, always ask for confirmation.

Only if values are suspect or invalid
Try to accept values implicitly as long as they are valid and not suspect.

Currently ”being suspect” is defined as having leading or trailing whitespace
which can lead to subtle problems which are very hard to locate.

Never
Accept all valid values implicitly without asking for confirmation.

This option doesn’t change the effect of explicitly discarding your modifications
with the Cancel button or by pressing

�� ��Escape .

Number of undo levels per suite (User)

This option lets you set the number of edits that can be undone in a test suite or
run log.

Intelligent scrolling in trees (User)

The default methods for interacting with Swing trees are not ideal. Moving the
selection around causes a log of unnecessary horizontal scrolling and Swing has
the tendency to scroll trees to a position where little context is visible around the
selected node.

Because tree navigation is essential for QF-Test, some of these methods are im-
plemented differently to provide a more natural interface and to make sure that
there is always enough context visible around the selected node. However, your
mileage may vary, so if you don’t like the alternative methods you can switch back
to the default Swing way of things by deactivating this option.

Check references before deletion (User)
3.4+

If this option is set, QF-Test searches for references of nodes before nodes will be
deleted. If references can be found, they will be shown in a dialog.

Ask after changing QF-Test component IDs or use default (User)
3.5.3+

41.1. General options 464

If this option is set, QF-Test asks whether the user wants to update the QF-Test
component IDs of any referring node after the QF-Test ID of a component has
been changed. If this option isn’t set QF-Test updates all references in case of
unique QF-Test component IDs.

Ask after changing callable names or use default (User)
3.5.3+

If this option is set, QF-Test asks whether the user wants to update the callable
names (i.e. procedures, packages, tests and dependencies) of any referring node
after the name of a callable node has been changed. If this option isn’t set
QF-Test updates all references in case of unique names.

Check if configuration files are writable (User)
4.1.2+

If this option is set, QF-Test checks whether the configuration files have writing
permissions once opening the ’Options’ dialog. If one configuration file has no
writing privileges, QF-Test will show a message.

Automatically open created nodes (User)
6.1.0+

Automatically open nodes that just have been created.

Activate workbench view (User)
8.0+

If this option is set, all test suites are displayed in one window - the workbench.
Working without workbench with each test suite in its own window was
deprecated in QF-Test version 8.0.

41.1.5 Bookmarks

Here you can edit your bookmarks, a list of files and nodes that can be accessed quickly
via the menu File→Bookmarks .

Instead of a file you can also specify a directory. When the respective bookmark is4.0+
selected, the file selection dialog is opened directly for this directory. The QF-Test ID for
the node is ignored in this case.

41.1. General options 465

Figure 41.7: Bookmarks

Though you can also create new bookmarks manually, it is preferable to use the menu
item File→Bookmarks→Add current file to add a bookmark for a whole test suite or run
log or to select Add to bookmarks in the context menu of a node in a test suite to add
a bookmark for this specific node.

41.1.6 External tools

The following options determine which external programs are called by QF-Test.

Figure 41.8: External tools options

41.1. General options 466

External editor command (User)

Scripts can be edited in an external editor by pressing
�� ��Alt-Return or by clicking

the button above the text area. The contents of the text area are then saved
to a temporary file and the external editor is run to edit that file. It is
recommended to define a name for the script before opening it in the external
editor (see also Warn when running external editor without file name(466)).
Otherwise a random number is chosen as file name, which makes it difficult to
distinguish several scripts opened in the external editor.

Changes made to an external file are picked up automatically by QF-Test. De-
pending on your settings, you may get a warning message when this happens (see
Warn when test suite is changed by an external editor(466)). In case you are tempted
to edit your script code parallel in the internal QF-Test editor: These changes are
also saved in the temporary file. Editors like jEdit on their part are smart enough
to detect the change and reload the file automatically.

This option determines the external editor command to use. There are two vari-
ants, the plain name of an executable file or a complex command including op-
tions. The latter is distinguished by the string $(file) which is the placeholder for
the name of the temporary file. Additionally, $(line) may be used to pass the cur-
rent line number to the editor as well.

The $(file)/$(line) syntax is used simply to avoid yet another different conventionNote
for variable attributes. No standard QF-Test $(...) variable expansion is taking
place.

Plain commands need never be quoted. Examples are:

• emacsclient

• notepad

• C:\Program Files\Crimson Editor\cedt.exe

Complex commands on the other hand may need to use quotes, especially on
windows. QF-Test takes care of quoting the $(file) argument itself:

• ”C:\Program Files\eclipse-3.6\eclipse.exe” –launcher.openFile $(file)

• javaw.exe -jar C:\Programs\jEdit4.2\jedit.jar -reuseview $(file)

• ”C:\Program Files\Crimson Editor\cedt.exe” $(file)

• xterm -e vi +$(line) $(file)

If this option is left empty, the value of the environment variable EDITOR is used,
if it is defined when QF-Test is started.

41.1. General options 467

Directory passed temporary files to external editor (User)
4.1+

This option can be used to change the directory in which QF-Test saves
temporary files for opening in an external editor (see External editor
command(464)). If empty, the user configuration directory(11) is used.

Warn when test suite is changed by an external editor (User)

Display a warning message when changes to a script made by an external editor
are picked up by QF-Test (see also External editor command(464)).

Warn when running external editor without file name (User)

Display a warning message when a script without name is opened in an external
editor (see also External editor command(464)).

External imaging program (User)

The Image(777) of a Check image(775) node can be edited in an external imaging
program. The image is saved to a temporary PNG file and the external imaging
program is run to edit that file. When finished editing, the file must be saved and
the program exited. QF-Test will read the image back from the temporary file.

This option determines the program to use for the operation. There are two vari-
ants, the plain name of an executable file or a complex command including options.
The latter is distinguished by the string $(file) which is the placeholder for the name
of the temporary file.

The $(file)/$(line) syntax is used simply to avoid yet another different conventionNote
for variable attributes. No standard QF-Test $(...) variable expansion is taking
place.

Plain commands need never be quoted. Examples are:

• gimp

• mspaint

• C:\Windows\System32\mspaint.exe

Complex commands on the other hand may need to use quotes, especially on
windows. QF-Test takes care of quoting the $(file) argument itself:

• gimp –no-splash $(file)

• ”C:\Windows\System32\mspaint.exe” $(file)

41.1. General options 468

HTML browser (User)

This option allows you to set the HTML browser used to open HTML pages (e.g.
report files or the context sensitive help). You can specify a complex command
using ’$url’ as placeholder for the URL to show, e.g.
netscape -remote openURL($url)
or just a simple command like
firefox
in which case the URL is passed as the last argument. If the option is empty the
system browser is used.

41.1.7 Backup files

Unless told to do otherwise, QF-Test creates backups of existing files when saving test
suites or run logs. These backup files are useful only in protecting against failures when
saving a file. They are by no means a replacement for proper system backups. The
following options determine if, when and how backup files are created.

Figure 41.9: Backup file options

41.1. General options 469

Create backup files for test suites (User)

Backup files for test suites are created only if this option is activated. Please be
careful and don’t turn it off without a good reason, such as using a version control
system for test suites which obviates the need to create backups. Just think
about the amount of work that goes into creating a useful test suite and imagine
the frustration if it gets destroyed accidentally.

Create backup files for test run logs (User)

Usually a run log is far less valuable than a test suite, so there is a separate
option that determines whether backups are created for run logs.

Backup frequency (User)

There are two possibilities for the frequency with which backup files are created.

With the first option, ”One backup per session”, QF-Test creates a backup file only
the first time a file is saved. If you continue editing the suite or run log and save
it again, the backup file is left unchanged. Only when you edit a different file or
restart QF-Test, a new backup is created. This setting is useful is you keep only
one backup per test suite.

If, on the other hand, you keep multiple backups per suite, ”Backup on every save”
may be the preferred choice.

Name of the backup file (User)

Like many other things, the conventions for the names of backup files differ
between Linux and Windows. While the common extension for a backup file
under Windows is .bak, there are many variants under Linux. One of the most
common is appending a tilde character ’∼’.

Number of backup files to keep (User)

You can keep more than one backup file for each test suite or run log. If you do
so, backup files are named after the scheme .bak1, .bak2... for the .bak
naming style and ∼1∼, ∼2∼... for the other. The most recent backup is always
numbered 1. When a new backup is created, the old number 1 is renamed to 2, 2
renamed to 3 and so on. When the maximum is reached, the oldest files are
deleted.

Auto-save interval (s) (User)

41.1. General options 470

Interval after which a modified test suite is saved automatically. Setting this value
to 0 will disable auto-saving. Otherwise values less than about 20 seconds are
not useful. Run logs are never saved automatically. Auto-save files are created in
the same directory as the test suite or - in the case of new suites that have never
been saved - in the user configuration directory(11).

41.1.8 Library

Figure 41.10: Library options

Directories holding test suite libraries (System)

This is a list of directories that are searched for test suites whenever a suite
reference is given as a relative path that cannot be resolved relative to the current
suite. This includes direct suite references in the Procedure name(631) attribute of a
Procedure call(630) or a Component(869) QF-Test ID(870) reference as well as suites
included through the Include files(556) attribute of the Test suite(555) node.

The directory names can reference environment variables or system properties via9.0+
the syntax ${env:...} or ${system:...}. You can change the directory at run
time by setting the respective environment variable or system property via script
to the new value. Use rc.setProperty, which is described in section 50.5(963).

Though the syntax above is a standard in QF-Test for group variables or properties,Note

41.1. General options 471

this is a special case where only the env or system groups can be used.

The include directory belonging to the current version of QF-Test is automatically
and invisibly placed at the end of the library path. This ensures that the common
library qfs.qft can always be included without knowing its actual location and
that its version is matching the version of QF-Test at all times.

If the command line argument -libpath <path>(919) is given it will override theNote
settings of this option. In interactive mode, the value of the command line argu-
ment is displayed here, but it will not be saved with the system configuration unless
it is modified.

Test suites included in a new test suite (System)
9.0+

The option defines which test suites will be written to the list Include files(556) when
creating a new test suite. If you only specify the name of the test suite without the
file path the test suite has to be located either directly in the folder or the including
test suite or in one of the Directories holding test suite libraries(469). When the list
is left empty, the standard library qfs.qft will be included in a new test suite by
default.

41.1. General options 472

41.1.9 License

Figure 41.11: License options

Normally QF-Test license bundles contain a homogeneous mix of GUI engines. For
example, a bundle of QF-Test/swing licenses only supports the AWT/Swing engine, QF-
Test/suite licenses support both AWT/Swing and SWT for all included licenses. For
these kinds of simple licenses these license settings can be ignored.

A small problem arises in case of mixed engine licenses where some GUI engine is
included only for a part of the licenses. An example for this is a license bundle that was
formerly purchased for qftestJUI, upgraded to QF-Test/suite with QF-Test 2.0 and then
extended with further QF-Test/swing licenses, say two licenses for QF-Test/suite and
another two for QF-Test/swing. Such a license allows running four concurrent instances
of QF-Test, but only two of these can make use of the SWT engine. If more than two
instances are started with SWT support there will be a license conflict.

41.1. General options 473

When QF-Test detects such a mixed license bundle for the first time it asks the user
which engine licenses to use. The choice made then can be changed here at any
time. Besides, QF-Test can be started with the command line argument
-engine <engine>(917) to override the supported GUI engines for this execution.

41.1.10 Updates

To get the latest features and bug-fixes QF-Test can check for updates automatically.
The following options determine whether to check and when to notify for available up-
dates. Using the command line argument -noupdatecheck 44.2.3(921) you can disable the
automatic update check.

Figure 41.12: Update options

Automatically check for updates (User)

QF-Test automatically checks for updates upon startup. Deactivating this option
disables this feature.

Ask for Update (User)

If a new version is available QF-Test shows a notification with links to the release
notes and the download page. This option limits those notifications to specific
kinds of versions.

• Minor updates contain mostly bug-fixes and small improvements.
• Medium upgrades are released to provide new features.
• Major upgrades include significant new features and may change the behav-

ior of QF-Test.

41.2. Recording options 474

41.2 Recording options

The following options determine which kinds of events are recorded and which filters are
applied, how components are recorded and arranged, and how sub-items are handled.

Figure 41.13: Recording options

Show initial quickstart help on record button (User)

Controls the display of an initial question mark on the record button in order to
directly lead new users to the quickstart wizard.

Hotkey for recording (User)

SUT script name: OPT_RECORD_HOTKEY
Event recording can be directly started/stopped by pressing a key in the SUT. The
key to be used for this function is set through this option. To set an option, click
into the field and press the desired key combination. The default key is

�� ��F11 .

Keep variables in recorded client names (System)

This option is very useful if the client name assigned to your SUT contains
variables (e.g. $(client)), which generally makes sense when creating
procedures. If this option is set, the client attribute of all recorded nodes is set to
the unexpanded Client(682) value of the Start SUT client(681) node through which the
SUT was started.

41.2. Recording options 475

Insert recording at current selection (User)

Depending on what you are currently working on, it may or may not make sense
to add newly recorded sequences directly at the current insertion mark. If you
deactivate this option, new recordings are placed in a new Sequence(577) under
Extras(588).

Hotkey for checks (User)

SUT script name: OPT_RECORD_CHECK_HOTKEY
To simplify recording a sequence of events with interspersed checks, you can
switch between plain recording and recording checks by pressing a key in the
SUT. The key that triggers this switch is set through this option. To set an option,
click into the field and press the desired key combination. The default key is

�� ��F12 .

Highlight components when checking (User)

SUT script name: OPT_RECORD_CHECK_HIGHLIGHT
When QF-Test is recording checks, it can give visual feedback on the component
the mouse is currently over by inverting its foreground and background colors.
Rarely this may have unwanted visual side effects, so you can turn that feature off
with this option.

Show message if no events were recorded (User)

Server script name: OPT_SHOW_EMPTY_RECORDING_MESSAGE
When starting to record and stopping without interacting with the SUT in
between, a message is shown indicating that no events were recorded. By
deactivating this option that message can be suppressed.

41.2.1 Events to record

These options specify which kinds of events are recorded and which aren’t. You should
not tinker with these unless you know what you are doing.

41.2. Recording options 476

Figure 41.14: Options for events to record

Abstract ’Mouse click’ events (System)

Activating this option causes a sequence of MOUSE_MOVED, MOUSE_PRESSED,
MOUSE_RELEASED and MOUSE_CLICKED events to be recorded as a single
’Mouse click’ pseudo event (see section 42.8.1(726)).

Simplified ’Mouse click’ recording (System)
4.1+

When recording ’Mouse click’ events, this option should also be activated. Except
for Drag&Drop and special case MOUSE_MOVED events, recording is then based
primarily on MOUSE_PRESSED events, turned into ’Mouse clicks’. This gives best
results in most cases, even when QF-Test receives too few or too many events
from the SUT. If this option is turned off, the algorithm from QF-Test 4.0 and older
is used. This is worth a try in case a recorded sequence cannot be replayed
directly.

Abstract ’Keystroke’ events (System)

This option lets you record a sequence of KEY_PRESSED, KEY_TYPED and
KEY_RELEASED events (or just KEY_PRESSED and KEY_RELEASED for function
keys) as a single ’Keystroke’ pseudo event (see section 42.8.2(730)).

Record MouseEvents without coordinates where possible (System)

SUT script name: OPT_RECORD_REPOSITION_MOUSE_EVENTS
For many types of components and sub-items it doesn’t matter where exactly a
MouseEvent occurs. However, if large values are recorded for the X or Y

41.2. Recording options 477

coordinate of a Mouse event(726), there’s the danger that the event might miss its
target upon replay if the component has shrunk a little due to font changes or
because the window has been resized. This is also a possible source for
problems when converting a recorded sequence to a Procedure(627) with variable
target components.

If this option is activated, QF-Test ignores the coordinates of recorded
MouseEvents if it thinks that the coordinates don’t matter for the target
component, e.g. for all kinds of buttons, for menu items, table cells, list items and
tree nodes. For the latter QF-Test distinguishes between clicks on the node itself
and on the expand/collapse toggle. When MouseEvents without coordinates are
played back, QF-Test targets the center of the respective component or item
except that the X coordinate for items is limited to 5 because item bounds cannot
always be calculated correctly.

Convert opening of a window into Wait for component to appear(818) (System)

When replaying a sequence during which a new window is opened, it may be
useful to allow for a longer than usual delay until the window is opened. By
activating this option, a recorded WINDOW_OPENED event will be turned into a
Wait for component to appear(818) node automatically.

For web clients this option causes a Wait for document to load(822) node to be insertedWeb
whenever loading of a document completes. This is important for proper synchro-
nization when navigating to another page.

41.2.2 Events to pack

In order to keep the amount of raw event data generated during normal use of a Java
GUI manageable, QF-Test employs a set of recording filters and packers. These do
their best to keep everything needed for successful replay and throw away the rest.
To get an impression of the actual data behind a recorded sequence, try recording a
short sequence with all of these turned off, and with ’Mouse click’(475) and ’Keystroke’(475)

pseudo events disabled.

41.2. Recording options 478

Figure 41.15: Options for events to pack

MOUSE_MOVED events (System)

SUT script name: OPT_RECORD_PACK_MOUSE_MOVED
MOUSE_MOVED events are especially frequent. Every mouse cursor motion
generates a handful of these. Under most circumstances, only the last of a
consecutive series of MOUSE_MOVED events is actually useful, so all events
except the last one are dropped, if this option is activated. An example where this
is not advisable is recording some freehand drawing in a graphics application.

One might think that MOUSE_MOVED events are completely useless, sinceNote
MOUSE_PRESSED or MOUSE_RELEASED events have their own set of coordinates,
but this is not the case. Some Java components require a MOUSE_MOVED event
before a MOUSE_PRESSED event is recognized.

MOUSE_DRAGGED events (System)

SUT script name: OPT_RECORD_PACK_MOUSE_DRAGGED
MOUSE_DRAGGED events are like MOUSE_MOVED events, but with one mouse
button held down. Similarly, only the last of a series of MOUSE_DRAGGED events is
recorded unless you turn off this option, except for special cases (see next
option).

41.2. Recording options 479

Mouse drag hover delay (System)

SUT script name: OPT_RECORD_MOUSE_DRAGGED_HOVER
There are situations where not only the final target of a mouse drag is of interest,
but intermediate points as well. The most common is invoking a menu item in a
sub-menu.

As of QF-Test 1.05.2, the following no longer applies because MOUSE_MOVED orNote
MOUSE_DRAGGED events that are required for opening sub-menus are not ”opti-
mized away” anymore. However, there may be other situations where intermediate
stops are useful when recording drags.

Figure 41.16: Dragging to a sub-menu

As illustrated above, creating a new Test call node for a suite could be done
by clicking on the Insert menu button, dragging the mouse to the
Test and Sequence nodes item for the sub-menu, so the sub-menu pops up,

then dragging on to the Testcall menu item and releasing the mouse button.
Normally such a sequence would be reduced to a press, a drag to the final
Testcall item and a release. It would fail to replay, since the sub-menu

would never be popped up. To work correctly, an additional drag to the
Test and Sequence nodes item must be recorded.

For that reason QF-Test recognizes a MOUSE_DRAGGED event as important if you
hover over an intermediate component for a while during the drag. The delay (in
milliseconds) needed to recognize such an event is set through this option.

To record the above example correctly with this option set to 1000, you’d have to
click on the Insert menu button, drag to the Test and Sequence nodes item and

41.2. Recording options 480

keep the mouse pointer stationary for one second, then move on to the TestCall
sub-menu item and release the mouse button.

Maximum drag distance for ’Mouse click’ event (System)

It sometimes happens unintentionally that the mouse cursor is moved between
pressing the mouse button and releasing it. This movement may be registered as
a MOUSE_DRAGGED event, depending on the JDK version and the distance of the
move. QF-Test is able to compensate for small movements and still convert the
click into an abstract ’Mouse click’ event. This option defines the maximum
distance between pressing and releasing the mouse button that QF-Test will
ignore. Every MOUSE_DRAGGED event above that distance will be left unchanged.

Collect key events into a Text input node (System)

Another example where a lot of events are generated is entering a short string of
text into a text field. Each character typed leads to at least one KEY_PRESSED,
one KEY_TYPED and one KEY_RELEASED event. For additional fun, the
KEY_RELEASED events may arrive out of order or not at all, depending on
operating system and JDK version.

If this option is activated, sequences of KeyEvents on a text component (to be
exact: a component whose class is derived from java.awt.TextField or
javax.swing.text.JTextField) are converted into a Text input(734) node.
Only true character input is packed, function or control keys or key combinations
with

�� ��Control or
�� ��Alt are left unchanged.

When the packed sequence is replayed, only KEY_TYPED events are generated.
KEY_PRESSED and KEY_RELEASED events cannot be generated, since the re-
quired key code is system dependent and cannot be determined from the charac-
ter alone. This is not a problem however, since text components usually handle
only KEY_TYPED events and some special keys.

Automatically set ’Clear...’ attribute of recorded Text input nodes (System)

This option determines the value of the Clear target component first(736) attribute of a
recorded Text input(734) node. If the option is not set, the attribute will not be set
either. Otherwise, the Clear target component first attribute is set if and only if the
text field or text area was empty before the input started.

Always set ’Replay single events’ attribute of recorded Text input nodes (System)

This option determines the value of the Replay single events(736) attribute of a
recorded Text input(734) node. If the option is set, the attribute will be set and vice

41.2. Recording options 481

versa. The conservative way is to keep the option set, but for a typical application
that does not add its own KeyListeners to text fields it should be safe to turn it off
so as to speed up replay of Text input nodes.

41.2.3 Components

General information regarding the settings for recording of class names:

QF-Test can record classes of component in various ways, therefore it organizes com-
ponent classes in various categories. Those categories are called as the specific class,
the technology-specific system class, the generic class and the dedicated type of the
generic class. Each category is recorded at Extra features(871).

The option Record generic class names for components(483) is checked by default. Using
this option allows you to record generic classes in order to share and re-use your tests
when testing a different technology with just minor changes to the existing tests.

In case you work with one Java engine only and you prefer to work with the ”real” JavaSwing
classes, you could also work without the generic class recording. In this case you should
consider to check the option Record system class only(483). This option makes QF-Test
record the technology-specific system class instead of the derived class. If you switch
off this option you will get the derived class which enables you to make a very well
targeted recognition but could cause maintenance efforts in case of changes coming
from refactoring. In case to derived classes were obfuscated you must not set this
option.

41.2. Recording options 482

Figure 41.17: Options for recording components

Hotkey for components (User)

SUT script name: OPT_RECORD_COMPONENT_HOTKEY
This option defines the key for a very useful functionality: recording components
directly from the SUT. Pressing this key in the SUT will switch it to ”component
recording” mode, regardless of whether event recording is currently activated or
not. To change the option please click the field showing the current key or key
combination (it is an interactive field) and press the desired key or key
combination. To leave the interactive field press the tab key or do a mouse click to
a different field. The default key is

�� ��Shift-F11 for Window/Linux and
�� ��-F11 for

Mac.

41.2. Recording options 483

In this mode, clicking on a component with the mouse will cause the component
to be recorded and added to the test suite if it was unknown before. If more than
one test suite is currently opened, the menu item Record→Receive components
determines the suite that will receive the components. The QF-Test ID(870) of the
Component(869) is put on the clipboard so it can be pasted into any text field with�� ��Control-V . This latter feature is very handy when creating an event or a check
from scratch.

Figure 41.18: Popup menu for recording components

You can also record a whole component hierarchy at once by clicking with the
right mouse button instead. This will bring up a popup menu with the following four
options:

Component only
This is similar to clicking with the left mouse button. Only the selected

component is recorded.

Component and children
The selected component and all components contained therein are

recorded.

Whole window
Records every component in the whole window.

Suggest names
This is a special feature to improve the collaboration between testers and

developers in deciding which components should have names set with
setName(). All components in the whole window are recorded and put into
a test suite of their own. Each unnamed component for which a name will
improve testability is marked with a name of the form ”SUGGESTED NAME
(n): suggestion”. The running count in braces is just used to avoid

41.2. Recording options 484

duplicates. The suggested name is built from the component’s class and
other available information. It should be taken with a grain of salt.

Show methods
This is another special feature that brings up a component inspector

window showing the attributes and methods of the selected component’s
class. See section 5.12(96) for further information.

Normally ”component recording” mode is turned off by either pressing the hotkey
again or by selecting a component. If you want to record multiple single com-
ponents, use the key combination for Hotkey for multiple component recording(483).
That way selecting a component will not turn off the mode, only pressing the hotkey
again will.

Hotkey for multiple component recording (User)

SUT script name: OPT_RECORD_COMPONENT_CONTINUE_HOTKEY
This option defines the key combination that allows you to switch to component
recording mode. To change the option please click the field showing the current
key or key combination (it is an interactive field) and press the desired key or key
combination. To leave the interactive field press the tab key or do a mouse click to
a different field. The default key is

�� ��CTRL-F11 for Window/Linux and
�� ��-F11 for

Mac.

The key difference with Hotkey for components(481) is that this mode remains ac-
tive, enabling you to record multiple components consecutively. To exit the mode,
simply press the hotkey again.

Record generic class names for components (System)
4.0+

SUT script name: OPT_RECORD_COMPONENT_GENERIC_CLASS
Where possible QF-Test assigns generic class names to components
like ”Button”, ”Table” or ”Tree” in addition to the actual Java, DOM or
framework-specific class names like ”javax.swing.JButton”,
”javafx.scene.control.Button”, ”INPUT” or ”X-BUTTON”. These generic class
names are more descriptive and robust, improve compatibility between different
UIs and enable creation of generic utility procedures. Generic class names can
be used for component recognition or registering resolvers. If this option is active,
generic class names are recorded where available.

Record system class only (System)

SUT script name: OPT_RECORD_COMPONENT_SYSTEM_CLASS_ONLY
If this option is set, QF-Test does not record any custom classes for

41.2. Recording options 485

Components(869). Instead it moves up the class hierarchy until it encounters a
system class and records that. Set this option if the class names of your custom
GUI classes tend to differ between releases.

You must activate this option if you intend to obfuscate the jar files of your ap-Note
plication or if you are using a custom class loader to load your application’s GUI
classes.

This option does not apply to web SUTs.Web

Match any class when recording components (System)
4.0+

SUT script name: OPT_RECORD_TOLERANT_CLASS_MATCH
For compatibility with older QF-Test versions that did not have generic classes,
QF-Test now matches against several classes of a component when recording,
the concrete class, the generic class and the system class. This is very useful if
you want to retain as many of your old components as possible. If you would
rather get new components based on generic classes in new recordings you
should deactivate this option. Components recorded for the first time will always
be recorded with the class determined by the preceding two options Record
generic class names for components(483) and Record system class only(483).

Validate component recognition during recording (System)
3.5+

SUT script name: OPT_VALIDATE_RECORDED_COMPONENTS
In case non-unique names are assigned to components QF-Test can still
distinguish between these components with the help of the Extra feature(871)

qfs:matchindex that specifies the index of the component with the given
name. If this option is set, QF-Test will check the name of the component during
recording and try to assign qfs:matchindex correctly.

You should only deactivate this option if you are sure that component namesNote
are ”reasonably unique” and the component validation significantly impacts per-
formance during recording.

Convert HTML components to plain text (System)
Swing

SUT script name: OPT_RECORD_COMPONENT_CONVERT_HTML
Swing supports HTML markup in various kinds of labels, buttons and
sub-elements of complex components. For component identification and
validation, the HTML markup is often not useful and will clutter up things. If this
option is set, QF-Test converts HTML to normal text by removing all HTML
markup so only the actual text content is left.

41.2. Recording options 486

Name override mode (record) (System)

Server (automatically forwarded to SUT) script name:
OPT_RECORD_COMPONENT_NAME_OVERRIDE
Possible Values: VAL_NAME_OVERRIDE_EVERYTHING,
VAL_NAME_OVERRIDE_HIERARCHY,
VAL_NAME_OVERRIDE_PLAIN
There are two versions of this option which are closely related. This one isNote
effective during recording, the other one(509) during replay. Obviously, both options
should always have the same value. There’s one exception though: When
migrating from one setting to another, QF-Test’s components have to be updated.
During that process, keep the replay option at the old setting and change this
option to the new one. Be sure to update the replay setting after updating the
components.

This option determines the weight given to the names of components for recording.
Possible choices are:

Override everything
This is the most effective and adaptable way of searching components, but it re-
quires that the names of the components are unique, at least within the same
window. If that uniqueness is given, use this choice.
Don’t use this value for a web page with frames. Use ”Hierarchical resolution”Web
instead.

Hierarchical resolution
This choice should be used if component names are not unique on a per-window
basis, but naming is still used consistently so that two components with identical
names have at least parent components or ancestors with distinct names. That
way, component recognition is still tolerant to a lot of change, but if a named com-
ponent is moved to a different named parent in the SUT, the test suite will have to
be updated to reflect the change.

Plain attribute
If there are components with identical names in the SUT within the same parent
component you must use this setting. The name will still play an important role in
component recognition, but not much more than the Feature(871) attribute.

Automatic component names for Eclipse/RCP applications (System)
SWT

SUT script name: OPT_RECORD_COMPONENT_AUTOMATIC_RCP_NAMES
Eclipse and applications based on the Rich Client Platform (RCP) have a
complex GUI with support for changing perspectives. Such a change causes
components to be rearranged which can make it hard for QF-Test to recognize
them unless names are set at least on the major components. This is further

41.2. Recording options 487

complicated by the fact that the structure of the components is not what it
appears to be - the main components are all arranged in a relatively flat hierarchy
within the workbench. On the upside, RCP-based applications have a uniform
inner structure based on Views and Editors, many of which are named.

If this option is turned on, QF-Test will do its best to automatically associate GUI
elements with their RCP counterparts and assign names based on that associ-
ation. This can drastically improve component recognition for such applications.
However, if some names thus assigned turn out not to be reliable over time, they
can also interfere. In such a case, names can be assigned to the affected com-
ponents either using setData as described in chapter 5(42) or with the help of a
NameResolver as described in section 54.1.7(1082). Both will override automati-
cally generated names.

Component hierarchy (System)

Server script name: OPT_RECORD_COMPONENT_HIERARCHY
Possible Values: VAL_RECORD_HIERARCHY_INTELLIGENT,
VAL_RECORD_HIERARCHY_FULL,
VAL_RECORD_HIERARCHY_FLAT
QF-Test supports three different kinds of views for the components of the SUT.
For more information about their effect on component recognition, see section
48.1(948).

The flat view collects all components of a window as direct child nodes of the
respective Window(858) node. The advantage of this view is that structural changes
of the component hierarchy have little effect on component recognition. This is
also its greatest disadvantage: since structural information is not available, this
view gives reasonable recognition quality only if setName() is used ubiquitously.
Another drawback is the lack of clearness.

The complement to the flat view is the full hierarchy. It includes every single com-
ponent of the SUT’s GUI, emulating all parent/child relationships. This view can
be a useful tool for developers or testers that want to gain insights into the SUT’s
structure, but is not very applicable for testing, since structural changes affect it
too much. As long as you don’t change the GUI however, it will give you excellent
recognition without the help of setName().

A compromise between flat and full hierarchy is available through the choice ”In-
telligent”. For this view only the ”interesting” components of the SUT are recorded.
”Interesting” in this case means that either the user can interact with the compo-
nent, or it is located at some important point in the hierarchy, like the children of a
split pane or a tabbed pane. In some later version of QF-Test this decision may be
made configurable as well.

Prepend QF-Test ID of window parent to component QF-Test ID (System)

41.2. Recording options 488

Server script name: OPT_RECORD_COMPONENT_PREPEND_WINDOW_ID
If selected, QF-Test prepends the QF-Test ID of the Window(858) parent of a
Component(869) to its QF-Test ID(870) during recording. This is useful to disambiguate
QF-Test IDs of components with identical names in different windows.

Prepend parent QF-Test ID to component QF-Test ID (System)

Server script name: OPT_RECORD_COMPONENT_PREPEND_PARENT_ID
Possible Values: VAL_RECORD_COMPONENT_PREPEND_PARENT_ALWAYS,
VAL_RECORD_COMPONENT_PREPEND_PARENT_NAMED,
VAL_RECORD_COMPONENT_PREPEND_PARENT_FEATURE,
VAL_RECORD_COMPONENT_PREPEND_PARENT_NEVER
When a Component(869) is recorded for the first time, QF-Test assigns an
automatically generated QF-Test ID(870). The QF-Test ID of a direct or indirect
parent node may be prepended to this QF-Test ID. This is useful to distinguish
between similar components that don’t have a name of their own.

Example: Imagine two JScrollPanes, one named ”TreeScrollPane” and the
other named ”DetailScrollPane”. Without this functionality, their vertical scrollbars
would get the QF-Test IDs ”scrollbarVertical” and ”scrollbarVertical2”. With this
function turned on, the IDs would be ”TreeScrollPane.scrollbarVertical” and ”De-
tailScrollPane”.scrollbarVertical”. That way it is immediately obvious which com-
ponent is the target of an event.

There are four possible settings:

• ”Never” turns this option off.

• ”Nearest named ancestor” is a useful setting, if your developers have as-
signed names to all major components with the Java method setName. A
component that doesn’t have a name of its own, gets the QF-Test ID of its
nearest named ancestor node prepended.

• If setName is used sparingly or not at all, it is better to set this option to
”Nearest ancestor with name or feature”. That way either the name or a
distinctive feature of an ancestor node will be applicable.

• ”Always” is only useful if the option Component hierarchy(486) is set to ”Flat”.
With this setting, every component gets the QF-Test ID of its parent node
prepended, which can lead to unusably long QF-Test IDs when components
are nested deeply.

41.2. Recording options 489

41.2.4 Recording sub-items

Events on complex components like tables or trees can be recorded relative to a sub-
item of the component.

Figure 41.19: Options for recording sub-items

Record sub-items as event targets (System)

SUT script name: OPT_RECORD_SUBITEM
This option activates recording sub-items. When turned off, events on complex
components are no different from events on simple components.

Multi-level sub-items (System)
4.0+

Server (automatically forwarded to SUT) script name:
OPT_RECORD_SUBITEM_MULTILEVEL
Via this option you can completely disable multi-level sub-items (even for replay).
However, you should only turn this feature off in case you are running into
problems caused by test suites that contain unquoted special characters like ’@’
or ’%’ in textual sub-item indexes. Even then it is preferable to update the test
suites with properly quoted items, possibly using the special variable syntax
${quoteitem:...} (see section 6.8(114)).

Sub-item format (System)

SUT script name: OPT_RECORD_SUBITEM_FORMAT

41.2. Recording options 490

Possible Values: VAL_RECORD_SUBITEM_FORMAT_INTELLIGENT,
VAL_RECORD_SUBITEM_FORMAT_TEXT,
VAL_RECORD_SUBITEM_FORMAT_NUMBER
When recording an event for a sub-item, the Item’s(875) index can be defined
As string(877) or As number(877).

The third choice, ”Intelligent”, causes QF-Test to record the index in the format
most appropriate for the item. If the name of the item is unique within the complex
component, a string index is recorded, a numeric index otherwise.

Sub-item type (System)

Server script name: OPT_RECORD_SUBITEM_TYPE
Possible Values: VAL_RECORD_SUBITEM_TYPE_INTELLIGENT,
VAL_RECORD_SUBITEM_TYPE_NODE,
VAL_RECORD_SUBITEM_TYPE_SYNTAX
With this option you control whether a Item(875) node is created for a sub-element
during event recording or the element is referenced directly in the attribute
QF-Test component ID(727) of the Mouse event(726) node. (see section 5.9(82)).

Choosing ”Intelligent” will only cause a node to be created if the Index is given as
text(877) and the sub-element is not editable in the SUT.

Represent tree node as path (System)

SUT script name: OPT_RECORD_SUBITEM_TREE_PATH
It is not uncommon that trees have identically named nodes under different
parent nodes, e.g. a file system with the directories /tmp and /usr/tmp. By
using a path format in the Items(875) for tree nodes QF-Test can make full use of the
hierarchical structure to distinguish between these nodes. The slash character ’/’
is used as separator.

If this option is deactivated, trees will be treated as flat lists.

41.2.5 Recording Window
6.0+

The following options can be used to customize the look and functionality of the record-
ing window.

41.2. Recording options 491

Figure 41.20: Options for the recording window

Control without recording (System)

Server script name: OPT_RECORDING_CONTROL_STATE
If this option is set, clicks and other inputs in the recording window are passed on
to the active device or emulator/simulator, even if the recording mode is not
active.

Automatic scaling (System)

Server script name: OPT_RECORDING_DISPLAY_AUTO_SCALING
If this option is set, the preview image in the recording window will be
automatically scaled according to the window size.

Show screen borders (System)

41.2. Recording options 492

Server script name: OPT_SHOW_BORDER
Draws a Border around the edge of the virtual screen inside the recording
window to make the edge clearly visible.

Show vertical toolbar (System)

Server script name: OPT_VERTICAL_TOOLBAR_STATE
Inserts an additional toolbar at the edge of the recording window containing
actions for controlling possible hardware buttons of the device. In recording
mode, these are also recorded as events.

Swipe on the top level component (System)

Server script name: OPT_SWIPE_ON_TOPLEVEL_COMPONENT
When the option is activated swipes will always be recorded on the top level
component.

Due to differing screen sizes and resolutions of devices some components may
not be located in the visible area. Then, swipes where the lower level component
is not relevant may become unreliable. Especially for navigation swipes, the option
can improve the recording.

Highlighting after click (System)

Server script name: OPT_CLICK_HIGHLIGHT
When the option is set clicks to recording window will highlight the respective
component, showing a colored border around it for a short time. This can be
useful to check whether a click was interpreted correctly.

Highlight duration (ms) (System)

Server script name: OPT_HIGHLIGHT_DURATION
With this you control how long a border around a selected component should be
displayed.

Automatic refresh interval (ms) (System)

Server script name: OPT_RECORDING_AUTO_REFRESH_INTERVALL
This controls how often QF-Test will try to refresh the contents of the recording
window.

Please be aware that the maximum refresh speed depends on the device or em-
ulator/simulator used. A interval value lower than the maximum refresh speed will
not have any effect.

41.2. Recording options 493

Too low values may negatively impact system performance.

Number of refreshes after one click (System)

Server script name: OPT_REFRESH_STEPS
The option defines the number of times the recording window will be updated
after a click. The option is only relevant when automatic updating has been
disabled.

Depending on the configurable animation speed of Android it can happen that the
preview window may be updated whilst an animation is executed. In that case the
option can be useful.

Waiting time between refreshes after a click (ms) (System)

Server script name: OPT_INTERVAL_TIME_AFTER_CLICK
The option defines the time between two refreshes. The option is only relevant
when automatic refreshing has been disabled.

Please be aware the maximum refresh speed depends on the device or emula-
tor/simulator used. A interval value lower than the maximum refresh speed will not
have any effect.

41.2.6 Recording procedures

The following options determine the configuration of the Procedure Builder which is
described in detail in Automated Creation of Basic Procedures(341).

Figure 41.21: Procedure Builder options

Hotkey for procedure recording (User)

41.3. Replay options 494

SUT script name: OPT_RECORD_PROCEDURE_HOTKEY
This option defines a key for turning on automatic procedure recording directly in
the SUT. To change the option please click the field showing the current key or
key combination (it is an interactive field) and press the desired key or key
combination. To leave the interactive field press the tab key or do a mouse click to
a different field. The default key is

�� ��Shift-F12 for Window/Linux and
�� ��-F12 for

Mac.

Hotkey for multiple procedure recording (User)

SUT script name: OPT_RECORD_PROCEDURE_CONTINUE_HOTKEY
This option defines a key for turning on automatic procedure recording directly in
the SUT. To change the option please click the field showing the current key or
key combination (it is an interactive field) and press the desired key or key
combination. To leave the interactive field press the tab key or do a mouse click to
a different field. The default key is

�� ��Ctrl-F12 for Window/Linux and
�� ��-F12 for Mac.

The difference with Hotkey for procedure recording(492) is that procedure recording
mode remains active, enabling you to record multiple procedures consecutively.
To exit the mode, simply press the hotkey again.

Configuration file for recorded procedures (System)

Here you can specify your own template file for the Procedure Builder. If a relative
path is given, QF-Test looks for the definition file in the directory that QF-Test was
started from and in the default include directory.

41.3 Replay options

The following settings change the way test suites are executed.

41.3. Replay options 495

Figure 41.22: Replay options

Hotkey for pausing test run (”Don’t Panic” key) (User)

Server (automatically forwarded to SUT) script name:
OPT_PLAY_DONT_PANIC_HOTKEY
When running a test at full speed it can be rather difficult to get the focus to
QF-Test’s window and interrupt the test so you can do something different without
having all these windows flashing around the screen. This is all the more true
when the options Actually move mouse cursor(505) or Raise SUT windows
automatically(504) are activated or when running in batch mode.
This option lets you define a key combination (the default being

�� ��Alt-F12) that will
instantly pause all running tests if it is pressed in any SUT or QF-Test window

41.3. Replay options 496

(unless multiple QF-Test instances are run simultaneously, of course). Pressing
the same key combination again will resume all tests, unless you manually resume
or stop any of them. In that case its effect is automatically reset to suspend tests.

To set a hotkey, click into the field and press the desired key combination.

Call stack size (System)

Server script name: OPT_PLAY_CALLSTACK_SIZE
The call stack size is a limit for the nesting depth of Sequences(577) or
Procedure calls(630) during replay. This limit is needed to detect and handle endless
recursion. When the nesting depth exceeds the call stack size, a
StackOverflowException(904) is thrown. The default value of 200 should be
sufficient but can be increased for very complex tests.

Log warning for nested test cases (System)

Server script name: OPT_PLAY_WARN_NESTED_TEST_CASE
Execution of Test case(558) nodes should not be nested because such Test cases
cannot be listed properly in the report. If this option is active, a warning is logged
in case a Test case is executed within another Test case.

Mark nodes during replay (User)

If set, tree nodes that are currently executed are marked with an arrow.

Show replay messages in status line (User)

Determines whether the name of the currently executing node is shown in the
status line.

Raise test suite window after replay (User)

This option is mainly used together with the option Raise SUT windows
automatically(504). It causes the window of a test suite to be raised after a test run.

See also option Force window to the top when raising(505).

Minimize test suite window during replay (User)

If this option is set, QF-Test will minimize the window of a test suite while its tests
are being executed. The window will pop back up automatically when the test is
stopped or suspended. This feature is especially useful on Windows 2000/XP
systems where programs are prohibited from bringing their windows to the top so
QF-Test cannot raise the windows of the SUT.

41.3. Replay options 497

Show message dialog after (User)

After replay is finished, the status line shows the number of errors and warnings
that occurred. If an uncaught exception was thrown, an error dialog is displayed.
Additionally, a message dialog can be displayed in case of warnings or errors or
every time a run is finished. This option sets the minimum error level that triggers
such a message dialog.

Always locate the source of an error (User)

When an exception is thrown during replay, the node that caused the exception
will be made visible and selected. If you don’t like this, you can turn this feature off
and locate the node via the Run→Find last error source... menu item instead.

Salt for crypting passwords (System)
3.0+

QF-Test can store variable data encrypted and decrypt it using the special
variable group decrypt (see section 6.8(114)). In addition, QF-Test can store
encrypted passwords in the Text(736) attribute of a Text input(734) node for a password
field or the Detail(744) attribute of a Selection(742) used for a login dialog in a web SUT.
When such passwords are en- or decrypted, QF-Test combines the key with the
salt specified in this option. Without this salt, anybody with sufficient knowledge is
able to decrypt your passwords to get the plain-text version.

Don’t let this option give you a false sense of security. Anybody that gains accessNote
to this salt and anybody that can execute your tests can also gain access to the
plain-text version of the password. However, encrypting passwords is still useful
to prevent obvious plain-text passwords getting stored in test suites and run logs,
and encrypted passwords are reasonably safe from someone who only gets hold
of a test suite or run log without access to this salt.

How to handle disabled components (System)
4.0+

Server script name: OPT_PLAY_ERROR_STATE_DISABLED_COMPONENT
Possible Values: VAL_PLAY_DISABLED_COMPONENT_WARNING,
VAL_PLAY_DISABLED_COMPONENT_ERROR,
VAL_PLAY_DISABLED_COMPONENT_EXCEPTION
In case you replay an event on a component, which is disabled you can configure
QF-Test’s behavior for that case. You can

• Log a warning message

• Log an error message

• Throw a DisabledComponentStepException(897)

41.3. Replay options 498

How to handle exceeded execution timeout (System)
4.1+

Server script name: OPT_PLAY_ERROR_STATE_EXECUTION_TIMEOUT
Possible Values: VAL_PLAY_EXECUTION_TIMEOUT_WARNING,
VAL_PLAY_EXECUTION_TIMEOUT_ERROR,
VAL_PLAY_EXECUTION_TIMEOUT_EXCEPTION,
VAL_PLAY_EXECUTION_TIMEOUT_WARNING_IMMEDIATE,
VAL_PLAY_EXECUTION_TIMEOUT_ERROR_IMMEDIATE,
VAL_PLAY_EXECUTION_TIMEOUT_EXCEPTION_IMMEDIATE
In case of an exceeding execution timeout, you can configure QF-Test’s behavior
for that case. You can

• Log a warning message and run through possible cleanup nodes.

• Log an error message and run through possible cleanup nodes.

• Throw an ExecutionTimeoutExpiredException(898) and run through
possible cleanup nodes.

• Log a warning message and stop the node immediately.

• Log an error message and stop the node immediately.

• Throw an ExecutionTimeoutExpiredException(898) and stop the node
immediately.

The definition of running cleanup nodes includes that Cleanup and Catch nodes
get executed. Stopping the node immediately stands for not executing possible
Cleanup and Catch nodes at the end.

41.3.1 Client options

Various settings for process and SUT clients can be adjusted with the following options:

41.3. Replay options 499

Figure 41.23: Client options

Ignore empty argument lines when starting a client (System)

Server script name:
OPT_PLAY_CLIENT_START_IGNORE_EMPTY_ARGUMENT
If the option is set (default), empty program parameters or class arguments lines
will be ignored in ’starter’ nodes like Start Java SUT client(677), Start SUT client(681),
Start process(684), Start web engine(689), Start windows application(696) or
Launch Android emulator(702). This is very useful for using variables in parameters
because an empty variable is then equivalent to removing the parameter from the
list. If the option is turned off, an empty argument line (i.e. ”) will be passed to the
starting program instead.

Ask whether to stop clients before exiting (User)

If there are still active clients upon exit of QF-Test, these are terminated after
asking for confirmation. If this option is turned off, the clients are terminated
unconditionally.

41.3. Replay options 500

When terminating a process, kill its whole process tree (System)

Server script name: OPT_PLAY_KILL_PROCESS_TREE
The process of an SUT or a helper program started during a test can be
terminated via a Stop client(720) node or manually via the Client menu. In case of
an SUT, QF-Test first tries to communicate with it and initiate a clean
System.exit call. Non-Java programs have to be killed. If the program has
started further child processes these may or may not get terminated by a normal
shutdown or kill, depending on circumstances.

It is normally undesirably to keep such processes around as they might interfere
with other tests or lock files that need to be removed or overwritten. Unless this
option is disabled, QF-Test will try to determine the whole process hierarchy for any
program it started and make sure that the main process and all child processes
get killed explicitly.

Number of terminated clients in menu (User)

Server script name: OPT_PLAY_MAX_CLIENTS
This option limits the number of menu items for terminated clients that are kept in
the Clients menu.

Maximum size of client terminal (kB) (User)
3.0+

Server (automatically forwarded to SUT) script name:
OPT_PLAY_TERMINAL_SIZE
The maximum amount of text (in kilobyte) that the individual client terminal will
hold. If the limit is exceeded, old text will be removed when new text arrives. A
value of 0 means no limit.

This option also determines the amount of output available for theNote
special variables ${qftest:client.output.<name>},
${qftest:client.stdout.<name>} and
${qftest:client.stderr.<name>}.

Highlight selected component in the SUT (User)

Server script name: OPT_PLAY_HIGHLIGHT_COMPONENTS
If this option is set, QF-Test will highlight the associated component in the SUT
whenever a Component(869) node or a node that references a Component is
selected.

How to handle exceptions in the SUT (System)

41.3. Replay options 501

SUT script name: OPT_PLAY_SUT_EXCEPTION_LEVEL
Possible Values: VAL_PLAY_EXCEPTION_LEVEL_WARNING,
VAL_PLAY_EXCEPTION_LEVEL_ERROR,
VAL_PLAY_EXCEPTION_LEVEL_EXCEPTION
Exceptions that are thrown during event handling in the SUT are typically a sure
sign for a bug in the SUT. This option determines what to do if such an exception
is caught. You can

• Log a warning message

• Log an error message

• Throw an UnexpectedClientException(902)

Reuse IDs for SUT clients in nested sub-processes (System)

Server script name: OPT_PLAY_REUSE_SUT_IDS
This is a complex option which you should hopefully never care about. When an
SUT client launches another process that itself connects to QF-Test, the new
SUT client is identified by the name of the original SUT client with a ’:’ and a
numeric ID appended. The first ID will always be 2, with increasing numbers for
additional sub-processes.

When a sub-process terminates and another sub-process connects, QF-Test can
either reuse the ID of the terminated process or continue incrementing to create a
new ID.

In most cases it is preferable to reuse the sub-process ID. The most common case
is a single sub-process that is started, terminated, then started again. By activating
this option you can always address the single sub-process with the same client
name.

In a more complex situation, multiple sub-processes may be launched and termi-
nated more or less at random, depending on progression of the test run. In such
a case, always incrementing the ID for a new process is more deterministic.

In either case the ID counter will be reset when the original SUT client is started
anew.

Automatically perform garbage collection in the SUT (System)

SUT script name: OPT_PLAY_SUT_GARBAGE_COLLECTION
By default QF-Test performs a full garbage collection in the SUT once every few
hundred SUT script(673) executions. This is necessary due to a limitation in Java’s
default garbage collection mechanism that allows an OutOfMemoryError to
happen for the so called PermGen space, even though the required memory
could easily be reclaimed by a garbage collection.

41.3. Replay options 502

When you are trying to analyze the memory performance of your application, these
explicit garbage collections might influence the results. For that case you can
disable QF-Test’s garbage collection via this option.

41.3.2 Terminal options

Various settings for the shared terminal can be adjusted with the following options:

Figure 41.24: Terminal options

Maximum size of shared terminal (kB) (User)

Server script name: OPT_PLAY_SHARED_TERMINAL_SIZE

41.3. Replay options 503

The maximum amount of text (in kilobyte) that the shared terminal will hold. If the
limit is exceeded, old text will be removed when new text arrives. A value of 0
means no limit.

Regular expression to suppress display of certain text (User)
4.0+

By defining a regular expression for this option, certain text in the terminal output
can be suppressed.

Default value is empty.
See also Regular expressions(955).

Use rich text terminal (User)
4.0+

If activated the rich text terminal allowing monospaced font type and coloring of
given regular expressions. Deactivate this option if you want to switch back to the
simple terminal as it were before QF-Test version 4.

QF-Test needs to be restarted in order to make a change in this option becomeNote
visible.

Use monospaced font (User)
4.0+

If activated the rich text terminal will use a monospaced font.

This option only has an effect if the Use rich text terminal(502) is active.

Regular expression coloring (User)
4.0+

If activated the shared terminal output is processed for given regular expressions
to be highlighted in different colors.

This option only has an effect if Use rich text terminal(502) and Regular expression
coloring(502) are active.

Regular expression for red highlighting (User)
4.0+

This option allows to define a regular expression for output to be shown in red
color.

This option only has an effect if Use rich text terminal(502) and Regular expression
coloring(502) are active.

Default value is:
(?md).+Exception\b.*\n(?%gt;\n?ˆ(?%gt;\sat|Caused
by:)\s.+\n)+|.*(?i)exception(?%gt;s)?\b.*

41.3. Replay options 504

With this also typical Java stack traces will be highlighted.
See also Regular expressions(955).

Regular expression for orange highlighting (User)
4.0+

This option allows to define a regular expression for output to be shown in orange
color. The default regular expression matches error log output and lines
containing respective text.

This option only has an effect if Use rich text terminal(502) and Regular expression
coloring(502) are active.

Default value is:
(?md)ˆ[1-2] \(\d\d:\d\d:\d\d\.\d\d\d\) .*|.*(?i)(?%gt;error(?%gt;s)?|fehler)\b.*
With this also error log messages will be highlighted.
See also Regular expressions(955).

Regular expression for yellow highlighting (User)
4.0+

This option allows to define a regular expression for output to be shown in yellow
color. The default regular expression matches with typical stack traces and
exceptions.

This option only has an effect if Use rich text terminal(502) and Regular expression
coloring(502) are active.

Default value is:
(?md)ˆ[3-4] \(\d\d:\d\d:\d\d\.\d\d\d\)
.*|.*(?i)(?%gt;warning(?%gt;s)?|warnung(?%gt;en)?)\b.*
With this also warning log messages will be highlighted.
See also Regular expressions(955).

Regular expression for blue highlighting (User)
4.0+

This option allows to define a regular expression for output to be shown in blue
color. The default regular expression matches with typical stack traces and
exceptions.

This option only has an effect if Use rich text terminal(502) and Regular expression
coloring(502) are active.

Regular expression for green highlighting (User)
4.0+

This option allows to define a regular expression for output to be shown in green
color. The default regular expression matches with typical stack traces and
exceptions.

41.3. Replay options 505

This option only has an effect if Use rich text terminal(502) and Regular expression
coloring(502) are active.

41.3.3 Event handling

These options influence some details of how events are simulated in the SUT during
replay.

Figure 41.25: Event handling options

41.3. Replay options 506

Raise SUT windows automatically (System)

SUT script name: OPT_PLAY_RAISE_SUT_WINDOWS
If this option is set, windows of the SUT for which a MouseEvent or KeyEvent is
replayed will be raised automatically when they get activated. This eases
switching between QF-Test and the SUT to visually verify that a sequence is
replaying correctly.

See also options Raise test suite window after replay(495) and Force window to the
top when raising(505).

Force window to the top when raising (System)
3.4.1+

SUT script name: OPT_PLAY_RAISE_SUT_WINDOWS_FORCED
This option only has an effect on Windows systems.Note

Windows only allows an application to bring one of its own windows to the front
if that application currently has the focus. This can make it difficult for QF-Test to
raise SUT windows and to automatically switch between the SUT and QF-Test. If
this option is activated, QF-Test temporarily sets the ”always on top” attribute to
force windows to the top.

See also options Raise test suite window after replay(495) and Raise SUT windows
automatically(504).

Check for modal dialogs (System)

SUT script name: OPT_PLAY_CHECK_MODAL
A modal dialog is a window that blocks all input to other windows until it is closed.
It is often used to display an error message or request user input.

Because the events simulated by QF-Test are artificial, they are not blocked by a
modal dialog and can reach any window. This is normally not desirable, since the
existence of a modal dialog may signal an unexpected error. Activating this option
causes QF-Test to check for modal dialogs itself before replaying MouseEvents or
KeyEvents. If such an event is targeted to a window that is blocked by a modal
dialog, a ModalDialogException(897) is thrown.

Actually move mouse cursor (System)

SUT script name: OPT_PLAY_MOVE_MOUSE_CURSOR
If this option is set, the mouse cursor is actually moved across the screen as
MouseEvents are simulated. This feature requires a working AWT robot.

While this option is mainly intended to give visual feedback, it can have a posi-
tive impact on test reliability because it reduces side-effects through events from

41.3. Replay options 507

the underlying system that might interfere with the automated test. However, for
tests where precise mouse movement is essential, for example a drawing tool, this
option should be turned off.

Hold back system events during replay (ms) (System)

SUT script name: OPT_PLAY_DELAY_HARD_EVENTS
Only applies to Swing and SWT testing.

During event replay QF-Test blocks or delays some events that are not initiated by
QF-Test but come directly from the system, for example when the user is moving
the mouse cursor. This is done to prevent them from interfering with the SUT in
an unlucky moment. Popup windows, which are used for menus and combo boxes
among other things, are especially sensitive to such events which can cause them
to pop down accidentally. Therefore, these filters improve testing stability.

This option sets the maximum time that such events may be delayed. In the un-
likely case that the filters have unwanted side effects with your application, you
can turn them off by setting the value to 0.

Scroll automatically to display sub-items (System)

SUT script name: OPT_PLAY_SCROLL_ITEM
If this option is set, accessing a sub-item of a complex component inside a scroll
pane will automatically cause the sub-item to be scrolled into view. In that case
you can remove most recorded events on scroll bars or scroll buttons, which are
not required for correct replay.

Expand tree nodes as needed (System)

SUT script name: OPT_PLAY_EXPAND_TREE
When accessing nodes of a tree component as hierarchic sub-items
it is possible to select a node that is not visible because one of its
ancestral nodes is not expanded. If this option is set, all ancestors of the
node will be expanded as needed. Otherwise this situation leads to a
ComponentNotFoundException(896).

Throw DisabledComponentException (System)

SUT script name: OPT_PLAY_THROW_DISABLED_EXCEPTION
If QF-Test replays events on a component that is not enabled, these events are
ignored silently. In most cases this indicates an error which is signaled by
throwing a DisabledComponentException(897).

41.3. Replay options 508

Old test suites may not be prepared to deal with this exception. These test suites
should be fixed, but as a quick workaround DisabledComponentExceptions
can be suppressed by deactivating this option.

Tolerance for checking images (System)
SWT

SUT script name: OPT_PLAY_IMAGE_TOLERANCE
Initially this option was intended for SWT/Gtk only but it turned out to beNote
universally applicable and useful.

Image rendering in Java applications and web browsers is not always fully deter-
ministic. Even within the same session on a display with limited color depth the
RGB values of an icon image can vary slightly and it becomes worse when running
tests on different machines. Graphics driver, JDK version and operating system
settings also play a role. This makes strict image checks almost unusable in some
cases.

To work around the problem, this option defines a tolerance setting for default
image checks. For a pixel’s red, green and blue color values a deviation from the
expected value by the given amount is tolerated. Thus exact image checking for
the default algorithm can be enforced by setting this value to 0 but it is preferable
to use the ”identity” check algorithm instead (see Details about the algorithm for
image comparison(1223)). The default setting of 5 is a good compromise, allowing
checks with differences that are normally not visually perceivable to succeed.

Default algorithm for image checks (System)
9.0+

Server script name: OPT_PLAY_IMAGE_CHECK_DEFAULT_ALGORITHM
Via the Algorithm for image comparison(778) attribute of a Check image(775) step it is
possible to specify which algorithm should be used by QF-Test for image
comparison. Similarly rc.checkImageAdvanced also knows an algorithm
argument. If this attribute or in case of rc.checkImageAdvanced this
argument is left empty, the algorithm specified in this Option will be used for
image comparison.

How to handle events coming from the wrong thread (System)
Swing

SUT script name: OPT_PLAY_WRONG_THREAD_ERROR_LEVEL
Possible Values: VAL_PLAY_THREAD_LEVEL_WARNING,
VAL_PLAY_THREAD_LEVEL_ERROR,
VAL_PLAY_THREAD_LEVEL_EXCEPTION
It is a rather common mistake in Swing based Java applications to access GUI
components from the wrong thread. Since Swing is not thread-safe, such calls
may only be made from the AWT event dispatch thread. Otherwise the potential

41.3. Replay options 509

consequences are race conditions, leading to very subtle and hard-to-debug
errors, or deadlocks, freezing the application and making it unusable.
Background information about this topic is available from
http://download.oracle.com/javase/tutorial/uiswing/concurrency/index.html ,
specifically the sections on ”Initial Threads” and ”The Event Dispatch Thread”.

When QF-Test registers an event on a thread other than the AWT event dispatch
thread it issues an error message including a stack trace which can be useful in
fixing the problem. This set of options defines the severity of the message, whether
to perform strict checking and a maximum for the number of messages to log.

The possible choices for the option ”Error level” are ”Error” and ”Warning”. We
strongly suggest that you keep the default setting of ”Error” and make sure that
such problems are fixed sooner rather than later because they represent a serious
risk.

Strict checking (System)
Swing

SUT script name: OPT_PLAY_WRONG_THREAD_STRICT
If strict checking for wrong thread errors is activated, error or warning messages
will be issued for all kinds of events triggered from the wrong thread. Otherwise
the problem will be ignored for ”less relevant” events. Which events are
considered more or less relevant is arbitrary, based on the fact that there’s a lot of
Java literature (including early Java documentation from Sun) claiming that it is
safe to create components on any thread and that thread-safety only needs to be
enforced once a component is made visible. A lot of code follows this pattern and
the risk for causing problems in this case is indeed minimal. In the presence of
such code disabling ”Strict checking” will cause error messages to be logged only
for the more relevant problems. If you want to get rid of all thread violations - as
we recommend - you should turn strict checking on.

Maximum number of errors to log per SUT client (System)
Swing

SUT script name: OPT_PLAY_WRONG_THREAD_MAX_ERRORS
In case an SUT contains code that violates thread safety it is possible that a very
large number of events are triggered from the wrong thread. Logging all those
errors can significantly impact test performance, yet logging more than the first
few errors does not really contribute much. The option ”Maximum number of
errors to log per SUT client” limits the possible number of error messages for this
case.

41.3. Replay options 510

41.3.4 Component recognition

How component recognition works - and the impact of these options on it - is explained
in section 48.1(948). The pre-defined values should give good results. If you experience
problems with component recognition, you can try to improve it by adjusting the proba-
bilities.

Figure 41.26: Component recognition options

The name of a component plays a special role. The following option affects the impact
of names:

Name override mode (replay) (System)

41.3. Replay options 511

SUT script name: OPT_PLAY_RECOGNITION_NAME_OVERRIDE
Possible Values: VAL_NAME_OVERRIDE_EVERYTHING,
VAL_NAME_OVERRIDE_HIERARCHY,
VAL_NAME_OVERRIDE_PLAIN
There are two versions of this option which are closely related. This one isNote
effective during replay, the other one(484) during recording. Obviously, both options
should always have the same value. There’s one exception though: When
migrating from one setting to another, QF-Test’s components have to be updated.
During that process, keep this option at the old setting and change the record
option to the new one. Be sure to update the replay setting after updating the
components.

This option determines the weight given to the names of components for compo-
nent recognition. Possible choices are:

Override everything
This is the most effective and adaptable way of searching components, but it re-
quires that the names of the components are unique, at least within the same
window. If that uniqueness is given, use this choice.
Don’t use this value for a web page with frames. Use ”Hierarchical resolution”Web
instead.

Hierarchical resolution
This choice should be used if component names are not unique on a per-window
basis, but naming is still used consistently so that two components with identical
names have at least parent components or ancestors with distinct names. That
way, component recognition is still tolerant to a lot of change, but if a named com-
ponent is moved to a different named parent in the SUT, the test suite will have to
be updated to reflect the change.

Plain attribute
If there are components with identical names in the SUT within the same parent
component you must use this setting. The name will still play an important role in
component recognition, but not much more than the Feature(871) attribute.

The algorithm for component recognition is very tolerant and biased towards finding a
match. If the best match is not perfect QF-Test logs information about the encountered
differences, either as a warning or a plain message, depending on the following options:

Log missing name (System)

SUT script name: OPT_PLAY_WARN_MISSING_NAME
If this option is set, a message will be logged whenever a component is targeted

41.3. Replay options 512

that does not have a name, but QF-Test ”thinks” it should have one. A plausible
name is suggested where possible.

Log ambiguous name (System)

SUT script name: OPT_PLAY_WARN_AMBIGUOUS_NAME
If the option Name override mode (replay)(509) is set to ”Override everything” or
”Hierarchical resolution”, a message is logged whenever QF-Test encounters
more than one potential target components with the same name. That message
can be suppressed with the help of this option.

Log feature mismatch (System)

SUT script name: OPT_PLAY_WARN_FEATURE_MISMATCH
A component is considered to have a ”feature mismatch” if it is determined by
QF-Test as the target best suited for an event or check even though at one or
more levels of the hierarchy the recorded Feature(871) attribute did not match the
current state of the component. If this option is activated, feature mismatches are
logged, notifying you that it may be a good idea to update the affected
components.

Log extra feature mismatch (System)

SUT script name: OPT_PLAY_WARN_EXTRA_FEATURE_MISMATCH
An ”extra feature mismatch” is similar to a feature mismatch as explained above,
except that it applies to extra features with status ”should match”. If this option is
activated, extra feature mismatches are logged, notifying you that it may be a
good idea to update the affected components.

Log structure mismatch (System)

SUT script name: OPT_PLAY_WARN_STRUCTURE_MISMATCH
A ”structure mismatch” is similar to a feature mismatch as explained above,
except that instead of the feature it is the structure information represented by the
attributes Class index(874) and Class count(874) where the mismatch occurred. If this
option is activated, structure mismatches are logged, notifying you that it may be
a good idea to update the affected components.

Log intermediate named ancestor (System)

SUT script name: OPT_PLAY_WARN_NAMED_ANCESTOR
An ”intermediate named ancestor” is a direct or indirect parent component of the
target component in the SUT which is not part of the component hierarchy in

41.3. Replay options 513

QF-Test even though it has a name. If the option Name override mode (replay)(509)

is set to ”Hierarchical resolution”, this is considered as a mismatch, comparable
to a feature or structure mismatch. If this option is activated, interferences
through intermediate named ancestors are logged, notifying you that it may be a
good idea to update the affected components.

Log warning instead of message (System)
4.2+

SUT script name: OPT_PLAY_COMPONENT_WARNINGS
If this option is activated, deviations from the expected values during component
recognition are logged as warnings instead of plain messages. It can be useful to
temporarily activate this option to increase the visibility of such deviations, either
to update the respective component information or to seek out false positive
matches. For normal testing this creates too much noise and tends to obscure
more interesting warnings.

For an explanation of the remaining options for component recognition please refer to
section 48.1(948). The respective SUT script names for these options are:
OPT_PLAY_RECOGNITION_BONUS_NAME
OPT_PLAY_RECOGNITION_PENALTY_NAME
OPT_PLAY_RECOGNITION_BONUS_FEATURE
OPT_PLAY_RECOGNITION_PENALTY_FEATURE
OPT_PLAY_RECOGNITION_BONUS_EXTRAFEATURE
OPT_PLAY_RECOGNITION_PENALTY_EXTRAFEATURE
OPT_PLAY_RECOGNITION_BONUS_STRUCTURE
OPT_PLAY_RECOGNITION_PENALTY_STRUCTURE
OPT_PLAY_RECOGNITION_PENALTY_MODAL
OPT_PLAY_RECOGNITION_MINIMUM_PROBABILITY

41.3.5 Delays

Here values can be set for various delays.

41.3. Replay options 514

Figure 41.27: Delay options

Default delays (ms) (System)

Server script name: OPT_PLAY_DELAY_BEFORE, OPT_PLAY_DELAY_AFTER
These two options set the delay in milliseconds before and after the execution of
a node. If a node defines its own Delay before/after(579), its value overrides this
default.

These options are useful to slow a test down so you’ll be able to follow it.

Drag&Drop and interpolation of mouse movement

Simulating Drag&Drop is non-trivial. It is made possible only by generating ”hard” mouse
events that actually move the mouse cursor. On Windows systems, some mouse drivers
can interfere with these ”hard” events. See section 49.1(954) for further details about
Drag&Drop.

To make Drag&Drop as reliable as possible, movement of the mouse cursor is highly
configurable. Since the requirements for Drag&Drop and hard mouse events differ from
those for general mouse moves which only provide visual feedback, two sets of options
are provided. The settings for demo mouse moves are ignored unless the respective
option Actually move mouse cursor(505) is activated.

41.3. Replay options 515

Typically movements for Drag&Drop and hard events should be slower and involve more
interpolation steps than those for demo moves, which could slow down a test consid-
erably. All of the following values influence the overall speed of mouse moves. A little
experimentation may be required to get the desired effect.

Delay (ms) (System)

SUT script name: OPT_PLAY_DND_DELAY, OPT_PLAY_MOVEMOUSE_DELAY
After each single movement of the mouse cursor QF-Test will wait for the
specified number of milliseconds. This value should be between 2 and 20 if
interpolation is enabled and between 20 and 200 if interpolation is turned off. With
interpolation, 10 is a good value for Drag&Drop and 5 for demo mouse moves.

Interpolation step size (System)

SUT script name: OPT_PLAY_DND_STEP, OPT_PLAY_MOVEMOUSE_STEP
The size of the steps for interpolation of mouse movement. Set this to 0 to turn
interpolation off. Good values are between 1 and 3 for Drag&Drop and between 2
and 10 for demo mouse moves.

Acceleration (System)

SUT script name: OPT_PLAY_DND_ACCELERATION,
OPT_PLAY_MOVEMOUSE_ACCELERATION
To avoid needless slowdown of tests, long distance mouse movement can be
accelerated. A value of 0 turns off acceleration. Useful values range from 1 for
very little acceleration to 10 or more for high acceleration. Good values are
between 3 and 5 for Drag&Drop and between 6 and 20 for demo mouse moves.

Acceleration threshold (System)

SUT script name: OPT_PLAY_DND_THRESHOLD,
OPT_PLAY_MOVEMOUSE_THRESHOLD
To ensure that small movements as well as the start end end of each movement
remain precise, acceleration is turned off for movements that require less than
this threshold’s number of steps. Good values are between 4 and 8 for
Drag&Drop and between 0 and 6 for demo mouse moves.

41.3.6 Timeouts

These timeouts are essential for reliable replay of tests under varying conditions. They
define how long QF-Test waits for a component to be in the proper state for an event

41.3. Replay options 516

before throwing an exception.

Don’t make these values too small, so a little hiccup due to high load won’t interrupt
a test needlessly. QF-Test continues as soon as the conditions for replaying an event
are met, so higher values for the timeouts won’t slow down execution (except for focus,
see below). On the other hand, don’t set any values higher than a few seconds or you’ll
have to wait too long until you finally get an error message when a component is truly
not found.

41.3. Replay options 517

Figure 41.28: Timeout options

Deadlock detection (s) (System)

Server script name: OPT_PLAY_TIMEOUT_DEADLOCK

41.3. Replay options 518

If the SUT does not react for the given time, a DeadlockTimeoutException(898)

is thrown. Setting this value to 0 will suppress deadlock detection.

Wait for GUI engine (ms) (System)

SUT script name: OPT_PLAY_TIMEOUT_ENGINE
This option is useful only for multi-engine SUTs, like Eclipse with embedded
AWT/Swing components. A Wait for client to connect(709) node finishes as soon as
the first GUI engine connects to QF-Test, unless its GUI engine(710)

attribute specifies to wait for a specific engine. To prevent a subsequent
Wait for component to appear(818) node for a component of the wrong engine from
failing immediately, QF-Test first waits for the time specified with this option to
give the second GUI engine a chance to connect also.

Wait for non-existent component (ms) (System)

SUT script name: OPT_PLAY_TIMEOUT_COMPONENT
The maximum time in milliseconds that QF-Test waits for the target component of
an event to become visible. When the connection between QF-Test and the SUT
is established, this option is temporarily set to at least 30000 ms so as to allow
the SUT time for its initialization.

Wait for non-existent item (ms) (System)

SUT script name: OPT_PLAY_TIMEOUT_ITEM
If an event is targeted on a sub-item of a complex component, QF-Test first waits
for the component to become visible. Then it gives the SUT the chance to make
the intended sub-item available before this timeout is exceeded.

Default timeout for checks (ms) (System)

Server script name: OPT_PLAY_CHECK_TIMEOUT
This option defines a default timeout for Check nodes that have no Timeout(757)

attribute set and that represent an actual check in the report instead of being
used for test control flow, i.e. checks that don’t throw an exception and don’t set a
result variable or that have a @report doctag.

If your tests include a lot of Check nodes without explicitly defined Timeout that
are expected to fail - which is unlikely for the actual checks described above -
you may be able speed up test execution by setting this value to 0. However,
it would be preferable to set the Timeout attribute of the respective nodes to 0
instead and leave this option unchanged because it increases general stability of
check execution.

41.3. Replay options 519

Wait for modal dialog (ms) (System)

SUT script name: OPT_PLAY_TIMEOUT_MODAL
If an event is targeted at a window that is blocked by a modal dialog, a
ModalDialogException(897) will be thrown. However, modal dialogs are often
temporary, informing the user about some ongoing processing. If this option is set
to a non-zero value, QF-Test will wait for the given time before it throws the
exception. If the modal dialog disappears before the time limit is exceeded, the
test will continue immediately. This greatly simplifies handling of temporary modal
dialogs.

If the option Convert opening of a window into Wait for component to appear(818) (476)Note
is activated, recording a sequence of events during which a temporary dialog is
displayed may result in a Wait for component to appear(818) node for that dialog. If the
dialog is displayed for a short time only, it is best to remove such nodes to avoid
timing issues. If the SUT employs temporary modal dialogs often it may be best to
disable the option Convert opening of a window into Wait for component to appear(818)

(476).

Wait for ’busy’ GlassPane (ms) (System)
Swing

SUT script name: OPT_PLAY_TIMEOUT_GLASSPANE
As an alternative to temporary modal dialogs some applications employ a so
called GlassPane together with a ’busy’ mouse cursor (typically in the form of an
hourglass) to inform the user that the application is busy. The GlassPane is an
invisible component that covers an entire window. If an event is delivered to such
a window, the GlassPane will typically intercept it, preventing normal event
processing, which can throw a test run severely off course.

QF-Test handles this case automatically by waiting until the GlassPane disappears
before delivering an event, performing a check, etc. If the timeout given in this
option is exceeded and the GlassPane is still active, a BusyPaneException(898)

is thrown.

If the value of this option is set to 0, GlassPane checking is disabled and the event
is delivered regardless. A BusyPaneException is never thrown in this case.

The Wait for component to appear(818) node is a special case. When waiting for a com-
ponent (not its absence) covered by a busy GlassPane, the Timeout(820) attribute of
the node overrides this option and is used to wait for both, the appearance of the
component and the removal of the busy GlassPane. Thus it is possible to handle
cases where the SUT is expected to be busy for an exceptionally long time on an
individual basis without changing the default timeout of this option.

Wait for button/menu enable (ms) (System)

41.3. Replay options 520

SUT script name: OPT_PLAY_TIMEOUT_ENABLED
A MouseEvent on a button or menu item is simply ignored, if the component is
not enabled. This could lead to unwanted side effects during a test, so QF-Test
waits until the component is enabled or the specified timeout is exceeded. If
the component does not become activated within the given time, a
DisabledComponentException(897) is thrown unless the option Throw
DisabledComponentException(506) is deactivated.

Wait for focus (ms) (System)

SUT script name: OPT_PLAY_TIMEOUT_FOCUS
If set, this timeout causes QF-Test to wait for a component to get the keyboard
focus before it simulates any KeyEvents on it. This option actually can slow down
a test noticeably if a component fails to get the focus, so don’t set it higher than
about 100. A good value is 20.

Poll interval for component wait (ms) (System)

SUT script name: OPT_PLAY_POLL_COMPONENT
When waiting for a component in the SUT to appear, QF-Test can’t always rely on
Java’s event mechanism. Instead it has to repeatedly scan the SUT for the
component. This option determines the interval between searches.

Sub-item poll interval (ms) (System)

SUT script name: OPT_PLAY_POLL_ITEM
When waiting for a non-existent sub-item in the SUT, QF-Test can’t rely on the
event mechanism. Instead it has to repeatedly search the complex component for
the sub-item. This option determines the interval between searches.

Retry check interval (ms) (System)

SUT script name: OPT_PLAY_POLL_CHECK
If a Check(753) fails for which a Timeout(757) is defined, QF-Test repeatedly queries
the component’s state until either it matches the given values or the time is up.
The interval to wait between queries is set with this option.

41.3.7 Backward compatibility

These options can re-set QF-Test to older behavior. Those settings have changed that
much that QF-Test cannot keep backward compatibility over all versions.

41.4. SmartID und qfs:label 521

Figure 41.29: Options for replay backward compatibility

Don’t evaluate variable boolean attributes (before 4.2) (System)
4.2+

Server script name: OPT_PLAY_DONT_EVALUATE_BOOLEAN_OPTIONS
Expressions in values of attributes with variable boolean values will be evaluated
by Jython since 4.2.0. Such attributes are attributes like the Replay as ”hard” event
attribute of Mouse event node or the Modal attribute of Window nodes.

Old style image grab (before 2) (System)
Swing

SUT script name: OPT_RECORD_CHECK_IMAGE_OLD_STYLE
When recording images for Check image(775) nodes, non-opaque components used
to be recorded with a black background. Thus, the image could deviate from what
the user was seeing. This error has been corrected and normally the background
is now recorded correctly. If this option is activated, the old, broken mechanism is
used instead which may be useful if many checks for non-opaque components
have already been recorded using that method.

41.4 SmartID und qfs:label
7.0+

The following settings define details for capture and replay of SmartIDs and qfs:label*
variants. Please see section 5.6(72) and section 5.4.4(66) for details.

41.4. SmartID und qfs:label 522

Figure 41.30: SmartID und qfs:label-Optionen

SmartID recording (System)
6.0+

Server (automatically forwarded to SUT) script name: OPT_RECORD_SMARTID
If this option is active, SmartIDs will be recorded instead of components where
possible.

Always record class for SmartID (System)
6.0+

Server (automatically forwarded to SUT) script name:
OPT_RECORD_SMARTID_CLASS
Prepending the class of the target component is optional for SmartIDs. This
option determines whether classes are always prepended when recording
SmartIDs or only if required for uniqueness. The option is active by default
because - in addition to improved readability and clarity - having the class in a
SmartID improves replay performance significantly.

Always record qualifier for SmartID (System)
7.0+

Server (automatically forwarded to SUT) script name:
OPT_RECORD_SMARTID_QUALIFIER
This option determines whether the qualifier for a SmartID gets recorded or not.

41.4. SmartID und qfs:label 523

In the following cases the qualifier will always be rercorded, regardless of the
setting:

• If the SmartID is a qfs:label* variant and the option Recording of qfs:label*
variants(523) is set to either ”Record all variants” or ”Record specific only”.

• If the SmartID is based on an extra feature not belonging to the qfs:label*
variants and the option Priority for recording SmartIDs with qualifier(522) has
been set to record the extra feature.

• If the option Priority for recording SmartIDs with qualifier(522) deviates from its
default value and the recorded SmartID is not based on the name.

Priority for recording SmartIDs with qualifier (System)
7.0+

Server (automatically forwarded to SUT) script name:
OPT_RECORD_SMARTID_PRIORITIES
This comma-separated list of qualifiers determines the order in which criteria for
component recognition are applied when recording SmartIDs. The default value
of ”name,qlabel,feature” tells QF-Test to first look for a name and use it for
the SmartID, if available. Next is the test for a qfs:label*-variant and last for a
feature. See SmartID(72) for a list of available qualifiers and their meanings.

For replay of a SmartID with no explicit qualifier the order is the same as theNote
default value. Thus the search starts by looking for a named component only, then
for qfs:label* and feature, which are taken as equivalent and implicitly combined.

Maximum length for recorded SmartID value (System)
7.0+

Server (automatically forwarded to SUT) script name:
OPT_SMARTID_MAX_VALUE_LENGTH
In rare cases, the feature or associated label of a component can be very long.
This is not a problem as such and often goes unnoticed if stored in a
Component(869) node, but it can be rather unwieldy in a SmartID. For ease of use,
values longer than the value given in this option are automatically converted into
a regular expression of the given length.

Use SmartID instead of QPath for components inside items (System)
7.0+

Server (automatically forwarded to SUT) script name:
OPT_RECORD_SMARTID_INSTEAD_OF_QPATH
A component inside an item, e.g. a CheckBox inside a table cell, has to be
represented as a pseudo item with special syntax. Starting with QF-Test version
7, SmartID has replaced the outdated QPath for this task. If this option is

41.5. Android 524

deactivated, QPath will be used except when general SmartID recording is active.

Recording of qfs:label* variants (System)
7.0+

SUT script name: OPT_RECORD_QFSLABEL_MODE
Possible Values: VAL_RECORD_QFSLABEL_MODE_ALL,
VAL_RECORD_QFSLABEL_MODE_SPECIFIC,
VAL_RECORD_QFSLABEL_MODE_BEST,
VAL_RECORD_QFSLABEL_MODE_LEGACY
This option determines which qfs:label* variants are getting recorded as
Extra features(871):

• The value ”Record all variants” causes all qfs:label* variants found to
be stored in the Extra features. The best label found gets the state ”Should
match”, all others the state ”Ignore”. For a SmartID(72) the specific qualifier is
recorded (see table qfs:label* variants(67)).

• With the value ”Record specific only”, only the best rated qfs:label* variant is
stored in the Extra features or used as the qualifier in a SmartID.

• The value ”Record qfs:labelBest only” tells QF-Test to only record the best
rated qfs:label* variant and store it in the Extra features with the name
qfs:labelBest, see Best label(68). When recording the best label as
SmartID with ”Record qfs:labelBest only”, depending on the setting of the
option Always record qualifier for SmartID(521), either no qualifier will be
recorded or the specific qualifier of the label.

• If set to ”Legacy qfs:label mode”, the associated label is determined via the
old algorithm from before QF-Test 7.0. It is stored as qfs:label in the Extra
features. For a SmartID the qualifier qlabel is used, but not recorded by
default ().

41.5 Android
6.0+

The following options influence the testing of Android applications.

41.6. iOS 525

Figure 41.31: Options for Android

Android SDK (System)

Server script name: OPT_ANDROID_SDK_PATH
Enter the installation path of the Android SDK here. This directory is usually
named sdk and contains a subdirectory tools or cmdline-tools.

This setting is only necessary if QF-Test can not determine the path automatically.

Log extra android information to run log (System)

Server script name: OPT_ANDROID_DEBUG
If this option is activated further information is logged in the log.

Forward emulator output to QF-Test terminal (System)

Server script name: OPT_ANDROID_FORWARD_EMULATOR_OUTPUT
If this option is activated and an emulator was launched via the Launch Android
emulator node, then the stdout/stderr output of the launched emulator will be
passed on to the QF-Test terminal.

41.6 iOS
8.0+

These options are available to control the testing of iOS applications:

41.6. iOS 526

Figure 41.32: Options for iOS Tests

Show iOS Device Agent Output (User)

SUT script name: OPT_IOS_PRINT_AGENT_OUTPUT
Possible Values: VAL_IOS_PRINT_AGENT_OUTPUT_NONE,
VAL_IOS_PRINT_AGENT_OUTPUT_INSTRUMENT,
VAL_IOS_PRINT_AGENT_OUTPUT_EXEC,
VAL_IOS_PRINT_AGENT_OUTPUT_ALL
During the start and the execution of iOS tests, a Xcode build is executed to build
and run the required device agent. During normal execution, the detailed output
of the process is hidden from the terminal.

While tracking down errors, it might be helpful to display the process output in the
terminal. This can be enabled for the device instrumentation, the execution or both

41.6. iOS 527

phases of the test.

Hide simulator when recording window is shown (User)

SUT script name: OPT_IOS_AUTO_HIDE_SIMULATOR
Possible Values: VAL_IOS_AUTO_HIDE_SIMULATOR_ALWAYS,
VAL_IOS_AUTO_HIDE_SIMULATOR_NEVER,
VAL_IOS_AUTO_HIDE_SIMULATOR_ONOPEN
As with Android testing, the interaction for inspection and test recording has to be
performed on a dedicated window, see Record actions and checks for iOS(260).
When using the Simulator to execute the application under test, it can be
confusing when the user interface is visible twice - in the Simulator window and in
the recording window.

To avoid confusion, QF-Test can automatically hide the Simulator window when
the recording window is opened. When you explicitly switch to the Simulator, its
window will be reactivated. However, if you choose ”Always”, additionally to hiding
the Simulator, switching to the simulator will bring up the recording window - as
long as it is open.

Close simulator after test (User)

SUT script name: OPT_IOS_AUTO_CLOSE_SIMULATOR
Possible Values: VAL_IOS_AUTO_CLOSE_SIMULATOR_YES,
VAL_IOS_AUTO_CLOSE_SIMULATOR_NO,
VAL_IOS_AUTO_CLOSE_SIMULATOR_AUTO
To control the iOS device or the Simulator, QF-Test uses a controller client. If
required, the iOS Simulator is started by QF-Test along with the controller. By
default, the Simulator is also closed when the controller client is stopped.

During test development, it might be helpful to keep the Simulator running, even
when the QF-Test controller client was stopped. It is possible to define here that
the Simulator should not be closed together with the controller, or only if it was
opened by the controller client itself.

Restart Simulator if connection is lost (System)

SUT script name: OPT_IOS_RESTART_SIMULATOR
When the connection to the iOS device gets interrupted during a test run,
QF-Test automatically restarts the device agent to reestablish the connection. If
the iOS target device is simulated, QF-Test by default assumes that the Simulator
was closed intentionally to stop the test run. With this option, it is possible to
enable the connection recovery also for Simulator connections, including a restart
of the Simulator app.

41.6. iOS 528

Code Signing Team ID / Organizational Unit (System)

SUT script name: OPT_XCODE_DEVELOPMENT_TEAM
QF-Test can execute tests on apps running directly on an iOS device. Due to
platform restrictions, the device agent, which is temporarily installed on the device
to perform the required interactions, has to be automatically signed using a valid
iPhone Developer Certificate. To identify the certificate, the Team ID (also known
as ”Certificate Organizational Unit”) has to be provided.

The Team ID is a unique 10-character string generated by Apple assigned to your
team. You can find your Team ID listed under the ”Organizational Unit” field in
your iPhone Developer certificate in your keychain. You can also find your Team
ID using your developer account. Sign in to https://developer.apple.com/account,
and scroll to the Membership details. Your Team ID appears in the Membership
Information section under the team name.

To generate a development certificate, open the Settings dialog of Xcode, select
the ”Accounts” tab and add your developer account there using your Apple ID.

Code Signing Identity (System)

SUT script name: OPT_XCODE_CODE_SIGN_IDENTITY
Normally, this value can be left empty, since Xcode automatically deduces the
Signing ID from the certificate specified by the Team ID, but sometimes, a
dedicated Signing ID has to be provided (usually Apple Developer or iPhone
Developer).

Allow automatic provisioning profile creation (System)

SUT script name: OPT_XCODE_ALLOW_PROVISIONING_UPDATES
If enabled, a provision profile to execute the agent on the connected device can
be created automatically by Xcode during device instrumentation.

Allow automatic device registration (System)

SUT script name:
OPT_XCODE_ALLOW_PROVISIONING_DEVICE_REGISTRATION
If enabled, a new device can be registered automatically by Xcode during device
instrumentation.

Custom iOS Device Agent Bundle ID (System)

SUT script name: OPT_IOS_AGENT_BUNDLE_ID
Xcode may fail to create a provisioning profile for the agent - especially when

41.7. Web options 529

using a free developer account. Here it is possible to manually change the bundle
id for the agent to something Xcode will accept.

41.7 Web options
Web

The following options are used specifically for web testing.

Figure 41.33: Web options

Use ID attribute as name (System)

41.7. Web options 530

8.0+

SUT script name: OPT_WEB_ID_AS_NAME
The ID of a DOM node is used as the component name by default (value
”Always”). With this option the behaviour can be deactivated (value ”Never”) or
changed to the special algorithm from before QF-Test version 8.0 (value ”Only if
unique”).

In the latter case the ID of a DOM node will be used as the component name
only if the ID is sufficiently unique. Uniqueness is determined per node type and
depending on the setting of the options Name override mode (replay)(509) and Name
override mode (record)(484).

Eliminate all numerals from ’ID’ attributes (System)

SUT script name: OPT_WEB_SUPPRESS_NUMERALS
Of course this option only changes the way QF-Test treats ID attributes. TheNote
attributes themselves are left unchanged or the application would most likely no
longer work.

With this option activated QF-Test removes all numerals from ’ID’ attributes to pre-
vent problems caused by automatically generated IDs often found in Ajax frame-
works like GWT. Such dynamic IDs can change after the slightest modification to
a web application which causes tests to break, especially if names are based on
IDs. By removing the dynamic part from such IDs they become less useful, be-
cause they are no longer unique, but also less harmful. Uniqueness of names
is taken care of by QF-Test. Since IDs also serve as a basis for Feature(871) and
Extra features(871) attributes, this option is helpful even if IDs are not used as names.

Limit URL feature of ’Web page’ node to host or file (System)

SUT script name: OPT_WEB_LIMIT_URL
If this option is active, all pages coming from the same host are recorded as the
same page by reducing the URL feature to the host part of the URL. This is often
useful when pages share a common look and navigation structure.

For file URLs, the URL is reduced to the filename, with intermediate directories
removed.

Retarget mouse event on trivial node to parent (System)

SUT script name: OPT_WEB_RETARGET_MOUSE_EVENT
When recording mouse events on DOM nodes in a web page it is often useful to
ignore ”trivial” nodes and concentrate on the important ones. For example, when

41.7. Web options 531

clicking on a text hyperlink it is typically not of interest whether part of the link is
formatted with a bold font. It is the link that is important.

If this option is active QF-Test does not simply record the event for the deepest
DOM node under the mouse cursor. Instead it moves up the hierarchy until it finds
an ”interesting” node. In the example above, QF-Test would record the event on
the A node with the option active and on the contained B node otherwise.

Tolerate intermediate parent components (System)

SUT script name: OPT_WEB_TOLERATE_INTERMEDIATE_PARENT
Normally QF-Test’s component recognition is tolerant to changes in the
component hierarchy. For web pages with deeply nested tables this can lead to
performance problems because the potential variants of determining the target
component grow exponentially with the nesting depth. If you experience such
problems, try to deactivate this option. It will reduce adaptability but should help
with performance.

The by far preferable solution is to set unique ID attributes for the different tablesNote
and other components so that QF-Test’s name override mechanism can apply.
This not only speeds up recognition drastically, it is also much more reliable and
tolerant to change.

Take visibility of DOM nodes into account (System)

SUT script name: OPT_WEB_TEST_VISIBILITY
Similar to AWT/Swing or SWT, QF-Test normally only recognizes visible DOM
nodes as target components. However, visibility of DOM nodes is not as well
defined as that of components in a Java GUI. For example it is possible that an
invisible DOM node has visible child nodes. Also, if a web page contains illegal
HTML constructs it is possible that a DOM node is considered invisible, even
though it is displayed in the browser window. If you come across such a problem
you can turn off this option.

Let the browser determine the target element for check recording (System)

SUT script name: OPT_WEB_CHECK_VIA_BROWSER
When recording checks, components or procedures QF-Test needs to determine
the target element under the mouse cursor. In case of overlapping nodes there
are two different ways for calculating which one should be used. By default
QF-Test lets the browser decide, which is usually the best choice. Since the
different browsers don’t always behave in the same reliable way, this option can
be turned off in case of problems to use the older mechanism based on the
z-order of elements instead. This option has no effect on check replay.

41.7. Web options 532

Stabilize event recording by displaying an overlay (User)

SUT script name: OPT_INTERACTION_OVERLAY_MODE
Possible Values: VAL_INTERACTION_OVERLAY_MODE_NONE,
VAL_INTERACTION_OVERLAY_MODE_MUTATION,
VAL_INTERACTION_OVERLAY_MODE_TRACKER
During recording QF-Test generates component steps. To gather the required
data QF-Test analyzes - supported by the registered resolvers - the website in
parallel to the user interaction. Depending on the complexity of the website and
the registered resolvers this analysis might take some moments. With this option
QF-Test can show a page overlay when it is busy analyzing the components for
later recognition. This makes the process more transparent for the user.

How to handle errors in a web application (System)

SUT script name: OPT_WEB_JAVASCRIPT_ERROR_LEVEL
Possible Values: VAL_WEB_JAVASCRIPT_LEVEL_WARNING,
VAL_WEB_JAVASCRIPT_LEVEL_ERROR,
VAL_WEB_JAVASCRIPT_LEVEL_MESSAGE
Dynamic HTML is implemented via a lot of JavaScript code that is executed in the
Browser. If an error occurs in such a script, browsers either ignore it or show an
error dialog with some details about the error, depending on user setting. Many of
these errors are harmless, others can be severe. QF-Test intercepts the error
message and logs an error, warning or message in the run log instead. This set
of options defines the severity of the message and a maximum for the number of
such kinds of messages to log.

The possible choices for the option ”Error level” are ”Error”, ”Warning” and ”Mes-
sage”. We advise that you set it to ”Error” and make sure that such problems are
reported to development and fixed sooner rather than later because they can rep-
resent a bug in the application you are testing. Known messages that are not going
to be fixed by development can be excluded and ignored via the option Errors that
should be ignored(531).

Maximum number of errors to log per SUT client (System)

SUT script name: OPT_WEB_JAVASCRIPT_MAX_ERRORS
In case a web page contains erroneous code it is possible that a lot of errors are
triggered. Logging all those errors can significantly impact test performance, yet
logging more than the first few errors does not really contribute much. The option
”Maximum number of errors to log per SUT client” limits the possible number of
error messages for this case.

41.7. Web options 533

Errors that should be ignored (System)
3.5+

SUT script name: OPT_WEB_JAVASCRIPT_ERROR_FILTERS
It is possible that some JavaScript errors cannot or will not be fixed, for example
when they are coming from third-party code. In such a case it is preferable to
ignore the known errors while still having QF-Test report unexpected ones. When
the browsers reports a JavaScript error, QF-Test searches its error message for
the occurrence of any of the regular expressions specified in this option. In case
of a match, the error is ignored. If no exceptions are defined or none match, the
error is reported in accordance with the previous options.

41.7.1 HTTP Requests

These options influence the behavior of HTTP requests.

Figure 41.34: Options for HTTP Requests

Record HTTP Request as browser request (System)
4.1+

SUT script name: OPT_WEB_RECORD_CLIENT_REQUEST_STEP
When recording HTTP Requests a Browser HTTP request(854) is created. This
request will be submitted directly via the browser so that the response is shown
afterwards and test execution can be continued directly in the browser. By
deactivating this option a Server HTTP request(848) will be recorded. This request will
be submitted by QF-Test and doesn’t have any effect on the browser. The
response is only accessible in QF-Test.

Synchronize with HTTP requests (System)
4.1+

41.7. Web options 534

SUT script name: OPT_WEB_TRACK_HTTP_REQUESTS
HTTP request tracking is supported for browsers in QF-Driver or CDP-DriverNote
mode only. It does not apply to WebDriver based tests or to browsers embedded
in Java like WebView.

Because most things in JavaScript-based web applications run asynchronously,
one of the main challenges in testing such applications is timing. QF-Test uses
various means to synchronize with the SUT and this option controls one of them.
If turned on, QF-Test will keep track of all HTTP requests the browser sends to the
server. Before and after replaying an event, QF-Test will wait until no requests are
outstanding. The following two options Timeout for HTTP request synchronization
(ms)(533) and Extended HTTP request timeout for new documents (ms)(533) are used
for fine-tuning this feature.

Timeout for HTTP request synchronization (ms) (System)
4.1+

SUT script name: OPT_WEB_HTTP_REQUEST_TIMEOUT
When synchronizing with the SUT by tracking HTTP requests as explained for the
option Synchronize with HTTP requests(532), QF-Test cannot wait indefinitely for
outstanding requests as this would impact test performance too much. This
option defines the maximum time to wait for outstanding requests in normal
situations and the following option Extended HTTP request timeout for new
documents (ms)(533) is used right after a page has finished loading.

Extended HTTP request timeout for new documents (ms) (System)
4.1+

SUT script name: OPT_WEB_HTTP_REQUEST_TIMEOUT_DC
When synchronizing with the SUT by tracking HTTP requests as explained for the
option Synchronize with HTTP requests(532), QF-Test cannot wait indefinitely for
outstanding requests as this would impact test performance too much. Right after
a page has finished loading, JavaScript applications tend to send a lot of requests
and may take a while to build the final user interface via JavaScript. This options
defines the maximum time to wait for outstanding requests at that point. The
previous option Timeout for HTTP request synchronization (ms)(533) is used to set
the standard timeout for other situations.

41.7.2 Backward compatibility

These options can re-set QF-Test to older behavior. Those settings have changed that
much that QF-Test cannot keep backward compatibility over all versions.

41.7. Web options 535

Figure 41.35: Options for web backward compatibility

Don’t fetch text for generic classes with generic class approach (before 4.2) (Sys-
tem)

4.2+

SUT script name:
OPT_WEB_TEXT_DONT_TRAVERSE_ALL_NODES_FOR_GENERICS
In versions older than 4.2.0 Check text(754) and Fetch text(786) nodes provided too
much or too less text for components of generic classes in some cases.
Especially SELECT or TableCell components containing text-fields returned
wrong text. Now the any child component with a generic class will be taken into
account.

Treat underscores like blanks in extra features (before 4.2) (System)
4.2+

SUT script name: OPT_WEB_TREAT_UNDERSCORES_AS_BLANKS_IN_EF
Older QF-Test versions than 4.2.0 turned all underscores into blanks once Extra
features were compared. This behavior could cause troubles in case you were
really searching for underscores.

Reset web-document load state during rescan (before 5.4) (System)
5.4+

SUT script name:
OPT_WEB_RESET_DOCUMENT_KNOWN_STATE_DURING_RESCAN
Before version 5.4 QF-Test had a bug that caused an inadvertent reset of the
internal loading state of a document. In the same context, documents
contained in frames were not handled correctly. Both could lead to a
Wait for document to load(822) succeeding solely because a document existed
without regard for whether it was loaded anew or not.

Since QF-Test version 5.4 document reload is checked more precisely again. This
might lead to new errors in case existing tests contain too many or misplaced
Wait for document to load(822) nodes. In this case, it is possible to restore the previous
behavior by activating this option, instead of correcting the errornous test suites.

41.8. SWT options 536

41.8 SWT options
SWT

The following options are used specifically for SWT testing.

Figure 41.36: SWT options

Connect without SWT instrumentation (System)
4.5+

Server script name: OPT_PLAY_SWT_VIA_AGENT
With this option activated there is no need to instrument SWT based applications,
except for older SWT versions on Linux. For detailed technical information please
see section 47.2(946).

Preferred GTK version for SWT (Linux only) (System)
4.5+

Server script name: OPT_PLAY_SWT_PREFERRED_GTK_VERSION
On Linux systems Eclipse/SWT applications with SWT versions 4.3 through 4.9
can be run either in GTK2 or GTK3 mode. Older version support GTK2 only,
newer version GTK3. This option can be set to ”2” or ”3” in order to enforce a
specific GTK version or left empty to use the default for the respective SWT
version.

Activate XSync for SWT with GTK2 (Linux only) (System)
4.5+

Server script name: OPT_PLAY_SWT_GTK2_XSYNC
SWT with GTK2 has become unstable on newer Linux systems and can crash
under heavy load which is not uncommon when driven by QF-Test at full speed.
A fix for this is to turn on XSync, an option specific to X11 that causes X11 events
to be synchronized. This can have a performance impact however, so if you need
to run your SWT application with GTK2 and it appears to be slow, you can try to
deactivate this option to see if this speeds things up without causing the SUT to
crash occasionally.

41.9. UI Inspector options 537

41.9 UI Inspector options

The following options relate to UI inspector settings.

Figure 41.37: UI Inspector options

Hotkey for opening the UI inspector (System)

SUT script name: OPT_INSPECTOR_HOTKEY
The option defines the key or key combination for opening the UI inspector
directly from the SUT. with activated selection mode. To change the option please
click the field showing the current key or key combination (it is an interactive field)
and press the desired key or key combination. To leave the interactive field press
the tab key or do a mouse click to a different field. The default key is�� ��Ctrl-Shift-F11 for Window/Linux and

�� ��- -F11 for Mac. Detailed information on
the inspector can be found in section 5.12.2(97).

Hotkey for activating component selection in the UI inspector (System)

SUT script name: OPT_INSPECTOR_MODE_HOTKEY
The option defines the key or key combination for activating component selection
mode in the inspector directly from the SUT. (The UI inspector will be opened as
well when not open.) To change the option please click the field showing the
current key or key combination (it is an interactive field) and press the desired key
or key combination. To leave the interactive field press the tab key or do a mouse
click to a different field. The default key is

�� ��Ctrl-Shift-F12 for Window/Linux and�� ��- -F12 for Mac. Detailed information on the inspector can be found in section
5.12.2(97).

41.10 Debugger options

These options modify the behavior of the debugger.

41.10. Debugger options 538

Figure 41.38: Debugger options

Enable debugger (User)

By default the debugger is disabled unless this option, which can also be
modified through the menu item Debugger→Enable debugger , is activated.

If a test is interrupted by a breakpoint or be pressing the ”Pause” button, the de-
bugger is activated automatically. Similarly, starting a test run with ”Step in” or
”Step over” will activate the debugger for the duration of that test run.

Always open debugger window (User)

When test execution is halted and the debugger entered QF-Test can optionally
open a separate window for the debugger. This option determines whether
debugging should happen in a separate window or the normal test suite window.

Show variable bindings automatically (User)

When test execution is halted and the debugger entered QF-Test can display the
current variable bindings in the workbench window. If this option is active the
variables are shown automatically each time a test run first enters the debugger.
Alternatively the variables can be viewed in the debugger window or shown in the
workbench window via the menu Debugger→Show variables .

Automatic breaks (User)

41.11. Run log options 539

These options describe the situations in which execution of a test will be
suspended and the debugger entered:

Break on uncaught exception
The debugger will break if an exception is thrown that will not be handled by

a Catch(661) node.

Break on error
The debugger will break if an error occurs.

Break on warning
The debugger will break if a warning occurs.

41.11 Run log options

These options let you control which information is collected in a run log, if and when a
run log is shown and how to locate errors.

41.11. Run log options 540

41.11.1 General run log options

Figure 41.39: General run log options

When to show run logs (User)

A run log is created for every execution of a test. A number of recent run logs are
available from the Run menu, the most recent run log can also be opened by
pressing

�� ��Control-L . Additionally the run log can be shown during execution or
after an error as follows:

At start
This choice causes QF-Test to open the run log when it begins executing a test
sequence. The nodes of the log will be added as execution proceeds.

41.11. Run log options 541

After finish
With this choice the run log is shown after replay is finished.

On exception
The run log is shown only if an uncaught exception is thrown.

Don’t show
The run log is not displayed automatically. You have to open it via the Run menu
or by pressing

�� ��Control-L .

Show relative duration indicators (User)
6.0+

Server script name: OPT_LOG_DURATION_INDICATORS
To analyze the run-time behaviour of a test it is helpful to see at a glance which
branches are taking up the most time. To that end, display of duration indicators
can be activated via this option, which is also directly accessible via the View
menu of a run log.

The length of the bars shown represents the percentage of the time taken for
execution of the respective node relative to the time taken by its parent node.

Duration indicator kind (User)
6.0+

Server script name: OPT_LOG_DURATION_INDICATORS_KIND
Possible Values: VAL_LOG_DURATION_INDICATORS_KIND_DURATION,
VAL_LOG_DURATION_INDICATORS_KIND_REALTIME,
VAL_LOG_DURATION_INDICATORS_KIND_BOTH
This option determines whether duration indicators show duration, real time spent
or both.

The difference between the values of ”Duration” and ”Real time spent” are explicitNote
delays introduced in nodes via the ’Delay before/after’ attribute or user interrupts.

Number of run logs in menu (User)

A limit for the number of menu items for recent run logs kept in the Run menu.

Automatically save run logs (User)
3.0+

To prevent excessive memory use through run logs and also to make the most
recent run logs persistent between QF-Test sessions, the recent run logs kept in
the Run menu are saved automatically to the user configuration directory(11) or
the directory defined in the option Directory for run logs(541). The filename for the
run log is based on a timestamp. QF-Test uses file locks to prevent collisions and
accidental removal in case of parallel sessions and automatically keeps the user

41.11. Run log options 542

configuration directory(11) clean by removing unreferenced logs, so there should
be no reason to disable this feature. Still, you can do so by disabling this option.

Directory for run logs (User)
4.0+

By default, run logs created during interactive use of QF-Test are stored in the
user configuration directory(11). This option can be used to specify a different
target directory.

This option is interpreted by QF-Test whenever a test is started. At that point,Note
test suite and global variable bindings are already in place and in contrast to
other options it is possible to use QF-Test variable syntax here. This includes
special variables like ${env:HOME} to look up an environment variable or even
${qftest:suite.dir} to save the run log next to the test suite. If the directory is dy-
namic, like in the latter case, QF-Test may not be able to clean up old run logs reg-
ularly. Errors in variable expansion are silently ignored and the user configuration
directory(11) is used instead.

Show expanded variable values in tree nodes (User)
3.1+

The nodes in the tree view of a run log can either be displayed with variables
expanded to the value they had at run-time or with the original variables. Both
views have their use, so you can toggle between them via this option or more
quickly via the menu item View→Show nodes expanded .

Show return values of procedures (User)
7.0+

If this option is active, return values of Procedures(627) are displayed in the tree after
the respective Procedure call(630) node. In a run log you can also toggle this option’s
value via the menu item View→Show procedure return values .

Skip suppressed errors (User)

Like the previous one, this option controls the search for errors in a run log. If
activated, warnings, errors or exceptions that have not propagated to the top, are
not found. Thus exceptions caught by a Try(658)/Catch(661) clause or messages
suppressed through the Maximum error level(578) attribute are skipped.

This option is also accessible through the Edit→Skip suppressed errors menu
item.

Cleanup tree when jumping to next or previous error (User)
3.0+

41.11. Run log options 543

When repeatedly jumping to errors in a run log the tree can easily get cluttered
with many expanded nodes. If this option is activated, QF-Test will automatically
clean up the tree each time you navigate to an error so that only the parents of
the error node are expanded.

When viewing split run logs, partial run logs containing an error will remain inNote
memory as long as their nodes are expanded. Keeping this option activated will
ensure that partial run logs will be released as soon as possible, keeping memory
use manageable even viewing the errors of a very large run logs.

Save compressed run logs (*.qrz) (System)

Server script name: OPT_LOG_SAVE_COMPRESSED
Run logs can either be saved as plain or as compressed XML files. For large run
logs without screenshots the compression factor can be as high as 10, so it’s
advisable to use compressed logs where possible. The only reason not to use
compression is if you want to transform the XML run log afterwards. But even
then compressed run logs are an option because the compression method used
is standard gzip format, so converting to and from compressed run logs can
easily be done using gzip.

When saving a log-file interactively you can always switch between compressed
or non-compressed format by choosing the appropriate filter or by giving the file
the extension .qrz or .qrl.

In batch mode, the default run log format is compressed. To create an
uncompressed run log, simply specify the extension .qrl in the parameter for
the -runlog [<file>](925) command line argument.

Save run log in current XML format with UTF-8 encoding (System)
7.0+

Server script name: OPT_XML_LOG_NEW
Starting with QF-Test version 7.0, run logs are saved in the current XML format
with UTF-8 encoding, no indentation and arbitrarily long lines. If you need to fall
back to the old format (ISO-8859-1 encoding, 2 characters indentation, line length
78) for use in external tools you can do so by deactivating this option.

41.11. Run log options 544

41.11.2 Options for splitting run logs

Figure 41.40: Options for splitting run logs

Create split run logs (User)
3.0+

Server script name: OPT_LOG_SAVE_SPLIT
A run log can be split into several parts by setting the Name for separate run log(605)

attribute of a Data driver(603) or any of the various test nodes. By turning this option
off you can temporarily disable support for split run logs in order to get a normal,
single run log without having to modify any Name for separate run log attributes.

See section 7.1.6(129) for further information about split run logs.

Save split run logs as ZIP files (*.qzp) (User)
3.0+

Server script name: OPT_LOG_SAVE_SPLIT_ZIP
Split run logs can either be saved as a single ZIP file with the extension .qzp,
containing the main run log and all partial logs together, or as a normal .qrl or
.qrz run log that is accompanied by a directory with the same base name and
the suffix _logs, e.g. the file runlog.qrz plus the directory runlog_logs.
This option determines the format in which split run logs are created in interactive
mode. It has no effect if the option Automatically save run logs(540) is turned off.

See section 7.1.6(129) for further information about split run logs.

Minimum size for automatic splitting (kB) (System)
3.4+

41.11. Run log options 545

Server script name: OPT_LOG_AUTO_SPLIT_SIZE
This option exclusively applies to Test case and Test set nodes. At other places runNote
logs are split only when Name for separate run log has explicitly been set.

Split run logs are the only reliable way to prevent running out of memory during
very long running tests or when the run log grows quickly due to screenshots or
output from the SUT. They are also more efficient when transforming run logs into
reports. However, explicit setting of Name for separate run log attributes requires
an understanding of the issues involved and either making decisions about where
best to split a run log or tedious typing when trying to split into small pieces.

As a compromise, QF-Test makes a very rough calculation about the size of a run
log during executing, taking screenshots and program output into account. When
execution of a Test case or Test set has finished and the approximate size of the
run log pertaining to that node is larger than the threshold specified in this option,
the run log is split off and saved automatically. A value of 0 prevents automatic
splitting.

See section 7.1.6(129) for further information about split run logs.

Name for automatically split ’Test case’ run log (System)
3.4+

Server script name: OPT_LOG_AUTO_SPLIT_TESTCASE_NAME
This option specifies the name to use for an external log when it is split off
automatically after execution of a Test case has finished as described in the
previous option. Variables can be used as well as the ’%...’ placeholders
documented for the attribute Name for separate run log(562).

The special variable ${qftest:testcase.splitlogname} is a good base. It expands to
a path name created from the name of the Test case with possible parent Test set
nodes as directories.

See section 7.1.6(129) for further information about split run logs.

Name for automatically split ’Test set’ run log (System)
3.4+

Server script name: OPT_LOG_AUTO_SPLIT_TESTSET_NAME
This option specifies the name to use for an external log when it is split off
automatically after execution of a Test set has finished as described in the option
Minimum size for automatic splitting (kB)(543). Variables can be used as well as the
’%...’ placeholders documented for the attribute Name for separate run log(569).

The special variable ${qftest:testset.splitlogname} is a good base. It expands to a
path name created from the name of the Test set with possible parent Test set nodes
as directories.

See section 7.1.6(129) for further information about split run logs.

41.11. Run log options 546

41.11. Run log options 547

41.11.3 Options determining run log content

Figure 41.41: Options determining run log content

41.11. Run log options 548

Log variable expansion (System)

Server script name: OPT_LOG_CONTENT_VARIABLE_EXPANSION
If this option is activated, every variable expansion(104) is logged.

Maximum length of logged variable values (System)

Server script name: OPT_LOG_CONTENT_VARIABLE_MAX_VALUE_LENGTH
This option determines, how many characters of a variable value will be written
into the run log when a variable is set or read. Longer values will be trimmed to
the given value. If the option value is negative, no trimming is performed, with ’0’
no variable values will be logged.

Log parent nodes of components (System)

Server script name: OPT_LOG_CONTENT_PARENT_COMPONENTS
Setting this option will cause all direct and indirect parent nodes to be logged in
addition to the target component node for every event, check, etc.

Log level for the SUT (System)

Server script name: OPT_LOG_CONTENT_SUT_LEVEL
Possible Values: VAL_LOG_SUT_LEVEL_MESSAGE,
VAL_LOG_SUT_LEVEL_WARNING,
VAL_LOG_SUT_LEVEL_ERROR
The level for automatically generated messages in the SUT during replay, e.g.
details for component recognition. Only messages with the respective level, i.e.
plain messages, warnings or errors will be logged. This option has no effect on
messages created explicitly via the Message node, rc.logMessage or
qf.logMessage.

Number of events to log for error diagnosis (System)

SUT script name: OPT_LOG_CONTENT_DIAGNOSIS
During replay of a test QF-Test logs various events and other things going on
behind the scenes. This information is quickly discarded except when an error
happens. In that case the most recent events are written to a special run log
node. The information may also be useful to developers but is mostly required for
error diagnosis when requesting support from Quality First Software GmbH.

This option determines the number of recent internal events to keep. Setting it to
0 disables the feature altogether. You should not set this value to less than about

41.11. Run log options 549

400 without a good reason. Because the information is logged only for errors, the
cost for gathering it is minimal.

Maximum number of errors with screenshots per run log (System)

Server script name: OPT_LOG_CONTENT_SCREENSHOT_MAX
The maximum number of screenshots that QF-Test takes and stores in the run
log during a test run on situations of exception or errors. Setting this value to 0
disables taking screenshots entirely, a negative value means unlimited
screenshots.

Count screenshots individually for each split log (System)

Server script name: OPT_LOG_CONTENT_SCREENSHOT_PER_SPLIT_LOG
If this option is set, each partial log of a split run log may contain the maximum
number of screenshots defined above without affecting the count for the main run
log. Otherwise, the limit applies for the sum of all parts belonging to the same
main run log.

See section 7.1.6(129) for further information about split run logs.

Create screenshots of the whole screen upon error (System)

Server script name: OPT_LOG_CONTENT_SCREENSHOT_FULLSCREEN
Activating this option causes QF-Test to take an image of the whole screen and
save it in the run log when a screenshot is triggered by an exception or error.

Limit screenshots to relevant screens (System)
6.0+

Server script name: OPT_LOG_CONTENT_SCREENSHOT_RELEVANT_ONLY
If multiple monitors are connected when taking screenshots it may not be
desirable to take screenshots of all screens, especially on personal workstations
where this might expose private or confidential information.

If this option is active (the default), QF-Test will try to determine the screens on
which SUT or QF-Test windows are showing and exclude the rest.

Create screenshots of the client’s windows upon error in client (System)

Server script name: OPT_LOG_CONTENT_SCREENSHOT_WINDOW
Activating this option causes QF-Test to record images of all windows and dialogs
of the SUT and store them in the run log when screenshots are triggered due to
exceptions or errors coming from that SUT. In many cases this will work even for
windows that are covered by other windows or in cases where a full screenshot is
not possible, for example when a screen is locked.

41.11. Run log options 550

Create screenshots of all client windows upon error (System)
4.3+

Server script name: OPT_LOG_CONTENT_SCREENSHOT_ALL_WINDOWS
If this option is active QF-Test will log images of all windows of all connected
SUTs for any exception or error, regardless of where the exception or error is
coming from. This option also affects which screens are considered relevant,
depending on where SUT windows are showing.

Create screenshots for warnings (System)
6.0+

Server script name: OPT_LOG_CONTENT_WARNING_SCREENSHOTS
If this option is active, screenshots will also be saved when warnings are logged
in the run log. Otherwise this is done for errors and exceptions only.

Log successful advanced image checks (System)
3.4+

Server script name:
OPT_LOG_CONTENT_SCREENSHOT_ADVANCED_ALWAYS
If this option is activated, QF-Test will store the expected and actual images as
well as the transformed images for successful advanced image checks in the run
log. Otherwise these details are kept for failed image checks only.

Activating this option can raise the size of the run log drastically so be sure to use
it in combination with compact run logs and/or split run logs.

Compress images in run logs and test suites (System)
4.5+

Server script name: OPT_LOG_CONTENT_COMPRESS_SCREENSHOTS
If this option is activated, QF-Test will store new images in test suites and run
logs losslessly compressed.

This option can reduce the memory consumption of run logs and test suites on disk
and in memory significantly. On the other hand, compression and decompression
requires some CPU time, so the option can be deactivated for very time-critical
test executions.

Create compact run log (System)

Server script name: OPT_LOG_CONTENT_COMPACT
Activating this option causes QF-Test to discard every node from a run log that is
neither relevant for error diagnosis, nor for the XML/HTML report. After an error
or exception, as well as at the end of a test run, the 100 most recent nodes are
not discarded, so the most relevant information should remain available.

41.11. Run log options 551

Even large tests should not cause memory issues, provided the option Create split
run logs(543) is turned on and used as described in Split run logs(129). But if you do
run out of memory, activating this option can be useful.

This option is used only when QF-Test is run in interactive mode. It is ignored in
batch mode (see section 1.7(12)) to avoid accidental loss of information. To create
a compact run log in batch mode, use the -compact(916) command line argument.

Don’t create run log (System)

Server script name: OPT_LOG_CONTENT_SUPPRESS
For very-long-running tests or demos that are run in an endless loop, memory
consumption of the run log is an issue, but split run logs are an ideal solution.
Before split run logs were available, turning run logs off completely via this option
was sometimes the only way to get long-running tests to work. Now this option is
only retained for backwards compatibility.

In batch mode this option is ignored. To suppress the run log, use the argumentNote
-nolog(920).

Log SUT output individually (System)
3.0+

SUT script name: OPT_LOG_CONTENT_SPLIT_IO
If set, any text that an SUT client prints to its stdout or stderr stream is also
logged in the run log. For each interaction with the SUT QF-Test collects text
printed before the event and after the event during synchronization. This makes it
possible to associate output like an exception stacktrace that is triggered by an
event with the event itself, something that is impossible if all output is kept in a
single piece.

Compactify individually logged SUT output (System)
3.0+

Server script name: OPT_LOG_CONTENT_COMPACTIFY_SPLIT_IO
Output from an SUT client tends to accumulate and can consume a lot of
memory. If this option is activated, individually logged SUT output for events that
are no longer of interest can be removed along with the events in compact run
logs. Please see the option Create compact run log(549) for further information
about compact run logs.

Log comments to run log (System)
5.0+

Server script name: OPT_LOG_COMMENTS_TO_RUNLOG
If this option is activated, Component(869) steps are added to the run log.

41.11. Run log options 552

Wrap lines in exception messages (System)
5.3+

Server script name: OPT_LOG_WRAP_EXCEPTION_MESSAGE
If activated, display of exceptions messages in the run log or an error dialog are
displayed using word-wrap to break long lines.

41.11.4 Options for mapping between directories with test suites
4.0+

Figure 41.42: Options for mapping between directories with test suites

Directory map for test suites (System)

When analyzing a run log it is often necessary to quickly switch between the run
log and the respective test suite. However, when running automated tests on
different systems like Windows and Linux, the directories from which test suites
are loaded during the test vary and there is no automatic way to map between
different directory layouts.

With this option you can assist QF-Test in locating test suites. The ’From’ column
is a glob pattern that must match from the beginning of the path of the test suite
stored in the run log to the end of some directory in that path. The ’To’ column is
the respective replacement for the matching part and can also contain a glob pat-
tern. When searching for the test suite, QF-Test processes this list top to bottom,
performing the replacement for every match found and the first match leading to
an actual test suite is used.

A glob patterns is a simpler form of a regular expression often used by develop-Note
ment tools: An ’*’ stands for any number of characters up to the next file separator
while ’**’ means 0 or more characters of any kind, including ’/’. Some examples:

**/test suites
All directories named test suites at any depth.

T:/test/sut_*
All directories starting with sut_ in the T:/test directory.

41.12. Variables 553

41.12 Variables

The following options pertain to variable binding.

Figure 41.43: Variable options

When binding variables, expand values immediately (System)
3.0+

Server script name: OPT_VARIABLE_IMMEDIATE_BINDING
When a set of variable bindings is pushed onto a variable stack, any additional
variable references in the values of these variables can either be expanded
immediately, or the values can be left unchanged to be expanded lazily as
needed. This is explained in detail in section 6.9(121).

For immediate expansion turn this option on, for lazy expansion turn it off.

Fall back to lazy binding if immediate binding fails (System)
3.0+

Server script name: OPT_VARIABLE_LAZY_FALLBACK
Old tests that rely on lazy variable binding may fail with the new default of
immediate binding. If this option is activated, variables that cannot be bound
immediately due to references to not-yet-defined variables are bound lazily
instead and a warning is issued. To get rid of the warning simply change the
value of the respective variable to use explicit lazy binding with ’$_’. Please see
section 6.9(121) for further information.

Enable ’Local variable’ attribute by default (System)
5.1+

41.13. Runtime only 554

Server script name: OPT_PREFER_LOCAL_VARIABLES
Many nodes have a ’Local variable’ attribute that determines whether a result
variable should get stored locally or as a global variable. If this option is activated,
newly created nodes of that kind will have the ’Local variable’ attribute set. Get
more information about local and global variables in Variable levels(108).

Warn, if directly expanded variables in script expressions contain escape charac-
ters (System)

9.0+

Server script name:
OPT_WARN_FOR_ESCAPE_CHARS_IN_EXPANSIONS_FOR_SCRIPTS
It is possible to use variable expansions of the form $(name) or
${group:name} for Script expressions(171). In some cases the variable value
contains unintentionally certain escape characters: If, for example, the variable
path has the value C:\Users\test\new (instead of C:\\Users\\test\\new)
and is used in a script like ”$(path)”==””, the sequences \U, \t, and \n will
be interpreted as escape characters, which can lead to surprising errors. If this
option is active, QF-Test will log a warning in such cases. To avoid such
problems, use rc.getStr in scripts (see section 11.3.3(174) for details).

Object classes to exclude from serialization (System)
9.0.4+

Server script name: OPT_VARIABLE_NO_SERIALIZED_CLASSES
Objects stored in QF-Test variables are automatically serialized when exchanged
between processes (see Exchanging variables between processes(175)). For some
objects this can lead to problems, most notably objects of the AWT ”Component”
class. With the help of this option, serialization of object variable can be
prevented as follows:

A variable containing an object of a class (or subclass) listed in this option only
provides the original object when retrieved in the originating process. In other
processes, the variable only provides the String representation of the content.

Furthermore, various kinds of variables can be defined here. These are explained in
chapter 6(104).

41.13 Runtime only

Some options of a more technical nature are not available via the user interface, espe-
cially if they are useful only in very specific cases and will do more harm than good in
general.

41.13. Runtime only 555

As mentioned in the introduction to this chapter, options can be set in Server script(670)

or SUT script(673) nodes via rc.setOption(Options.<OPTION_NAME>, <value>)
(see section 50.5(963) for details). Which kind of step to use is indicated by the text ”Server
script name” or ”SUT script name” in the documentation of the respective option.

Connect via QF-Test agent (System)
4.0+

Server script name: OPT_PLAY_CONNECT_VIA_AGENT
QF-Test version 4 introduced a new mechanism for connecting to an SUT, based
on Java agents. It is far more powerful and flexible than the older mechanisms
and even a hard requirement for most current SUTs. Thus it should not be turned
off without a very good reason.

Without the agent an SUT based on Java 9 or newer will not even start. Besides,Note
the agent is a prerequisite for access to JavaFX, embedded browsers and the full
functionality of live unit testing.

Instrument AWT EventQueue (System)
4.1+

Server script name: OPT_PLAY_INSTRUMENT_EVENT_QUEUE
In earlier versions QF-Test replaced the AWT system EventQueue with its own,Swing
taking pains to handle custom EventQueues and many other subtle details.
Starting with QF-Test 4.1 the default is to instrument the EventQueue class
instead which has less impact on the SUT, handles border cases well and is
preferable in almost all situations. In case of connection problems, the old
mechanism can be used by turning off this option.

Instrumenting the AWT EventQueue is only possible with the QF-Test agent.Note

Chapter 42

Elements of a test suite

42.1 The test suite and its structure

There are more than 60 different kinds of nodes for a test suite which are all listed in
this chapter. Each node type has a unique set of features. The attributes of a node are
displayed and edited in the detail view of the editor. The restrictions that apply to each
attribute are listed as well as whether it supports variable expansion (see chapter 6(104)).

Additional features of a node include the behavior of the node during execution of a test
and the kinds of parent and child nodes allowed.

42.1.1 Test suite

The root node of the tree represents the test suite itself. Its basic
structure is fixed. The root node contains an arbitrary number of
Test sets(566) or Test cases(558), followed by the Procedures(637) the Extras(588) and the

Windows and components(881). When executed, the top-level Test sets are executed one by
one.

Contained in: None

Children: An arbitrary number of Test set or Test case nodes, followed by the Procedures,
Extras and Windows and components nodes.

Execution: The top-level Test set nodes are executed one by one.

Attributes:

42.1. The test suite and its structure 557

Figure 42.1: Test suite attributes

Name
A kind of short description for the test suite. The name is displayed in the tree
view, so it should be concise and tell something about the function of the test
suite.

Variable: No

Restrictions: None

Include files
This is a list of test suites that are included by the suite. If a Component(869) or
Procedure(627) reference cannot be resolved in the current suite, the included suites
are searched for it. When recording new components, QF-Test will search the
included suites for a matching Component node before creating a new one.

Relative pathnames are treated relative to the directory of the suite, or to a direc-
tory on the library path (see option Directories holding test suite libraries(469)).

42.1. The test suite and its structure 558

When you change anything in this attribute QF-Test will offer to update all affected
nodes to compensate for the change. For example, if you add or remove a suite
from the includes, QF-Test will make all references to that suite’s Procedures or
Components implicit or absolute so that the actual referenced nodes remain un-
changed. In such a case, choose ”Yes”. If, on the other hand, you renamed a suite
or moved it to some other directory and are simply updating the includes to reflect
that, chose ”No” so all former implicit references into the old suite will now point to
the new one.

Variable: File names for included test suites can reference environment variables9.0+
or system properties via the syntax ${env:...} or ${system:...}.

You can change the included test suite at run time by setting the respective
environment variable or system property via script to the new value. Use
rc.setProperty, which is described in section 50.5(963).

Though the syntax above is a standard in QF-Test for group variables or properties,Note
this is a special case where only the env or system groups can be used.

Restrictions: None

Dependencies (reverse includes)

This list of test suites is the reverse of the Include files attribute. It has no impact
on test execution. Instead it serves a hint to tell QF-Test which test suites depend
on Components in this suite, either because they (directly or indirectly) include this
suite or because they explicitly reference Components in it. This information is
used when QF-Test IDs of Components are manipulated (for example after
updating components, see (section 5.11.2(94))) and the QF-Test component ID
attributes of nodes depending on these components have to be updated. QF-Test
always checks all currently loaded suites for dependencies. Additionally, it will
automatically load and check all suites listed here.

Relative pathnames are treated relative to the directory of the suite, or to a direc-
tory on the library path (see option Directories holding test suite libraries(469)).

Like the Include files, the Dependencies are also resolved indirectly. For example ifNote
suite A has the dependency B which has the dependency C, both suites B and C
will be loaded and checked for references automatically when components in suite
A are manipulated.

Variable: Environment variables or system properties can be used in the same9.0+
way as for the Include files attribute, i.e. using ${env:...} or ${system:...}.

Restrictions: None

Variable definitions
These variables definitions are identical to the suite variable bindings accessible
in the Variables(552) pane of the global options. A detailed explanation of variable

42.2. Test and Sequence nodes 559

definition and lookup is given in chapter 6(104). See section 2.2.5(17) about how to
work with the table.

Variable: Variable names no, values yes

Restrictions: None

Execution timeout
Time limit for the node’s execution in milliseconds. If that limit expires the
execution of that node will get interrupted.

Variable: Yes

Restrictions: >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.2 Test and Sequence nodes

Tests and sequences are the main structural elements of a test suite. Test case(558) nodes
represent logical test cases and are implemented as specialized sequences. A se-
quence is a container that executes its child nodes one by one. It can define variables
(see chapter 6(104)) that remain bound during the execution of the children.

Other kinds of sequences differ either in the way their child nodes are executed, or in
the restrictions they impose on their child or parent nodes.

42.2.1 Test case

42.2. Test and Sequence nodes 560

A Test case node represents one or more logical test cases. In a sense it is the
most important of all QF-Test nodes and everything else only serves to lend
structure to Test cases or to implement their logic. Functionally it is a highly

specialized Sequence(577) with a number of important extensions and special attributes.

A Test case should focus on the actual test it supposed to perform. Setup and cleanup
tasks required to ensure that the Test case executes in the required environment and does
not interfere with subsequent tests should be implemented in the form of Dependencies(589)

as described in section 8.6(145). Alternatively - or in addition to Dependencies - a Test case
can have Setup(595) and Cleanup(598) nodes to be executed before and after the Test case.

Because a Test case can be called from a Test call(572) node it is also somewhat simi-
lar to a Procedure(627) in that its Name(562) attribute is mandatory and that it has a list of
Parameter default values(564) that can be overridden in the calling node.

Test cases also play a central role in run logs and test reports. During a test run a Test
case node can be executed several times in different contexts and with different pa-
rameters. Logically these executions may represent the same or different test cases.
By defining a set of Characteristic variables(562) you can specify which variable values are
used to differentiate between executions, thus characterizing the run-time environment
of the test. The values of these variables at the time of entry to the Test case are
stored in the run log. To emphasize the fact that each execution of a Test case node
may represent a separate logical test case there is an alternative name attribute called
Name for run log and report(562). Its value may contain references to the Characteristic vari-
ables of the test. In the run log or report the test will then be listed with this name,
including the expanded run-time variable values.

Finally, there are situations in which a test cannot or should not be executed for specific
variable settings. If the Condition(563) attribute of the Test case is defined, the Test case
will only be executed if that expression expands to a true value. If the Test case is not
executed due to the Condition it will be listed as skipped in the report.

Contained in: Test suite(555), Test set(566).

Children: Optional Dependency(589) or Dependency reference(592) as the first element. A
Setup(595) may be the next and a Cleanup(598) the last node with an arbitrary number of
normal child nodes in between. A Test case that does not contain normal child nodes will
be listed as not implemented in the report.

Execution: First the Variable definitions(564) of the Test case are bound on the primary
and its Parameter default values(564) on the fallback variable stack (see chapter 6(104)). With
these in place the Condition(563) is evaluated and the node will be skipped if a non-empty
Condition evaluates to false. Next the dependency of the Test case - possibly inherited
from its parent node - is determined and resolved as described in section 8.6(145). Then
the optional Setup is executed once, followed by the normal child nodes and a single
execution of the optional Cleanup. An exception raised during the course of the Test case
will be caught and passed to the Dependency for handling in a Catch(661) node. Even if the

42.2. Test and Sequence nodes 561

exception is not handled by a Dependency it is not propagated beyond the Test case to
prevent aborting the whole test run. The error state is duly noted in run log and report
however.

Attributes:

42.2. Test and Sequence nodes 562

Figure 42.2: Test case attributes

42.2. Test and Sequence nodes 563

Name
A Test case is identified by its name and the names of its Test set(566) ancestors, so
you should assign a name with a meaning that is easy to recognize and
remember.

Variable: No

Restrictions: Must not be empty or contain the characters ’.’ or ’#’.

Name for run log and report

A separate name to be used for run log and report. This is useful to differentiate
between multiple executions with potentially different values for the Characteristic
variables.

Variable: Yes

Restrictions: None

Characteristic variables
These variables are part of the characteristics of a Test set or Test case. Two
executions of a Test case are considered to represent the same logical test case if
the run-time values of all Characteristic variables are identical. The run-time values
of the Characteristic variables are stored in the run log.

Variable: No

Restrictions: None

Name for separate run log

If this attribute is set it marks the node as a breaking point for split run logs and
defines the filename for the partial log. When the node finishes, the respective
log entry is removed from the main run log and saved as a separate, partial run
log. This operation is completely transparent, the main run log retains references
to the partial logs and is fully controllable. Please see section 7.1.6(129) for further
information about split run logs.

This attribute has no effect if the option Create split run logs(543) is disabled or split
run logs are explicitly turned off for batch mode via the -splitlog(926) command
line argument.

There is no need to keep the filename unique. If necessary, QF-Test appends a
number to the filename to avoid collisions. The filename may contain directories
and, similar to specifying the name of a run log in batch mode on the command
line, the following placeholders can be used after a ’%’ or a ’+’ character:

42.2. Test and Sequence nodes 564

Character Replacement
% Literal ’%’ character.
+ Literal ’+’ character.
i The current runid as specified with -runid <ID>(925).
r The error level of the partial log.
w The number of warnings in the partial log.
e The number of errors in the partial log.
x The number of exceptions in the partial log.
t The thread index to which the partial log belongs (for tests run with parallel threads).
y The current year (2 digits).
Y The current year (4 digits).
M The current month (2 digits).
d The current day (2 digits).
h The current hour (2 digits).
m The current minute (2 digits).
s The current second (2 digits).

Table 42.1: Placeholders for the Name for separate run log attribute

Variable: Yes

Restrictions: None, characters that are illegal for a filename will be replaced with
’_’.

Inherit dependency from parent node

This option allows inheriting the Dependency(589) from the parent node as a
replacement for or in addition to specifying a Dependency for the node itself.

Variable: No

Restrictions: None

Condition
If the condition is non-empty it will be evaluated and if the result is false the
execution of the current node is aborted. In this case the node will be reported as
skipped.

Like the Condition(648) of an If(647) node, the Condition is evaluated by the Jython
interpreter, so the same rules apply.

Variable: Yes

Restrictions: Valid syntax

Script language

42.2. Test and Sequence nodes 565

This attribute determines the interpreter in which to run the script, or in other
words, the scripting language to use. Possible values are ”Jython”, ”Groovy” and
”JavaScript”.

Variable: No

Restrictions: None

Expected to fail if...

This attribute allows specifying a condition under which the Test case is expected
to fail. This is helpful to distinguish new problems from already known ones. Of
course the latter should be fixed, but if and when that happens may be outside
the tester’s sphere of influence.

Most of the time it is sufficient to simply set this attribute to ’true’ to mark the Test
case as an expected failure. But if the Test case is executed multiple times, e.g.
within a Data driver(603) or on multiple systems and fails only in specific cases, the
condition should be written so that it evaluates to true for exactly those cases, e.g.
${qftest:windows} for a test that fails on Windows but runs fine on other systems.

If this attribute evaluates to true and the Test case fails with an error, it will be listed
separately in the run log, report and on the status line. It still means that there
is an error in the application, so the overall percentage of successful tests is not
changed.

It is treated as an error if this attribute evaluates to true and the Test case does not
fail because this means that either the test is not able to reproduce the problem
reliably or that the problem has been fixed and the Test case must be updated
accordingly.

Variable: Yes

Restrictions: Valid syntax

Variable definitions
These variables are bound on the direct bindings stack (see chapter 6(104)). They
remain valid during the execution of the Test case’s child nodes and cannot be
overridden by a Test call(572) node. See section 2.2.5(17) about how to work with the
table.

Variable: Variable names no, values yes

Restrictions: None

Parameter default values
Here you can define default or fallback values for the Test case’s parameters (see
chapter 6(104)). Defining these values also serves as documentation and is a
valuable time-saver when using the dialog to select the Test case for the

42.2. Test and Sequence nodes 566

Test name(574) attribute of a Test call(572). See section 2.2.5(17) about how to work with
the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

Execution timeout
Time limit for the node’s execution in milliseconds. If that limit expires the
execution of that node will get interrupted.

Variable: Yes

Restrictions: >= 0

Border for relative calls
This flag determines whether relative procedure calls, test calls or dependency
references are allowed within that certain node. Relative calls passing that border
are not allowed. If that attribute is not specified in the hierarchy, no relative calls
are allowed.

Variable: No

Restrictions: None

QF-Test ID
When using the command line argument -test <n>|<ID>(928) for execution in
batch mode you can specify the QF-Test ID of the node as an alternative to its
qualified name.

42.2. Test and Sequence nodes 567

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.2.2 Test set

The main purpose of a Test set is to give structure to the Test cases(558) of a
test suite. Test sets can be nested. The Name(568) of a Test set is part of the
Test case’s fully qualified name to which a Test call(572) node refers. Test sets are

also callable themselves and thus have a set of Parameter default values(571) that can be
overridden in the Test call.

One way of structuring Test cases is to collect those with similar setup and cleanup
requirements in the same Test set which can provide a Dependency(589) or
Dependency reference(592) node to be inherited by the Test case or nested Test set child
nodes. If the Inherit dependency from parent node(570) attribute of the Test set is set, the
Dependency nodes of the Test set’s parent(s) are also inherited. See section 8.6(145) for
information about QF-Test’s dependency mechanism. Alternative or additional setup

42.2. Test and Sequence nodes 568

and cleanup is available in the form of Setup(595) and Cleanup(598) nodes which will be
executed before and after each of the Test set and Test case child nodes.

Another important feature of a Test set is data-driven testing. This can be achieved by
adding a Data driver(603) node with one or more Data binders as described in chapter 23(295).

Like a Test case, a Test set plays an important role for reports. As it can also be executed
several times with different parameter settings, it has a set of Characteristic variables(569)

and an alternative Name for run log and report(569) that work just like for a Test case. The
same is true for the Condition(570) which can be used to skip an entire Test set depending
on current variable values.

Contained in: Test suite(555), Test set(566).

Children: Optional Dependency(589) or Dependency reference(592) as the first child, followed
by an optional Data driver(603). A Setup(595) may come next and a Cleanup(598) at the end with
an arbitrary number of Test set(566), Test case(558) and Test call(572) nodes in between.

Execution: First the Parameter default values(571) of the Test set are bound on the fallback
variable stack (see chapter 6(104)). With these in place the Condition(570) is evaluated and
the node will be skipped if a non-empty Condition evaluates to false. The Dependency(589)

or Dependency reference(592) node will not be resolved at this time unless its
Always execute, even in test suite and test set nodes(591) attribute is set. If there is a
Data driver(603) node, it is executed to create a data driving context, bind one or more
Data binders and then repeatedly execute the other child nodes as described in chapter
23(295). For each loop iteration - or once in case no Data driver is present - the Test set
executes each of its Test set or Test case child nodes. If an optional Setup(595) or Cleanup(598)

node are present, they are executed before and after each of these child nodes
respectively.

Attributes:

42.2. Test and Sequence nodes 569

Figure 42.3: Test set attributes

Name

42.2. Test and Sequence nodes 570

The name of a Test set is part of its own identification and of that of the Test case(558)

and Test set nodes it contains, so you should assign a name with a meaning that
is easy to recognize and remember.

Variable: No

Restrictions: Must not be empty or contain the characters ’.’ or ’#’.

Name for run log and report

A separate name to be used for run log and report. This is useful to differentiate
between multiple executions with potentially different values for the Characteristic
variables.

Variable: Yes

Restrictions: None

Characteristic variables
These variables are part of the characteristics of a Test set or Test case. Two
executions of a Test case are considered to represent the same logical test case if
the run-time values of all Characteristic variables are identical. The run-time values
of the Characteristic variables are stored in the run log.

Variable: No

Restrictions: None

Name for separate run log

If this attribute is set it marks the node as a breaking point for split run logs and
defines the filename for the partial log. When the node finishes, the respective
log entry is removed from the main run log and saved as a separate, partial run
log. This operation is completely transparent, the main run log retains references
to the partial logs and is fully controllable. Please see section 7.1.6(129) for further
information about split run logs.

This attribute has no effect if the option Create split run logs(543) is disabled or split
run logs are explicitly turned off for batch mode via the -splitlog(926) command
line argument.

There is no need to keep the filename unique. If necessary, QF-Test appends a
number to the filename to avoid collisions. The filename may contain directories
and, similar to specifying the name of a run log in batch mode on the command
line, the following placeholders can be used after a ’%’ or a ’+’ character:

42.2. Test and Sequence nodes 571

Character Replacement
% Literal ’%’ character.
+ Literal ’+’ character.
i The current runid as specified with -runid <ID>(925).
r The error level of the partial log.
w The number of warnings in the partial log.
e The number of errors in the partial log.
x The number of exceptions in the partial log.
t The thread index to which the partial log belongs (for tests run with parallel threads).
y The current year (2 digits).
Y The current year (4 digits).
M The current month (2 digits).
d The current day (2 digits).
h The current hour (2 digits).
m The current minute (2 digits).
s The current second (2 digits).

Table 42.2: Placeholders for the Name for separate run log attribute

Variable: Yes

Restrictions: None, characters that are illegal for a filename will be replaced with
’_’.

Inherit dependency from parent node

This option allows inheriting the Dependency(589) from the parent node as a
replacement for or in addition to specifying a Dependency for the node itself.

Variable: No

Restrictions: None

Condition
If the condition is non-empty it will be evaluated and if the result is false the
execution of the current node is aborted. In this case the node will be reported as
skipped.

Like the Condition(648) of an If(647) node, the Condition is evaluated by the Jython
interpreter, so the same rules apply.

Variable: Yes

Restrictions: Valid syntax

Script language

42.2. Test and Sequence nodes 572

This attribute determines the interpreter in which to run the script, or in other
words, the scripting language to use. Possible values are ”Jython”, ”Groovy” and
”JavaScript”.

Variable: No

Restrictions: None

Parameter default values
Here you can define default or fallback values for the Test set’s parameters (see
chapter 6(104)). Defining these values also serves as documentation and is a
valuable time-saver when using the dialog to select the Test set for the Test name(574)

attribute of a Test call(572). See section 2.2.5(17) about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

Execution timeout
Time limit for the node’s execution in milliseconds. If that limit expires the
execution of that node will get interrupted.

Variable: Yes

Restrictions: >= 0

Border for relative calls
This flag determines whether relative procedure calls, test calls or dependency
references are allowed within that certain node. Relative calls passing that border

42.2. Test and Sequence nodes 573

are not allowed. If that attribute is not specified in the hierarchy, no relative calls
are allowed.

Variable: No

Restrictions: None

QF-Test ID
When using the command line argument -test <n>|<ID>(928) for execution in
batch mode you can specify the QF-Test ID of the node as an alternative to its
qualified name.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.2.3 Test call

42.2. Test and Sequence nodes 574

With this node a call to some other executable test node can be made. Pos-
sible targets are Test suite(555), Test set(566) and Test case(558) nodes in the same or
a different test suite. Execution will continue in the called node and when

finished return to the Test call and thus to its parent node.

The name of a Test case or Test set to call is determined by its Name(562) and the Names(568)

of its Test set ancestors. These are concatenated with a dot (’.’) as separator, starting
with the outermost Test set and ending in the Test case’s name. Thus to call a Test case
named nodeTest in a Test set named Tree that is itself a child of a Test set named
Main, the Test name(574) attribute would be set to ’Main.Tree.nodeTest’. A node in a
different test suite is addressed by prepending the filename of the test suite followed by
a ’#’ to the Test name. A Test suite node is addressed by a single ’.’, so calling a whole test
suite is done with a Test name attribute of the form ’suitename.qft#.’. It is generally
easiest to pick the target node interactively from a dialog by clicking on the button above
the Test name attribute.

See also section 26.1(332) for further information about cross-suite calls.

Contained in: All kinds of sequences(558).

Children: None

Execution: The Variable definitions(575) of the Test call are bound, the target node is de-
termined and execution is passed to it. After the Test call returns, the Test call’s variables
are unbound again.

Attributes:

42.2. Test and Sequence nodes 575

Figure 42.4: Test call Attributes

Name
In case of a Test case or Test set it is the full name, created from the Name(568) of its
Test set parents and its own Name(562), joined by a dot. A Test suite node is
addressed by a single ’.’ character. The ”Select test” button above the attribute
brings up a dialog in which you can select the target node interactively. You can
also get to this dialog by pressing

�� ��Shift-Return or
�� ��Alt-Return when the focus is

in the text field. By selecting the ”Copy parameters” checkbox you can adopt the
Test case’s or Test set’s Parameter default values as parameters for the Test call node
to save typing.

Variable: Yes

Restrictions: Must not be empty.

Name for separate run log

42.2. Test and Sequence nodes 576

If this attribute is set it marks the node as a breaking point for split run logs and
defines the filename for the partial log. When the node finishes, the respective
log entry is removed from the main run log and saved as a separate, partial run
log. This operation is completely transparent, the main run log retains references
to the partial logs and is fully controllable. Please see section 7.1.6(129) for further
information about split run logs.

This attribute has no effect if the option Create split run logs(543) is disabled or split
run logs are explicitly turned off for batch mode via the -splitlog(926) command
line argument.

There is no need to keep the filename unique. If necessary, QF-Test appends a
number to the filename to avoid collisions. The filename may contain directories
and, similar to specifying the name of a run log in batch mode on the command
line, the following placeholders can be used after a ’%’ or a ’+’ character:

Character Replacement
% Literal ’%’ character.
+ Literal ’+’ character.
i The current runid as specified with -runid <ID>(925).
r The error level of the partial log.
w The number of warnings in the partial log.
e The number of errors in the partial log.
x The number of exceptions in the partial log.
t The thread index to which the partial log belongs (for tests run with parallel threads).
y The current year (2 digits).
Y The current year (4 digits).
M The current month (2 digits).
d The current day (2 digits).
h The current hour (2 digits).
m The current minute (2 digits).
s The current second (2 digits).

Table 42.3: Placeholders for the Name for separate run log attribute

Variable: Yes

Restrictions: None, characters that are illegal for a filename will be replaced with
’_’.

Variable definitions
This is where you define the parameter values for the target node. These
variables are bound on the primary variable stack (see chapter 6(104)) so they

42.2. Test and Sequence nodes 577

override any Parameter default values. See section 2.2.5(17) about how to work with
the table.

In case you want to re-set the order of the parameters like they are sorted in the4.2+
called test case or test set, you can select Re-set parameter order .

Variable: Variable names no, values yes

Restrictions: None

Act like a procedure call

If the Test call node is executed inside a Test case, this attribute determines how
exceptions are handled in the called node(s). If it is activated a single exception
terminates the whole call irrespective of Test set and Test case nesting, just like it
would for a regular Procedure call node. If this attribute is unset the special roles of
Test set and Test case nodes with their local exception handling is maintained.

Variable: Yes

Restrictions: None

Execution timeout
Time limit for the node’s execution in milliseconds. If that limit expires the
execution of that node will get interrupted.

Variable: Yes

Restrictions: >= 0

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note

42.2. Test and Sequence nodes 578

this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.2.4 Sequence

This is the most general kind of sequence. Its children are executed one by
one and their number or type is not limited in any way.

Contained in: All kinds of sequences(558).

Children: Any

Execution: The Variable definitions(578) of the Sequence are bound and its child nodes
executed one by one. After the execution of the last child is complete, the variables are
unbound again.

Attributes:

42.2. Test and Sequence nodes 579

Figure 42.5: Sequence attributes

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the

42.2. Test and Sequence nodes 580

corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

42.2. Test and Sequence nodes 581

Variable: Yes

Restrictions: None

42.2.5 Test step

A Test step is a special Sequence that serves to divide a Test case into steps
that can be documented individually and will show up in the report or testdoc
documentation. In contrast to Test cases, which should not be nested, Test

steps can be nested to any depth.

Contained in: All kinds of sequences(558).

Children: Any

Execution: The Variable definitions(583) of the Test step are bound and its child nodes
executed one by one. After the execution of the last child is complete, the variables are
unbound again.

Attributes:

42.2. Test and Sequence nodes 582

Figure 42.6: Test step attributes

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Name for run log and report

A separate name to be used for run log and report. This is useful to differentiate

42.2. Test and Sequence nodes 583

between multiple executions of the surrounding Test case with potentially different
values for its Characteristic variables.

Variable: Yes

Restrictions: None

Name for separate run log

If this attribute is set it marks the node as a breaking point for split run logs and
defines the filename for the partial log. When the node finishes, the respective
log entry is removed from the main run log and saved as a separate, partial run
log. This operation is completely transparent, the main run log retains references
to the partial logs and is fully controllable. Please see section 7.1.6(129) for further
information about split run logs.

This attribute has no effect if the option Create split run logs(543) is disabled or split
run logs are explicitly turned off for batch mode via the -splitlog(926) command
line argument.

There is no need to keep the filename unique. If necessary, QF-Test appends a
number to the filename to avoid collisions. The filename may contain directories
and, similar to specifying the name of a run log in batch mode on the command
line, the following placeholders can be used after a ’%’ or a ’+’ character:

Character Replacement
% Literal ’%’ character.
+ Literal ’+’ character.
i The current runid as specified with -runid <ID>(925).
r The error level of the partial log.
w The number of warnings in the partial log.
e The number of errors in the partial log.
x The number of exceptions in the partial log.
t The thread index to which the partial log belongs (for tests run with parallel threads).
y The current year (2 digits).
Y The current year (4 digits).
M The current month (2 digits).
d The current day (2 digits).
h The current hour (2 digits).
m The current minute (2 digits).
s The current second (2 digits).

Table 42.4: Placeholders for the Name for separate run log attribute

Variable: Yes

42.2. Test and Sequence nodes 584

Restrictions: None, characters that are illegal for a filename will be replaced with
’_’.

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

Execution timeout
Time limit for the node’s execution in milliseconds. If that limit expires the
execution of that node will get interrupted.

Variable: Yes

Restrictions: >= 0

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

42.2. Test and Sequence nodes 585

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.2.6 Sequence with time limit

This node extends the basic Sequence(577) node with time-constraint checking.
Child nodes are executed as usual, but upon completion of the sequence
the elapsed time is compared to the time-limit. Exceeding the time limit

will result in a warning, error or exception, depending on the value of the attribute
Error level if time limit exceeded(586). Explicit delays like Delay before/after(587) or user in-
terrupts are deducted from the duration before the constraints are checked, unless
Check realtime(586) is activated.

For report generation, time-constraints are treated like checks. If the Comment(587) at-
tribute starts with an ’!’ character, the result will be logged in the report.

The function of this node is to check time constraints in the user-acceptance range, i.e.Note
between a few hundred milliseconds and a few seconds. Real-time constraints of a few
milliseconds or less are beyond its limits.

Contained in: All kinds of sequences(558).

Children: Any

42.2. Test and Sequence nodes 586

Execution: The Variable definitions(586) of the Sequence with time limit are bound and its
child nodes executed one by one. After the execution of the last child is complete, the
variables are unbound again. The elapsed time is compared to the given time limit.

Attributes:

Figure 42.7: Sequence with time limit attributes

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

42.2. Test and Sequence nodes 587

Variable: No

Restrictions: None

Time limit for execution
The time (in milliseconds) allowed for the execution of the sequence.

Variable: Yes

Restrictions: Must not be negative.

Check realtime
Normally explicit delays like Delay before/after(587) or user interrupts are deducted
from the duration, before the time constraints are checked. To prevent this
deduction and therefore check the real-time, this attribute can be activated.

Variable: No

Restrictions: None

Error level if time limit exceeded
This attribute determines what happens in case the time limit is exceeded. If set
to ”exception”, a CheckFailedException(900) will be thrown. Otherwise a
message with the respective error-level will be logged in the run log.

Variable: No

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact

42.2. Test and Sequence nodes 588

run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

Execution timeout
Time limit for the node’s execution in milliseconds. If that limit expires the
execution of that node will get interrupted.

Variable: Yes

Restrictions: >= 0

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.2. Test and Sequence nodes 589

42.2.7 Extras

This node is a kind of clipboard or playground where the usual restrictions
on the parent of a node don’t apply. You can add any kind of node here to
assemble and try out some test sequences.

Contained in: Root node

Children: Any

Execution: Cannot be executed

Attributes:

Figure 42.8: Extras attributes

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

42.3. Dependencies 590

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.3 Dependencies

Dependencies are a very powerful feature for handling setup and cleanup requirements
for test cases automatically. The goal is to isolate test cases so that each one can be
run independently without interfering with others. This is a very important requirement
for things like testing arbitrary sub-sets of test cases, for example to re-test only failed
tests, or during test-development where it must be possible to quickly run and debug
any given test case.

42.3.1 Dependency

Dependency nodes are used to implement advanced, automatic handling of
setup and cleanup requirements for Test sets(566) and Test cases(558). A detailed
description of the Dependency mechanism is given in section 8.6(145). This sec-

tion focuses on formal requirements for the Dependency node and its attributes.

As Dependencies are complex, they should be reused as much as possible. This can
be done by grouping Test cases with identical dependencies in a Test set and have them
inherit the Dependency of the Test set. However, this mechanism alone is not flexible
enough, so a Dependency can also be implemented just like a Procedure(627) and placed
among the Procedures(637) of a test suite to be referenced from a Dependency reference
node. For this to work, the Name(562) attribute is mandatory and it also has a list of
Parameter default values(591) that can be overridden in the referencing node.

The Characteristic variables(591) of a Dependency are part of its identity and play an impor-
tant role in the dependency resolution mechanism.

Contained in: Test suite(555), Test set(566), Test case(558), Procedures(637), Package(635).

Children: Zero or more Dependency references(592) on which the Dependency is based,
optional Setup(595) and Cleanup(598) nodes and an optional Error handler(601) followed by zero
or more Catch(661) nodes.

Execution: Normally Dependencies are executed only indirectly in the setup phase of a
Test set or Test case. If a Dependency node is executed interactively, the dependency stack
is resolved as described in section 8.6(145).

Attributes:

42.3. Dependencies 591

Figure 42.9: Dependency attributes

Name
A Dependency is identified by its name, so you should assign a name with a
meaning that is easy to recognize and remember.

Variable: No

Restrictions: Must not be empty or contain the characters ’.’ or ’#’.

Name for run log and report

A separate name to be used for run log and report. This is useful to differentiate
between multiple executions with potentially different values for the Characteristic
variables.

42.3. Dependencies 592

Variable: Yes

Restrictions: None

Characteristic variables
These variables are part of a Dependency’s identity. During Dependency resolution
as described in section 8.6(145) two Dependencies are considered equal only if they
are one and the same node and the run-time values of all their Characteristic
variables are identical. Additionally, the values of the Characteristic variables are
stored during the setup phase of the Dependency. Later, when the Dependency is
rolled back, these settings will be temporarily restored for the cleanup phase.

Characteristic variables have the same value at a Cleanup node as during the execu-
tion of the corresponding Setup node - regardless of the value of the variables in
the current test case.

Variable: No

Restrictions: None

Always execute, even in test suite and test set nodes

Normally a Dependency is only executed if it belongs to a Test case node.
Dependencies in Test suite or Test set nodes are simply inherited by the Test case
descendants of these nodes. However, in some cases it is useful to resolve a
Dependency early, for example when the Dependency provides parameters for a
test run that are required to evaluate a Condition(563) of a subsequent Test case.
This can be achieved by activating this option.

Variable: No

Restrictions: None

Forced cleanup

Normally Dependencies are only rolled back and their cleanup code executed as
required by the dependency resolution mechanism described in section 8.6(145). In
some cases it makes sense to force partial cleanup of the dependency stack
immediately after a Test case finishes. This is what the Forced cleanup attribute is
for. If this option is activated, the dependency stack will be rolled back at least up
to and including this Dependency .

Variable: No

Restrictions: None

Parameter default values
Here you can define default or fallback values for the Dependency’s parameters
(see chapter 6(104)). Defining these values also serves as documentation and is a
valuable time-saver when using the dialog to select the Dependency for the

42.3. Dependencies 593

Referenced dependency(593) attribute of a Dependency reference(592). See section
2.2.5(17) about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.3.2 Dependency reference

42.3. Dependencies 594

A Dependency reference is simply a stand-in for a Dependency(589) defined in
some other place, typically a Package(635). The name of the referenced De-
pendency is determined by its Name(590) and the Names(636) of its Package par-

ents. These are concatenated with a dot (’.’) as separator, starting with the outermost
Package and ending in the Dependency’s name. Thus to reference a Dependency named
demoStarted in a Package named Demo that is itself a child of a Package named Main,
set the Referenced dependency(593) attribute to ’Main.Demo.demoStarted’.

See section 26.1(332) about how to reference a Dependency in a different test suite.

Contained in: Test suite(555), Test set(566), Test case(558) and Dependency(589)

Children: None

Execution: Normally Dependency references are executed only indirectly in the setup
phase of a Test set or Test case. If a Dependency reference node is executed interactively,
the referenced Dependency is determined and the dependency stack resolved accord-
ingly as described in section 8.6(145).

Attributes:

Figure 42.10: Dependency reference attributes

42.3. Dependencies 595

Referenced dependency

The full name of the Dependency(589), created from the Names(636) of its Package(635)

parents and its own Name(590), joined by a dot. The ”Select dependency” button
above the attribute brings up a dialog in which you can select the Dependency
interactively. By selecting the ”Copy parameters” checkbox you can adopt the
Dependency’s Parameter default values(591) as parameters for the Dependency reference
node to save typing.

Variable: Yes

Restrictions: Must not be empty.

Dependency namespace

Normally there is only a single stack of dependencies, but in some cases, e.g.
when mixing tests for independent SUT clients, it can be useful to have
independent sets of dependencies for different parts of the test, so that resolving
the dependencies for one part doesn’t necessarily tear down everything required
for a different part.

By setting the Dependency namespace attribute of a Dependency reference node you
can tell QF-Test to resolve the target dependency in that namespace. The default
dependency stack will be completely ignored in that case. If there is a dependency
stack remaining from a previous dependency resolution in the same namespace it
will be used for comparison instead, otherwise a new stack will be created. For an
example please refer to Name spaces for Dependencies(158).

Variable: Yes

Restrictions: None

Always execute, even in test suite and test set nodes

Normally a Dependency is only executed if it belongs to a Test case node.
Dependencies in Test suite or Test set nodes are simply inherited by the Test case
descendants of these nodes. However, in some cases it is useful to resolve a
Dependency early, for example when the Dependency provides parameters for a
test run that are required to evaluate a Condition(563) of a subsequent Test case.
This can be achieved by activating this option.

Variable: No

Restrictions: None

Variable definitions
These variables override the Parameter default values(591) of the Dependency
referenced by this Dependency reference. See section 2.2.5(17) about how to work
with the table.

In case you want to re-set the order of the parameters like they are sorted in the4.2+

42.3. Dependencies 596

called dependency, you can select Re-set parameter order .

Variable: Variable names no, values yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.3.3 Setup

This node is just like a Sequence(577) except for its special place
in a Dependency(589), Test set(566) or Test case(558) node.

Contained in: Dependency(589), Test set(566) or Test case(558)

42.3. Dependencies 597

Children: Any

Execution: The Variable definitions(596) of the Setup are bound and its child nodes exe-
cuted one by one. After the execution of the last child is complete, the variables are
unbound again.

Attributes:

Figure 42.11: Setup attributes

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

42.3. Dependencies 598

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

42.3. Dependencies 599

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.3.4 Cleanup

This node is just like a Sequence(577) except for its special place
in a Dependency(589), Test set(566) or Test case(558) node.

Contained in: Dependency(589), Test set(566) or Test case(558)

Children: Any

Execution: The Variable definitions(599) of the Cleanup are bound and its child nodes ex-
ecuted one by one. After the execution of the last child is complete, the variables are
unbound again.

Attributes:

42.3. Dependencies 600

Figure 42.12: Cleanup attributes

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally

42.3. Dependencies 601

propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.3. Dependencies 602

42.3.5 Error handler

This node is just like a Sequence(577) except for its special place
in a Dependency(589) (see section 8.6(145)).

Contained in: Dependency(589)

Children: Any

Execution: The Variable definitions(601) of the Error handler are bound and its child nodes
executed one by one. After the execution of the last child is complete, the variables are
unbound again.

Attributes:

Figure 42.13: Error handler attributes

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

42.3. Dependencies 603

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note

42.4. Data driver 604

this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.4 Data driver

The term Data-driven Testing refers to a common method in automated testing where
test cases are executed several times with different sets of data defined. With QF-Test’s
highly flexible variables there is no limit on how this data can be used but the most
common case is for event input values and expected check values.

QF-Test’s data-driving mechanism consists of the Data driver(603) node used to provide
a data-driving context and several kinds of Data binders. Currently available are the
Data table(607) node that stores data internally within QF-Test the CSV data file(620) node that
reads data from a CSV file, the Database(610) node that reads data from a database and
the Excel data file(615) that reads data from an Excel file. An extension API for plugging in
arbitrary external data is also available.

Further information about how the various parts of the data driver mechanism are work-
ing together is provided in chapter 23(295).

42.4.1 Data driver

Except for its special place in a Test set(566) or Test step(580), a Data driver is just
like a normal Sequence(577). It provides a context for one or more Data binders to
register themselves during the execution of the Data driver. The Test set then

iterates over the sets of data provided by the registered Data binders and executes its
child nodes as described in chapter 23(295). For this purpose a Data driver node needs to
be placed in a Test set(566) node, between the optional Dependency(589) and Setup(595) nodes.
Data driver nodes can also be placed in a Test step(580) as first steps.

Contained in: Test set(566), Test step(580).

42.4. Data driver 605

Children: Any

Execution: When a Test set or Test step is executed it checks for a Data driver and runs
it. The contents of the Data driver node are not limited to Data binders, but can hold any
executable node so that they can perform any setup that may be required to retrieve the
data. Thus it is also possible to share Data binders by placing them inside a Procedure(627)

and calling the Procedure from inside the Data driver. Any Data binders registered within
this Data driver’s context will then be queried for data by the Test set or Test step.

Attributes:

Figure 42.14: Data driver attributes

Name
The name of a Data driver is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the kind of data provided.

Variable: No

Restrictions: None

42.4. Data driver 606

Name for loop pass in the run log

A separate name for each iteration to be used in the run log. It can make use of
the variables bound as a result of the data-driving which makes it easier to locate
a specific step of the iteration.

Variable: Yes

Restrictions: None

Name for separate run log

If this attribute is set it marks the node as a breaking point for split run logs and
defines the filename for the partial log. Every time an iteration of the Data driver
finishes, the respective log entry is removed from the main run log and saved as
a separate, partial run log. This operation is completely transparent, the main run
log retains references to the partial logs and is fully controllable. Please see
section 7.1.6(129) for further information about split run logs.

This attribute has no effect if the option Create split run logs(543) is disabled or split
run logs are explicitly turned off for batch mode via the -splitlog(926) command
line argument.

There is no need to keep the filename unique. If necessary, QF-Test appends a
number to the filename to avoid collisions. The filename may contain directories
and, similar to specifying the name of a run log in batch mode on the command
line, the following placeholders can be used after a ’%’ or a ’+’ character:

Character Replacement
% Literal ’%’ character.
+ Literal ’+’ character.
i The current runid as specified with -runid <ID>(925).
r The error level of the partial log.
w The number of warnings in the partial log.
e The number of errors in the partial log.
x The number of exceptions in the partial log.
t The thread index to which the partial log belongs (for tests run with parallel threads).
y The current year (2 digits).
Y The current year (4 digits).
M The current month (2 digits).
d The current day (2 digits).
h The current hour (2 digits).
m The current minute (2 digits).
s The current second (2 digits).

Table 42.5: Placeholders for the Name for separate run log attribute

42.4. Data driver 607

Variable: Yes

Restrictions: None, characters that are illegal for a filename will be replaced with
’_’.

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.4. Data driver 608

42.4.2 Data table

A Data table provides a convenient interface for storing test data in tabular
form directly inside QF-Test. For details about the data-driving mechanism
please see chapter 23(295).

Contained in: Any

Children: None

Execution: The Data table expands variable values in the table according to the option
When binding variables, expand values immediately(552). Each row is expanded individ-
ually left to right, meaning that - within the same row - a cell may refer to a variable
bound in a column further to the left. Then the Data table registers itself with the Data
driver context. A property group called like the node will be created additionally. That
group contains the variables size and totalsize. size shows the number of data
rows with taking care about iteration intervals. The variable totalsize shows the total
number of data rows without taking care about iteration intervals. When all Data binders
have been registered the Test set(566) will query the Data table in order to iterate over the
available sets of data. If no such context is available the respective property group will
be extended with all variables.

Attributes:

42.4. Data driver 609

Figure 42.15: Data table attributes

Name
The Name of a Data binder is mandatory. It is used to distinguish Data binders in the
same Data driver context. A Break(646) node executed during data-driven testing can
be used to break out of a specific loop by referring to the Data binder’s Name.

Variable: Yes

Restrictions: None

Iteration counter
The name of the variable that the iteration counter will be bound to.

Variable: Yes

Restrictions: None

Iteration ranges

An optional set of indexes or ranges to use from the bound data. This is
especially useful during test development in order to run sample tests with just a
single index or a subset of the given data.

42.4. Data driver 610

Ranges are separated by ’,’. Each range is either a single index or an inclusive
range of the form ’from-to’ or ’from:to’ where ’to’ is optional. Indexes or ranges
may be specified multiple times, overlap or be given in descending order. In-
dexes are 0-based, negative indexes are counted from the end, -1 being the
last item. An invalid syntax or an index outside the valid data range will cause
a BadRangeException(900).

The following table shows some example range specifications and the resulting
indexes, based on a set of 20 entries.

Iteration ranges Resulting indexes
0 [0]
-2, -1 [18, 19]
1-2,4:5 [1, 2, 4, 5]
18:,-3- [18, 19, 17, 18, 19]
3-2,16:15 [3, 2, 16, 15]

Table 42.6: Iteration range examples

The value bound for the Iteration counter reflects the index in the current interval,Note
not the counter of actual iterations, e.g. if you specify ’2’ there will be a single
iteration with the Iteration counter bound to ’2’, not ’0’.

Variable: Yes

Restrictions: Valid syntax and index values

Data bindings

This is where the actual test data is defined. Each column of the table represents
one variable with its name specified in the column header. Each row is a set of
data, one value per variable. Thus the number of rows determines the number of
iterations of the data-driven loop. To start entering the data you first need to add
columns to the table to define the variables, then add rows to fill in the values.
See also section 2.2.5(17) about how to work with the table.

Variable: Yes, even the column headers

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

42.4. Data driver 611

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.4.3 Database

A Database node is used to load external data from a database. To access
the database it is required to have the jar file with the database driver in
QF-Test’s class path. Usually, this means to put it into the qftest plugin-

directory (section 50.2(962)). For more information about the connection mechanism to
your database ask the developers or see www.connectionstrings.com.

For further details about the data-driving mechanism please see chapter 23(295).

Contained in: Any

Children: None

Execution: The Database loads the data from the database and expands variable values
according to the option When binding variables, expand values immediately(552). Each
row is expanded individually left to right, meaning that - within the same row - a cell may
refer to a variable bound in a column further to the left. Then the Database node registers
itself with the Data driver context. The result columns of the used SQL statement will
be used for the variable names. The capitalization depends on the database driver,

42.4. Data driver 612

e.g. completely capitalized letters for Oracle. A property group called like the node
will be created additionally. That group contains the variables size and totalsize.
size shows the number of data rows with taking care about iteration intervals. The
variable totalsize shows the total number of data rows without taking care about
iteration intervals. When all Data binders have been registered the Test set(566) will query
the Database in order to iterate over the available sets of data. If no such context is
available the respective property group will be extended with all variables.

Attributes:

Figure 42.16: Database attributes

Name
The Name of a Data binder is mandatory. It is used to distinguish Data binders in the

42.4. Data driver 613

same Data driver context. A Break(646) node executed during data-driven testing can
be used to break out of a specific loop by referring to the Data binder’s Name.

Variable: Yes

Restrictions: None

Iteration counter
The name of the variable that the iteration counter will be bound to.

Variable: Yes

Restrictions: None

Iteration ranges

An optional set of indexes or ranges to use from the bound data. This is
especially useful during test development in order to run sample tests with just a
single index or a subset of the given data.

Ranges are separated by ’,’. Each range is either a single index or an inclusive
range of the form ’from-to’ or ’from:to’ where ’to’ is optional. Indexes or ranges
may be specified multiple times, overlap or be given in descending order. In-
dexes are 0-based, negative indexes are counted from the end, -1 being the
last item. An invalid syntax or an index outside the valid data range will cause
a BadRangeException(900).

The following table shows some example range specifications and the resulting
indexes, based on a set of 20 entries.

Iteration ranges Resulting indexes
0 [0]
-2, -1 [18, 19]
1-2,4:5 [1, 2, 4, 5]
18:,-3- [18, 19, 17, 18, 19]
3-2,16:15 [3, 2, 16, 15]

Table 42.7: Iteration range examples

The value bound for the Iteration counter reflects the index in the current interval,Note
not the counter of actual iterations, e.g. if you specify ’2’ there will be a single
iteration with the Iteration counter bound to ’2’, not ’0’.

Variable: Yes

Restrictions: Valid syntax and index values

42.4. Data driver 614

SQL statement
The SQL query that should be executed to get the desired test data. This
statement is supposed to be a select statement. Each column will stand for a
variable. The capitalization of the columns depends on the kind of the used
database driver, e.g. most of the Oracle drivers return completely capitalized
variables.

Variable: Yes

Restrictions: Must not be empty

Driver class
The class name of the database driver.

The jar file with the database driver has to be placed in the qftest plugin directoryNote
before launching QF-Test.

Here is a list of the most common database drivers:

Database Classname of JDBC-driver
Borland Interbase interbase.interclient.Driver

DB2 com.ibm.db2.jcc.DB2Driver

Informix com.informix.jdbc.IfxDriver

IDS Server ids.sql.IDSDriver

MS SQL Server 2000 com.microsoft.jdbc.sqlserver.SQLServerDriver

MS SQL Server 2005 com.microsoft.sqlserver.jdbc.SQLServerDriver

mSQL COM.imaginary.sql.msql.MsqlDriver

MySQL com.mysql.jdbc.Driver

Oracle oracle.jdbc.driver.OracleDriver

Pointbase com.pointbase.jdbc.jdbcUniversalDriver

PostgreSQL org.postgresql.Driver

Standard Driver sun.jdbc.odbc.JdbcOdbcDriver

Sybase com.sybase.jdbc2.jdbc.SybDriver

SQLite org.sqlite.JDBC

Table 42.8: Database drivers

Variable: Yes

Restrictions: Must not be empty

Connection string

The connection string for database connection, typically something like:
jdbc:databasetype://databasehost/databasename.

42.4. Data driver 615

Here is a list of the most common database connection strings:

Database Example
Derby jdbc:derby:net://databaseserver:port/

IBM DB2 jdbc:db2://database

HSQLB jdbc:hsqldb:file:database

Interbase jdbc:interbase://databaseserver/database.gdb

MS SQL Server 2000 jdbc:microsoft:sqlserver://databaseserver:
port;DatabaseName=database;

MS SQL Server 2005 jdbc:sqlserver://databaseserver:
port;DatabaseName=database;

MySQL jdbc:mysql://databaseserver/database

PostgreSQL jdbc:postgresql://databaseserver/database

ODBC Data Sources jdbc:odbc:database

Oracle Thin jdbc:oracle:thin:@databaseserver:port:
database

Sybase jdbc:sybase:tds:databaseserver:port/database

SQLite jdbc:sqlite:sqlite_database_file_path

Table 42.9: Database connection strings

Variable: Yes

Restrictions: Must not be empty

Database user
The name of the user to use when connecting to the database. If your database
connection doesn’t require a user you can leave this field empty.

Variable: Yes

Restrictions: None

Database password

The password to use when connecting to the database. If your database
connection doesn’t require a password you can leave this field empty. To that end
the password can be encrypted by inserting the plain-text password, right-clicking
and selecting Encrypt text from the popup menu. Please be sure to specify a
password salt before encrypting via the option Salt for crypting passwords(496).

Variable: Yes

Restrictions: None

QF-Test ID

42.4. Data driver 616

At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.4.4 Excel data file

An Excel data file is used to load external data from an Excel-file to provide
test data for data-driven testing. The first row must contain the names of the
variables to bind. The rest of the rows should contain the values to be used

for the iteration steps.

It is possible that the contents of some cells are not read correctly. This can happenNote
especially for cells of the type ”date”, ”time” or ”currency”. The reason is that Excel
stores the value and the format of a cell separately and the Java package used to parse
Excel files doesn’t support all possibilities. Still, the Excel data file should read most cells
correctly, but in case of problems please change the type of the problematic cells in the
Excel file to ”text”. Once read by QF-Test, all values are treated as strings anyway.

42.4. Data driver 617

For further details about the data-driving mechanism please see chapter 23(295).

Contained in: Any

Children: None

Execution: The Excel data file node loads the data from the Excel file and expands
variable values in the table according to the option When binding variables, expand
values immediately(552). Each row is expanded individually left to right, meaning that -
within the same row - a cell may refer to a variable bound in a column further to the
left. Then the Excel data file registers itself with the Data driver context. A property group
called like the node will be created additionally. That group contains the variables size
and totalsize. size shows the number of data rows with taking care about iteration
intervals. The variable totalsize shows the total number of data rows without taking
care about iteration intervals. When all Data binders have been registered the Test set(566)

will query the Excel data file in order to iterate over the available sets of data. If no such
context is available the respective property group will be extended with all variables.

Attributes:

42.4. Data driver 618

Figure 42.17: Excel data file attributes

Name
The Name of a Data binder is mandatory. It is used to distinguish Data binders in the
same Data driver context. A Break(646) node executed during data-driven testing can
be used to break out of a specific loop by referring to the Data binder’s Name.

Variable: Yes

Restrictions: None

Iteration counter
The name of the variable that the iteration counter will be bound to.

Variable: Yes

Restrictions: None

42.4. Data driver 619

Iteration ranges

An optional set of indexes or ranges to use from the bound data. This is
especially useful during test development in order to run sample tests with just a
single index or a subset of the given data.

Ranges are separated by ’,’. Each range is either a single index or an inclusive
range of the form ’from-to’ or ’from:to’ where ’to’ is optional. Indexes or ranges
may be specified multiple times, overlap or be given in descending order. In-
dexes are 0-based, negative indexes are counted from the end, -1 being the
last item. An invalid syntax or an index outside the valid data range will cause
a BadRangeException(900).

The following table shows some example range specifications and the resulting
indexes, based on a set of 20 entries.

Iteration ranges Resulting indexes
0 [0]
-2, -1 [18, 19]
1-2,4:5 [1, 2, 4, 5]
18:,-3- [18, 19, 17, 18, 19]
3-2,16:15 [3, 2, 16, 15]

Table 42.10: Iteration range examples

The value bound for the Iteration counter reflects the index in the current interval,Note
not the counter of actual iterations, e.g. if you specify ’2’ there will be a single
iteration with the Iteration counter bound to ’2’, not ’0’.

Variable: Yes

Restrictions: Valid syntax and index values

Excel file name
The name of the Excel file to read the test data. Relative path names are
resolved relative to the directory of the test suite.

The button above the attribute brings up a dialog in which you can select the
Excel file interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return when the focus is in the text field.

Variable: Yes

Restrictions: Must not be empty

Worksheet name

42.4. Data driver 620

The name of the worksheet that contains the test data. If empty, the first sheet
will be used.

Variable: Yes

Restrictions: None

Override date format (e.g. MM/dd/yyyy)

This value specifies a date format which will be used for all date values specified
in the Excel file. The format must be specified as for the Java class
SimpleDateFormat, i.e. ’d’ for day, ’M’ for month, ’y’ for year. Thus ’dd’ stands
for two digits of a day and similar for ’MM’, ”yy’ or ’yyyy’.

Variable: Yes

Restrictions: None

Variables in rows
If this attribute is checked, the names of the variables will be taken from the first
row. If it’s not checked the names will come from the first column.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

42.4. Data driver 621

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.4.5 CSV data file

A CSV data file node is used to load external data from a file and make it
available for data-driven testing. CSV stands for Comma-separated Values,
a more or less standard plain text file format. Each line in the file contains

one set of data with the values separated by a separator character, often but not always
a comma (’,’). For use with a CSV data file node the first line of the CSV file must contain
the names of the variables to bind. The rest of the lines should contain the values to be
used for the iteration steps.

Unfortunately, with CSV files there are non-uniform definitions for things like quoting,
white-space, multi-line values or embedded separator characters. Two de-facto stan-
dards exist, one used by Microsoft Excel and one by the rest of the world. QF-Test
supports both of these. For further details about the data-driving mechanism please
see chapter 23(295).

Contained in: Any

Children: None

Execution: The CSV data file node loads the data from the CSV file and expands vari-
able values in the table according to the option When binding variables, expand values
immediately(552). Each row is expanded individually left to right, meaning that - within the
same row - a cell may refer to a variable bound in a column further to the left. Then
the CSV data file registers itself with the Data driver context. A property group called
like the node will be created additionally. That group contains the variables size and
totalsize. size shows the number of data rows with taking care about iteration in-
tervals. The variable totalsize shows the total number of data rows without taking
care about iteration intervals. When all Data binders have been registered the Test set(566)

will query the CSV data file in order to iterate over the available sets of data. If no such
context is available the respective property group will be extended with all variables.

Attributes:

42.4. Data driver 622

Figure 42.18: CSV data file attributes

Name
The Name of a Data binder is mandatory. It is used to distinguish Data binders in the
same Data driver context. A Break(646) node executed during data-driven testing can
be used to break out of a specific loop by referring to the Data binder’s Name.

Variable: Yes

Restrictions: None

Iteration counter
The name of the variable that the iteration counter will be bound to.

Variable: Yes

Restrictions: None

42.4. Data driver 623

Iteration ranges

An optional set of indexes or ranges to use from the bound data. This is
especially useful during test development in order to run sample tests with just a
single index or a subset of the given data.

Ranges are separated by ’,’. Each range is either a single index or an inclusive
range of the form ’from-to’ or ’from:to’ where ’to’ is optional. Indexes or ranges
may be specified multiple times, overlap or be given in descending order. In-
dexes are 0-based, negative indexes are counted from the end, -1 being the
last item. An invalid syntax or an index outside the valid data range will cause
a BadRangeException(900).

The following table shows some example range specifications and the resulting
indexes, based on a set of 20 entries.

Iteration ranges Resulting indexes
0 [0]
-2, -1 [18, 19]
1-2,4:5 [1, 2, 4, 5]
18:,-3- [18, 19, 17, 18, 19]
3-2,16:15 [3, 2, 16, 15]

Table 42.11: Iteration range examples

The value bound for the Iteration counter reflects the index in the current interval,Note
not the counter of actual iterations, e.g. if you specify ’2’ there will be a single
iteration with the Iteration counter bound to ’2’, not ’0’.

Variable: Yes

Restrictions: Valid syntax and index values

CSV file name
The name of the CSV file to get the test data from. Relative path names are
resolved relative to the directory of the test suite.

The button above the attribute brings up a dialog in which you can select the
CSV file interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return when the focus is in the text field.

Variable: Yes

Restrictions: Must not be empty

File encoding

42.4. Data driver 624

An optional encoding for the CSV file, ”UTF-8” for example. If no encoding is
specified, the file will be read with the default encoding of the Java VM.

Variable: Yes

Restrictions: The encoding must be supported by the Java VM.

Read Microsoft Excel CSV format
If this option is active QF-Test will try to parse the CSV file using the format used
by Microsoft Excel.

Variable: Yes

Restrictions: None

Separator character

In this attribute you can specify the character to be used as separator for data
values within the CSV file. If no separator is defined a comma (’,’) is used as the
default value. If Read Microsoft Excel CSV format(623) is activated this attribute is
ignored.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

42.4. Data driver 625

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.4.6 Data loop

A Data loop node is a simple loop with a single variable bound as the iteration
counter. It is useful for executing Test cases(558) multiple times by placing them
inside a Test set(566) with a Data driver(603) holding a Data loop.

Contained in: Any

Children: None

Execution: During execution all the Data loop node does is register itself with the Data
driver context. The iteration counter will be used as variable. A property group called
like the node will be created additionally. That group contains the variables size and
totalsize. size shows the number of data rows with taking care about iteration
intervals. The variable totalsize shows the total number of data rows without taking
care about iteration intervals. When all Data binders have been registered the Test set(566)

will query the Data loop in order to iterate over the available sets of data. If no such
context is available the respective property group will be extended with all variables.

Attributes:

42.4. Data driver 626

Figure 42.19: Data loop attributes

Name
The Name of a Data binder is mandatory. It is used to distinguish Data binders in the
same Data driver context. A Break(646) node executed during data-driven testing can
be used to break out of a specific loop by referring to the Data binder’s Name.

Variable: Yes

Restrictions: None

Iteration counter
The name of the variable that the iteration counter will be bound to.

Variable: Yes

Restrictions: None

Iteration ranges

An optional set of indexes or ranges to use from the bound data. This is
especially useful during test development in order to run sample tests with just a
single index or a subset of the given data.

Ranges are separated by ’,’. Each range is either a single index or an inclusive
range of the form ’from-to’ or ’from:to’ where ’to’ is optional. Indexes or ranges

42.4. Data driver 627

may be specified multiple times, overlap or be given in descending order. In-
dexes are 0-based, negative indexes are counted from the end, -1 being the
last item. An invalid syntax or an index outside the valid data range will cause
a BadRangeException(900).

The following table shows some example range specifications and the resulting
indexes, based on a set of 20 entries.

Iteration ranges Resulting indexes
0 [0]
-2, -1 [18, 19]
1-2,4:5 [1, 2, 4, 5]
18:,-3- [18, 19, 17, 18, 19]
3-2,16:15 [3, 2, 16, 15]

Table 42.12: Iteration range examples

The value bound for the Iteration counter reflects the index in the current interval,Note
not the counter of actual iterations, e.g. if you specify ’2’ there will be a single
iteration with the Iteration counter bound to ’2’, not ’0’.

Variable: Yes

Restrictions: Valid syntax and index values

Number of iterations
The number of iterations of the loop.

Variable: Yes

Restrictions: > 0

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

42.5. Procedures 628

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.5 Procedures

Procedures are a means to collect some of the basic building blocks of a test suite like
events(726) and checks(753) into a larger, reusable structure.

Procedures can be called from any other part of the test suite and even from different
suites (see section 26.1(332)). You can pass parameters to a procedure in the form of
variable definitions (see chapter 6(104)).

A typical example would be a procedure that selects a menu item in a menu. Its param-
eters could be the client name of the SUT, the name of the menu and the name of the
menu item.

42.5.1 Procedure

A Procedure is a Sequence(577) that is executed from some other place by a
Procedure call(630).

The parameters of the procedure are not defined explicitly. Instead they are
a consequence of the variable references in the children of the Procedure. You may want
to define fallback values for some or all of the parameters in the Variable definitions(628).
In any case it is a good idea to document the required parameters in the Comment(629)

attribute.

42.5. Procedures 629

A Procedure can return a value to the calling node with the help of a Return(633) node.
Without such a node a Procedure implicitly returns the empty string.

Contained in: Package(635), Procedures(637)

Children: Any

Execution: The Procedure’s variables are bound as fallback values. The child nodes are
executed one by one, then the fallback values are unbound again.

Attributes:

Figure 42.20: Procedure Attributes

Name
A Procedure is identified by its name and the names of its Package(635) ancestors, so
you should assign a name with a meaning that is easy to recognize and
remember.

Variable: No

Restrictions: Must not be empty or contain the characters ’.’ or ’#’.

42.5. Procedures 630

Variable definitions
Here you can define default or fallback values for the Procedure’s parameters (see
chapter 6(104)). Defining these values also serves as documentation and is a
valuable time-saver when using the dialog to select the Procedure for the
Procedure name(631) attribute of a Procedure call(630). See section 2.2.5(17) about how to
work with the table.

In case you want to re-set the order of the parameters like they are sorted in the4.2+
called procedure, you can select Re-set parameter order .

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

42.5. Procedures 631

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.5.2 Procedure call

This node calls a Procedure(627) in the same or a different test suite, meaning
that execution continues in the Procedure. When the Procedure is finished,
the value returned by the Procedure is bound to the variable defined in the

Variable for return value(631) attribute and execution returns to the Procedure call and thus to
its parent node.

The name of the Procedure(627) to call is determined by its Name(628) and the Names(636) of
its Package(635) parents. These are concatenated with a dot (’.’) as separator, starting
with the outermost Package and ending in the Procedure’s name. Thus to call a Procedure
named expandNode in a Package named tree that is itself a child of a Package named
main, set the Procedure name(631) attribute to main.tree.expandNode.

See section 26.1(332) about how to call a Procedure in a different test suite.

Contained in: All kinds of sequences(558).

Children: None

Execution: The Variable definitions(632) of the Procedure call are bound, the target
Procedure(627) is determined and execution passed to it. After the Procedure returns, the
Procedure call’s variables are unbound again.

Attributes:

42.5. Procedures 632

Figure 42.21: Procedure call Attributes

Name
The full name of the Procedure(627), created from the Names(636) of its Package(635)

parents and its own Name(628), joined by a dot. The ”Select procedure” button
above the attribute brings up a dialog in which you can select the Procedure
interactively. By selecting the ”Copy parameters” checkbox you can adopt the
Procedure’s default values as parameters for the Procedure call node to save typing.

Variable: Yes

Restrictions: Must not be empty.

Variable for return value
The value returned by the Procedure, either through a Return(633) node or the empty
string, is bound to the variable defined in this optional attribute. Additionally, the
most recent return value is always available as the special variable
${qftest:return}.

The name of the variable shows in the test suite tree - in blue when it is a global6.1+

42.5. Procedures 633

variable, in black when it is local.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Variable definitions
This is where you define the parameter values for the Procedure(627) (see chapter
6(104)). See section 2.2.5(17) about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note

42.5. Procedures 634

this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.5.3 Return

This node can be used to return from a Procedure(627) prematurely and also to
pass a return value to the calling node.

From a script, the same effect can be achieved by raising a
ReturnException.

Contained in: All kinds of sequences(558).

Children: None

Execution: A ReturnException is thrown. If it is caught by a matching Procedure, the
Procedure is terminated and the return value passed to the caller. If the node is executed
outside a Procedure it will lead to an error.

Attributes:

42.5. Procedures 635

Figure 42.22: Return Attributes

Return value
The value to return from the Procedure. May be empty in which case the empty
string is returned.

Variable: Yes

Restrictions: None

Explicit object type

QF-Test variables can contain strings or any other kinds of objects. The text field9.0+
for the value only accepts string values but this attribute makes it possible to
define how QF-Test should interpret the input:

• No selection: The input will not be further interpreted. In most cases, the
stored object will be a String. If the input was completely replaced by the value
of another variable by variable expansion, the object will be used without
further interpretation.

• String: The input will be converted into a string.

• Boolean: The input will be converted into a boolean value. 0, the empty
string and the strings false, no and nein will be interpreted as false,
other values as true.

• Number: The input will be converted into a number. Depending on the input,
this will be an Integer, Long, BigInteger, Double or a BigDecimal object. If the
conversion fails, a ValueCastException(904) will be thrown.

42.5. Procedures 636

• Object from JSON: The input will be interpreted as JSON string and con-
verted into nested Maps and Lists with Strings, Numbers, and Booleans. If
the conversion fails, a ValueCastException(904) will be thrown.

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.5.4 Package

The only use of Packages is to structure the Procedures(627) of a test suite. The
Name(636) of a Package is part of the Procedure’s fully qualified name, as required
by a Procedure call(630).

Contained in: Package(635), Procedures(637)

42.5. Procedures 637

Children: Package(635), Procedure(627)

Execution: Cannot be executed.

Attributes:

Figure 42.23: Package Attributes

Name
The name of a Package is part of the identification of the Procedures(627) it contains,
so you should assign a name with a meaning that is easy to recognize and
remember.

Variable: No

Restrictions: Must not be empty or contain the characters ’.’ or ’#’.

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Border for relative calls
This flag determines whether relative procedure calls, test calls or dependency
references are allowed within that certain node. Relative calls passing that border
are not allowed. If that attribute is not specified in the hierarchy, no relative calls
are allowed.

Variable: No

Restrictions: None

42.5. Procedures 638

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.5.5 Procedures

This is the root of all Packages(635) and Procedures(627).

Contained in: Root node

Children: Package(635), Procedure(627)

Execution: Cannot be executed.

Attributes:

Figure 42.24: Procedures Attributes

42.6. Control structures 639

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Border for relative calls
This flag determines whether relative procedure calls, test calls or dependency
references are allowed within that certain node. Relative calls passing that border
are not allowed. If that attribute is not specified in the hierarchy, no relative calls
are allowed.

Variable: No

Restrictions: None

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6 Control structures

Besides the standard sequence(558) types QF-Test has a set of special control structures.
Conditional processing is handled via If(647), Elseif(651) and Else(655) nodes. Loops(639) and
While(642) nodes can be aborted with a Break(646) node. Exceptions are handled by Try(658),
Catch(661) and Finally(665) nodes.

Beyond that, full scripting is available for the Jython language (formerly called JPython),
Groovy and JavaScript as documented in chapter 11(168).

42.6. Control structures 640

42.6.1 Loop

This node is basically the same as a Sequence(577) except that its children can
be executed more than once. This is useful in two ways. For one thing, a
test sequence that executes OK a hundred times is more trustworthy than a

sequence that only runs once. The other use is to run a number of similar jobs with
slight variations. To that end, the count of the current iteration is bound as a variable
during execution.

Special Loops with varying increments can be achieved by changing the value of the
Iteration counter(640) during execution.

Execution of a Loop can be terminated prematurely with the help of a Break(646) node. An
optional Else(655) node may be placed at the end of the Loop. It is executed if all iterations
of the Loop are run through completely without hitting a Break.

Contained in: All kinds of sequences(558).

Children: Any

Execution: The Variable definitions(641) of the Loop are bound. The Iteration counter(640) is
initialized to 0 and the child nodes are executed one by one. For each iteration the
Iteration counter is increased by one and the children are executed again. After the final
execution of the last child is complete, the Iteration counter and the Variable definitions are
unbound again.

Attributes:

42.6. Control structures 641

Figure 42.25: Loop attributes

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Number of iterations
The number of iterations of the loop.

Variable: Yes

Restrictions: > 0

Iteration counter

42.6. Control structures 642

The name of the variable that will hold the iteration count during the execution.
Make sure to use different Iteration counter names for nested loops.

Variable: Yes

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

QF-Test ID
The QF-Test ID of the Loop node can be used in a Break(646) node to terminate an
outer loop explicitly when loops are nested.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

42.6. Control structures 643

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6.2 While

This is a sequence that is executed repeatedly as long as a condition is ful-
filled.

The loop can be terminated prematurely with the help of a Break(646) node.

Contained in: All kinds of sequences(558).

Children: Any

Execution: The Variable definitions(644) of the While node are bound. If the condition
evaluates to true, the child nodes are executed one by one. This is repeated until the
condition evaluates to false or the loop is terminated through a Break(646) node or an
Exception. Finally the Variable definitions are unbound again.

Attributes:

42.6. Control structures 644

Figure 42.26: While attributes

Condition
A condition is an expression that evaluates to either true or false. QF-Test
discriminates between simple expression that it evaluates itself and complex
expressions that are passed to the Jython script language to evaluate.

An empty string or the string false (regardless of case) is interpreted as false,
the string true as true. Whole numbers are true if and only if they are non-zero.

Evaluating expressions in Jython opens the way for powerful expression handling.
Jython supports the standard operators ==, !=, >, >=, < and <=. You can combine
expressions with and and or and define their priority with braces.

Accessing QF-Test variables in a condition follows the same rules as in JythonNote
scripts (see section 11.3.3(173)). You can use the standard QF-Test syntax $(...)
and ${...:...} for numeric or boolean values. String values should be ac-
cessed with rc.getStr.

Important: Im you want to compare strings (as opposed to numbers) you need to
excape them by single or double inverted commas for Jython. Else Jython would

42.6. Control structures 645

interpret the string as a Jython variable, which, of course would not be defined,
and thus lead to a syntax error.

Some examples:

Expression Value
Empty String False
0 False
21 True
False False
True True
abc abc Syntax error
25 > 0 True
${qftest:batch} True if QF-Test is run in batch mode
not ${qftest:batch} True if QF-Test is run in interactive mode
rc.getStr(”system”, ”java.version”) == ”1.3.1” True if JDK Version is 1.3.1
rc.getStr(”system”, ”java.version”)[0] == ”1” True is JDK Version starts with 1
(1 > 0 and 0 == 0) or 2 < 1 True

Table 42.13: Condition examples

Variable: Yes

Restrictions: Valid syntax

Script language

This attribute determines the interpreter in which to run the script, or in other
words, the scripting language to use. Possible values are ”Jython”, ”Groovy” and
”JavaScript”.

Variable: No

Restrictions: None

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the

42.6. Control structures 646

execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

QF-Test ID
The QF-Test ID of the While node can be used in a Break(646) node to terminate an
outer loop explicitly when loops are nested.

Variable: No

Restrictions: Must not be empty, contain any of the characters ’#’, ’$’, ’@’, ’&’, or
’%’ or start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that

42.6. Control structures 647

are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6.3 Break

This node is used to terminate a Loops(639) or a While(642) node prematurely.

Contained in: All kinds of sequences(558).

Children: None

Execution: A BreakException is thrown. If it is caught by a matching loop, the loop
is terminated, otherwise it will lead to an error.

Attributes:

Figure 42.27: Break attributes

QF-Test loop ID

42.6. Control structures 648

For nested loops you can specify the loop to terminate by specifying the
QF-Test ID(641) of a Loop(639) node and refer to it here. It works with QF-Test ID(645) for
a While(642) node respectively. In case this field is empty the innermost loop is
terminated. In case you want to break an iteration raised by a Data driver(603) node,
you should specify the value of the ’Name’ attribute of the respective
Data driver(603) node.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6.4 If

42.6. Control structures 649

Like in Java the child nodes of this node are executed only if a condition evalu-
ates to true. However QF-Test differs from common programming languages
in the way alternative branches are arranged.

Contained in: All kinds of sequences(558).

Children: Any executable node, followed by an arbitrary number of Elseif(651) nodes with
an optional Else(655) at the end.

Execution: The Variable definitions(650) of the If node are bound. If the condition evaluates
to true, the normal child nodes are executed one by one. Otherwise the conditions of
the Elseif(651) nodes are evaluated and the first Elseif node whose condition evaluates to
true is executed. If none of the conditions are true of no Elseif nodes exist, the Else(655)

node is executed, if one exists. Finally the Variable definitions are unbound again.

Attributes:

Figure 42.28: If attributes

Condition

42.6. Control structures 650

A condition is an expression that evaluates to either true or false. QF-Test
discriminates between simple expression that it evaluates itself and complex
expressions that are passed to the Jython script language to evaluate.

An empty string or the string false (regardless of case) is interpreted as false,
the string true as true. Whole numbers are true if and only if they are non-zero.

Evaluating expressions in Jython opens the way for powerful expression handling.
Jython supports the standard operators ==, !=, >, >=, < and <=. You can combine
expressions with and and or and define their priority with braces.

Accessing QF-Test variables in a condition follows the same rules as in JythonNote
scripts (see section 11.3.3(173)). You can use the standard QF-Test syntax $(...)
and ${...:...} for numeric or boolean values. String values should be ac-
cessed with rc.getStr.

Important: Im you want to compare strings (as opposed to numbers) you need to
excape them by single or double inverted commas for Jython. Else Jython would
interpret the string as a Jython variable, which, of course would not be defined,
and thus lead to a syntax error.

Some examples:

Expression Value
Empty String False
0 False
21 True
False False
True True
abc abc Syntax error
25 > 0 True
${qftest:batch} True if QF-Test is run in batch mode
not ${qftest:batch} True if QF-Test is run in interactive mode
rc.getStr(”system”, ”java.version”) == ”1.3.1” True if JDK Version is 1.3.1
rc.getStr(”system”, ”java.version”)[0] == ”1” True is JDK Version starts with 1
(1 > 0 and 0 == 0) or 2 < 1 True

Table 42.14: Condition examples

Variable: Yes

Restrictions: Valid syntax

Script language

This attribute determines the interpreter in which to run the script, or in other

42.6. Control structures 651

words, the scripting language to use. Possible values are ”Jython”, ”Groovy” and
”JavaScript”.

Variable: No

Restrictions: None

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

42.6. Control structures 652

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6.5 Elseif

This node is an alternative branch in an If(647) node. If the condition of the If
node evaluates to false, the first Elseif node whose condition is true is exe-
cuted.

Contained in: If(647)

Children: Any

Execution: The Variable definitions(653) of the Elseif are bound and its child nodes exe-
cuted one by one. After the execution of the last child is complete, the variables are
unbound again.

Attributes:

42.6. Control structures 653

Figure 42.29: Elseif attributes

Condition
A condition is an expression that evaluates to either true or false. QF-Test
discriminates between simple expression that it evaluates itself and complex
expressions that are passed to the Jython script language to evaluate.

An empty string or the string false (regardless of case) is interpreted as false,
the string true as true. Whole numbers are true if and only if they are non-zero.

Evaluating expressions in Jython opens the way for powerful expression handling.
Jython supports the standard operators ==, !=, >, >=, < and <=. You can combine
expressions with and and or and define their priority with braces.

Accessing QF-Test variables in a condition follows the same rules as in JythonNote
scripts (see section 11.3.3(173)). You can use the standard QF-Test syntax $(...)
and ${...:...} for numeric or boolean values. String values should be ac-
cessed with rc.getStr.

Important: Im you want to compare strings (as opposed to numbers) you need to
excape them by single or double inverted commas for Jython. Else Jython would

42.6. Control structures 654

interpret the string as a Jython variable, which, of course would not be defined,
and thus lead to a syntax error.

Some examples:

Expression Value
Empty String False
0 False
21 True
False False
True True
abc abc Syntax error
25 > 0 True
${qftest:batch} True if QF-Test is run in batch mode
not ${qftest:batch} True if QF-Test is run in interactive mode
rc.getStr(”system”, ”java.version”) == ”1.3.1” True if JDK Version is 1.3.1
rc.getStr(”system”, ”java.version”)[0] == ”1” True is JDK Version starts with 1
(1 > 0 and 0 == 0) or 2 < 1 True

Table 42.15: Condition examples

Variable: Yes

Restrictions: Valid syntax

Script language

This attribute determines the interpreter in which to run the script, or in other
words, the scripting language to use. Possible values are ”Jython”, ”Groovy” and
”JavaScript”.

Variable: No

Restrictions: None

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the

42.6. Control structures 655

execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets

42.6. Control structures 656

you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6.6 Else

An Else node is executed if neither the condition of its If(647) parent, nor the
condition of its Elseif(651) siblings evaluate to true.

Contained in: If(647), Loop(639), Try(658)

Children: Any

Execution: The Variable definitions(656) of the Else are bound and its child nodes executed
one by one. After the execution of the last child is complete, the variables are unbound
again.

Attributes:

42.6. Control structures 657

Figure 42.30: Else attributes

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally

42.6. Control structures 658

propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6. Control structures 659

42.6.7 Try

A Try is a special sequence whose semantic equates the Java
try-catch-finally composition. As in Python, this composition was
extended to support optional else blocks. A Try behaves the same way as a

special Sequence(577) with the extension, that exception handling is possible. Like a
Sequence it has a set of normal child nodes that it executes one by one. After these may
come an arbitrary number of Catch(661) nodes with an optional Else(655) node followed by
an optional Finally(665) node at the end.

If an exception is thrown during the execution of one of the normal child nodes, the
Catch nodes are tested for whether they are able to catch that exception. The first one
found is executed and the Try will be exited normally afterwards without continuing with
the execution of the normal child nodes and without passing the exception on. If no
matching Catch is found, the exception will terminate the Try immediately (almost, see
below) and be passed onto the Try’s parent.

A possible Else(655) child node at the end of a try node will be executed, if and only if no
Catch(661) nodes had been executed. This means, it is executed, when no exception in
the try block was thrown.

If the Try has a Finally(665) child node, this node will be executed just before the Try
finishes, no matter whether an exception is thrown and whether it is handled or not.

Contained in: All kinds of sequences(558).

Children: Any executable node, followed by an arbitrary number of Catch(661) nodes with
an optional Else(655) node and/or an optional Finally(665) node at the end.

Execution: The Variable definitions(659) of the Try are bound and its normal child nodes
executed one by one. If an exception is thrown, execution of the normal children is
terminated. If a Catch node with a matching Exception class(662) is found it is executed.
Before exiting the Try its Finally node is executed unconditionally. After unbinding the
Variable definitions, the Try is either exited cleanly if no exception was thrown or the
exception was caught, or it passes on the uncaught exception.

Attributes:

42.6. Control structures 660

Figure 42.31: Try attributes

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally

42.6. Control structures 661

propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

For a Try node, the error state of the run log is additionally affected by the
Maximum error level(663) of the Catch(661) node that handles an exception.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

42.6. Control structures 662

Variable: Yes

Restrictions: None

42.6.8 Catch

A Catch is a special Sequence(577) that can only be placed inside a Try(658) node
or a Dependency(589). Its job is to catch exceptions that may arise during the
execution of a Try’s or a Test case(558) with a Dependency.

A Catch can handle an exception if the class of the exception is the same as the Catch
node’s Exception class(662) attribute or a derived class thereof, just as in Java.

Contained in: Try(658), Dependency(589)

Children: Any

Execution: The Variable definitions(663) of the Catch are bound and its child nodes exe-
cuted one by one. After the execution of the last child is complete, the variables are
unbound again.

Attributes:

42.6. Control structures 663

Figure 42.32: Catch attributes

Exception class

This ComboBox lets you select the class of the exception that is to be caught. All
QF-Test exceptions are derived from the class TestException(896). For details
about the possible exceptions see chapter 43(896).

Variable: No

Restrictions: None

Expected message

42.6. Control structures 664

You can further qualify the exception to catch by specifying a message to look for.
If this attribute is empty, all exceptions of the specified class are caught.
Otherwise it is compared to exception.getMessage() and the exception is
caught only in case of a match.

Variable: Yes

Restrictions: Valid regexp if required.

As regexp

If this attribute is set, the exception message is matched against a regexp (see
section 49.3(955)) instead of comparing plain strings.

Variable: Yes

Restrictions: None

Match against localized message

Most exceptions have two kinds of error message: The raw message is typically
some short English text whereas the localized message contains more details
and is either English or German, depending on the current language settings of
QF-Test. Both are shown in the run log. If this attribute is set, the localized
exception message is used for comparison, otherwise the raw message. The
latter is usually preferable as it doesn’t depend on language settings so no regexp
is needed in order to ensure the correct handling of the different languages.

Variable: Yes

Restrictions: None

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

42.6. Control structures 665

Maximum error level
In contrast to the Maximum error level(578) of other sequences(558), this attribute does
not determine the error state propagated by the run log node for the Catch node
itself, but for the log of its parent Try(658) node, provided that the Catch is executed
in order to handle an exception.

The error state for any warnings, errors or exceptions that happen during the exe-
cution of the Catch node are not limited by the setting of this attribute. Otherwise
problems occurring during exception handling might accidentally go unnoticed.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6. Control structures 666

42.6.9 Finally

A Finally node, which can only be placed at the end of a Try node, will always
be executed as the last thing just before exiting the Try, no matter what hap-
pened there. This is used primarily to ensure that cleanup code like removing

a temporary file or terminating a process is executed under any conditions.

Contained in: Try(658)

Children: Any

Execution: The Variable definitions(666) of the Finally are bound and its child nodes ex-
ecuted one by one. After the execution of the last child is complete, the variables are
unbound again.

Attributes:

Figure 42.33: Finally attributes

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

42.6. Control structures 667

Variable: No

Restrictions: None

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

42.6. Control structures 668

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6.10 Throw

If you need to handle an exceptional situation, you can use this node to throw
an explicit Exception.

Contained in: All kinds of sequences(558).

Children: None

Execution: A UserException(904) is thrown, its message taken from the
Exception message(668) attribute.

Attributes:

42.6. Control structures 669

Figure 42.34: Throw attributes

Exception message

An arbitrary message for the UserException(904) to throw.

Variable: Yes

Restrictions: Must not be empty.

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that

42.6. Control structures 670

are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6.11 Rethrow

An exception that was caught by a Catch(661) node can be thrown again with
the help of a Rethrow node. This is especially useful if you need to catch all
kinds of exceptions except one. To handle that case, create a Try(658) node with

a Catch for the special exception followed by a Catch for a TestException(896). Then
place a Rethrow in the first Catch node.

Contained in: All kinds of sequences(558). The Rethrow node doesn’t have to be placed
directly below a Catch node.

Children: None

Execution: The last exception caught by a Catch(661) node is thrown again. If no such
exception exists, a CannotRethrowException(904) is thrown.

Attributes:

Figure 42.35: Rethrow attributes

42.6. Control structures 671

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6.12 Server script

Server side scripts are executed by an interpreter (Jython, Groovy or
JavaScript) embedded into QF-Test. Scripting is explained in chapter 11(168)

and chapter 50(961). As server side scripts run embedded to QF-Test those
scripts cannot interact with the SUT. It is recommended that Server side scripts be
used for cases that work without the SUT or time consuming operations like accessing
databases or files.

Contained in: All kinds of sequences(558).

Children: None

42.6. Control structures 672

Execution: The script is executed by an embedded interpreter.

Attributes:

Figure 42.36: Server script attributes

Script

The script to execute.

You may use QF-Test variables of the syntax $(var) or ${group:name} in JythonNote
scripts. They will be expanded before the script is passed to the Jython interpreter.
This can lead to unexpected behavior. rc.getStr is the preferred method in this
case (see section 11.3.3(174) for details).

In spite of syntax highlighting and automatical indentation this attribute might notNote
be the right place to write complex scripts. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets you
define an external editor in which scripts can be edited conveniently by pressing

42.6. Control structures 673

�� ��Alt-Return or by clicking the button. Complex scripts can also be written as
separate modules which can then be imported for use in this attribute. See chapter
50(961) for details.

Variable: Yes

Restrictions: Valid syntax

Templates

This dropdown menu contains a list of useful template scripts. The available
templates will differ depending on the chosen script type and interpreter.

When you choose one of these templates, the current contents of your script will
be replaced.

You can add your own templates to this menu by choosing ”Open user templates
directory” and placing your template files there. The following file types are valid:

• [directory]: Will be converted into a submenu.

• .py: A Jython script template.

• .groovy: A Groovy script template.

• .js: A JavaScript script template.

Script language

This attribute determines the interpreter in which to run the script, or in other
words, the scripting language to use. Possible values are ”Jython”, ”Groovy” and
”JavaScript”.

Variable: No

Restrictions: None

Name
The name of a script is a kind of short description. It is displayed in the tree view,
so it should be concise and say something about the function of the script.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

42.6. Control structures 674

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.6.13 SUT script

Client side scripts are executed by an interpreter (Jython, Groovy
or JavaScript) that QF-Test embeds into the SUT. Scripting is explained
in chapter 11(168) and chapter 50(961). As client side scripts run in the SUT you

should use them to access the components and properties of the SUT.

Contained in: All kinds of sequences(558).

Children: None

Execution: The script is executed inside the SUT by an embedded interpreter.

Attributes:

42.6. Control structures 675

Figure 42.37: SUT script attributes

Client
The name of the SUT client process in which to execute the script.

Variable: Yes

Restrictions: Must not be empty.

Script

The script to execute.

You may use QF-Test variables of the syntax $(var) or ${group:name} in JythonNote
scripts. They will be expanded before the script is passed to the Jython interpreter.

42.6. Control structures 676

This can lead to unexpected behavior. rc.getStr is the preferred method in this
case (see section 11.3.3(174) for details).

In spite of syntax highlighting and automatical indentation this attribute might notNote
be the right place to write complex scripts. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets you
define an external editor in which scripts can be edited conveniently by pressing�� ��Alt-Return or by clicking the button. Complex scripts can also be written as
separate modules which can then be imported for use in this attribute. See chapter
50(961) for details.

Variable: Yes

Restrictions: Valid syntax

Templates

This dropdown menu contains a list of useful template scripts. The available
templates will differ depending on the chosen script type and interpreter.

When you choose one of these templates, the current contents of your script will
be replaced.

You can add your own templates to this menu by choosing ”Open user templates
directory” and placing your template files there. The following file types are valid:

• [directory]: Will be converted into a submenu.

• .py: A Jython script template.

• .groovy: A Groovy script template.

• .js: A JavaScript script template.

Script language

This attribute determines the interpreter in which to run the script, or in other
words, the scripting language to use. Possible values are ”Jython”, ”Groovy” and
”JavaScript”.

Variable: No

Restrictions: None

GUI engine

The GUI engine in which to execute the script. Only relevant for SUTs with more
than one GUI engine as described in chapter 45(933).

Variable: Yes

Restrictions: See chapter 45(933)

42.7. Processes 677

Name
The name of a script is a kind of short description. It is displayed in the tree view,
so it should be concise and say something about the function of the script.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7 Processes

In order to enable QF-Test to communicate with the SUT, the SUT’s process must be
started by QF-Test. For details about how the application is started by QF-Test and

42.7. Processes 678

which kind of node is most applicable in your case, see chapter 46(935).

The following nodes are used to start or stop processes, to wait for a connection with
the SUT or to wait for the termination of a process and check its exit value. The number
of concurrent processes managed by QF-Test is limited only by the underlying system,
but you have to assign a unique name to each process by which other nodes will identify
it.

We will refer to processes run by QF-Test as clients. QF-Test distinguishes between
two types of clients: arbitrary processes that are simply started and stopped and SUT
clients, the actual Java applications that QF-Test interacts with.

Standard input and output of a client is redirected to a terminal that you can open from
the Clients menu. The client’s output is also stored in the log of a test run.

42.7.1 Start Java SUT client

This node provides the standard and most flexible way of starting an SUT
client. To use it, you must know the Java command that starts your applica-
tion. If the SUT is run through a script, use a Start SUT client(681) node instead

(see chapter 46(935)).

Contained in: All kinds of sequences(558).

Children: None

Execution: The command line for the program is built from the attributes and the pro-
cess is started. Its input and output are redirected to QF-Test.

Attributes:

42.7. Processes 679

Figure 42.38: Start Java SUT client attributes

Client
This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

Executable

42.7. Processes 680

The Java program to run, typically java or javaw on Windows. If you want to run
a specific Java virtual machine you should give the full path name of the
executable.

The ”Select file” button brings up a dialog in which you can select the pro-
gram file interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return , when the focus is in the text field.

Variable: Yes

Restrictions: Must not be empty

Directory

Here you can set the working directory for the program. If you leave this value
empty, the program will inherit QF-Test’s working directory.

The ”Select directory” button brings up a dialog in which you can select the
directory interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return , when the focus is in the text field.

Variable: Yes

Restrictions: Must be empty or an existing directory

Class name
The fully qualified name of the Java class of the SUT whose main(String[])
method will be called. If your application is run from an executable jar archive with
the -jar parameter, you must leave this attribute empty.

QF-Test can only run the main method of the class if both the class itself and theNote
main method are declared public. Please verify this if you get an
IllegalAccessException when you try to start your application.

Variable: Yes

Restrictions: Valid class name

Executable parameters

The command line arguments for the Java executable. Put each parameter on a
line of its own. Special quoting of whitespace or symbols is not required.

For example to set the classpath, set one line to -classpath and the following
line to the desired value of the classpath. You don’t need to concern yourself with
QF-Test’s jar files.

By default, empty parameters will be ignored. In case you explicitly want to pass
an empty command line argument (i.e. ”), you can deactivate the option Ignore
empty argument lines when starting a client (498).

If the value in one a line is expanded from a variable to a List or an Array, then
every element of the object is used as a separate parameter.

42.7. Processes 681

See section 2.2.5(17) about how to work with the tables.

Variable: Yes

Restrictions: None

Class arguments

These are the arguments that are passed to the main(String[]) method of
the class to be started. Again, each argument requires a row of its own and
special quoting is not required.

By default, empty arguments will be ignored. In case you explicitly want to pass
an empty command line argument (i.e. ”), you can deactivate the option Ignore
empty argument lines when starting a client (498).

If the value in one a line is expanded from a variable to a List or an Array, then
every element of the object is used as a separate argument.

See section 2.2.5(17) about how to work with the tables.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

42.7. Processes 682

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.2 Start SUT client

If your application is normally started through a shell script or a special ex-
ecutable starter, the most convenient way to run it from QF-Test is through
this kind of node. Depending on how the application is actually started by this

script, some modifications may be required. A typical symptom is that the SUT starts up
fine, but the connection to QF-Test is not established. In that case, read chapter 46(935).

Contained in: All kinds of sequences(558).

Children: None

Execution: The command line for the program is built from the attributes and the pro-
cess is started. Its input and output are redirected to QF-Test.

Attributes:

42.7. Processes 683

Figure 42.39: Start SUT client attributes

Client
This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

Executable
The program to run. If the executable file is not located in a directory on the PATH
you must give the full path name.

The ”Select file” button brings up a dialog in which you can select the pro-
gram file interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return , when the focus is in the text field.

Variable: Yes

Restrictions: Must not be empty

42.7. Processes 684

Directory

Here you can set the working directory for the program. If you leave this value
empty, the program will inherit QF-Test’s working directory.

The ”Select directory” button brings up a dialog in which you can select the
directory interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return , when the focus is in the text field.

This directory will become the current working directory after executing the pro-Note
gram. As a result, a script named, say, ./copy_data will be looked up relative
to QF-Test’s working directory and not the directory given. Only the path names
referred to in the script itself will be resolved relative to the new directory.

Variable: Yes

Restrictions: Must be empty or an existing directory

Executable parameters

The command line arguments for the executable. Put each parameter on a line of
its own. Special quoting of whitespace or symbols is not required.

By default, empty parameters will be ignored. In case you explicitly want to pass
an empty command line argument (i.e. ”), you can deactivate the option Ignore
empty argument lines when starting a client (498).

If the value in one a line is expanded from a variable to a List or an Array, then
every element of the object is used as a separate parameter.

See section 2.2.5(17) about how to work with the tables.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

42.7. Processes 685

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.3 Start process

To run an arbitrary program during a test, you can either use this node or an
Execute shell command(687) node. This node is preferable if you need to pass
possibly complex arguments to the executable.

Contained in: All kinds of sequences(558).

Children: None

Execution: The command line for the program is built from the attributes and the pro-
cess is started. Its input and output are redirected to QF-Test.

Attributes:

42.7. Processes 686

Figure 42.40: Start process attributes

Client
This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

Executable
The program to run. If the executable file is not located in a directory on the PATH
you must give the full path name.

The ”Select file” button brings up a dialog in which you can select the pro-
gram file interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return , when the focus is in the text field.

Variable: Yes

Restrictions: Must not be empty

42.7. Processes 687

Directory

Here you can set the working directory for the program here. If you leave this
value empty, the program will inherit QF-Test’s working directory.

The ”Select directory” button brings up a dialog in which you can select the
directory interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return , when the focus is in the text field.

This directory will become the working directory of the newly started process. ItNote
does not affect the working directory of QF-Test. As a result, a program named,
say, ./startserver will be looked up relative to QF-Test’s working directory and
not the directory given. Only the path names referred to in the program itself will
be resolved relative to the given directory.

Variable: Yes

Restrictions: Must be empty or an existing directory

Executable parameters

The command line arguments for the executable. Put each parameter on a line of
its own. Special quoting of whitespace or symbols is not required.

By default, empty parameters will be ignored. In case you explicitly want to pass
an empty command line argument (i.e. ”), you can deactivate the option Ignore
empty argument lines when starting a client (498).

If the value in one a line is expanded from a variable to a List or an Array, then
every element of the object is used as a separate parameter.

See section 2.2.5(17) about how to work with the tables.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

42.7. Processes 688

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.4 Execute shell command

This node is a convenient way to execute shell commands during a test. The
shell that will execute the command can be specified with the command line
arguments -shell <executable>(925) and -shellarg <argument>(925)

for QF-Test. The default for Linux is /bin/sh, on Windows either command.com or
cmd.exe is used, the value of the COMSPEC environment variable.

When the shell is started it is treated like every other process started by QF-Test, so
you can kill it or wait for it to terminate and check its exit code.

Contained in: All kinds of sequences(558).

Children: None

Execution: A shell is started to execute the command. Its input and output are redi-
rected to QF-Test.

Attributes:

42.7. Processes 689

Figure 42.41: Execute shell command attributes

Client
This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

Shell command
The command to execute in the shell. Enter this just as you would at the
command prompt.

On Windows systems, quoting of arguments with blanks can be a little tricky. IfWindows
you’re using the standard Windows shell, simply use double quotes as always, for
example dir ”C:\Program Files”. If you’re using a Linux shell on Windows
by specifying the -shell <executable>(925) command line argument, use single
quotes instead, i.e. ls ’C:/Program Files’.

Variable: Yes

Restrictions: Must not be empty

Directory

42.7. Processes 690

Here you can set the working directory for the shell. If you leave this value empty,
the shell will inherit QF-Test’s working directory.

The ”Select directory” button brings up a dialog in which you can select the
directory interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return , when the focus is in the text field.

Variable: Yes

Restrictions: Must be empty or an existing directory

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.5 Start web engine

42.7. Processes 691

This node is used to start a web browser specifically for web testing. If the
process for the SUT is already running, this node can also be used to open
an additional browser window in the same process.

Contained in: All kinds of sequences(558).

Children: None

Execution: The command line for the browser program is built from the attributes and
the process is started. Its input and output are redirected to QF-Test.

Attributes:

Figure 42.42: Start web engine attributes

Client

42.7. Processes 692

This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

Browser type

The kind of browser to start. Officially supported values are currently ”firefox” (or
”mozilla”) for Mozilla Firefox, ”chrome” for Google Chrome, ”edge” for Microsoft
Edge, ”opera” for Opera, ”safari” for Apple Safari, ”headless-firefox” for Mozilla
Firefox without visible window, ”headless-chrome” (or ”headless”) for Google
Chrome without visible window, and ”headless-edge” for Microsoft Edge without
visible window.

Variable: Yes

Restrictions: Legal values are ”ie”, ”firefox” (or ”mozilla”), ”chrome”, ”edge”,
”msedge”, ”opera”, ”safari”, ”headless-firefox”, ”headless-chrome” (or
”headless”)”, and ”headless-edge”.

Directory of browser installation

For most browsers this field can be left empty. For Firefox with QF-Driver
connection mode the installation directory of the browser must be specified here.
When connecting via CDP-Driver or WebDriver, the default installation of the
given browser is used. If several versions of that browser can be installed in
parallel, a specific version may be chosen be specifying its installation directory
here.

Variable: Yes

Restrictions: Must be empty or an existing directory.

Browser connection mode
QF-Test can connect to a browser in three different ways: By embedding the
browser in a Java VM (the traditional QF-Driver mode), directly via Chrome
DevTools Protocol or via Selenium WebDriver. Further information about
connection modes and those support for browsers can be found in section
51.3(1052). This attribute determines what to do in cases, when more than one
connection mode is available for a browser. Possible values are:

Prefer QF-Driver
Prefer QF-Driver mode if possible, otherwise use CDP-Driver or WebDriver.

This is the standard, used also if this attribute is left empty.

QF-Driver only
Exclusively use QF-Driver mode.

42.7. Processes 693

Prefer CDP-Driver
Prefer CDP-Driver mode if possible, otherwise use QF-Driver or WebDriver.

CDP-Driver only
Exclusively use CDP-Driver mode.

Prefer WebDriver
Prefer WebDriver mode if possible, otherwise use QF-Driver or CDP-Driver.

WebDriver only
Exclusively use WebDriver mode.

Variable: Yes

Restrictions: Must be empty or one of the values ’Prefer QF-Driver’, ’QF-Driver
only’, ’Prefer CDP-Driver’ or ’CDP-Driver only’, ’Prefer WebDriver’ or ’WebDriver
only’

Executable
The Java program to start the browser with, typically java or javaw on
Windows. If you want to run a specific Java virtual machine you should give the
full path name of the executable.

The default value is ${qftest:java} which is the Java program that QF-Test itself
runs on.

The ”Select file” button brings up a dialog in which you can select the pro-
gram file interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return , when the focus is in the text field.

Variable: Yes

Restrictions: Must not be empty

Executable parameters

Special command line arguments for the java executable in which the browser is
embedded. Can be used to specify the available memory (default is 200MB),
define system properties, enable debugging, etc. Put each parameter on a line of
its own. Special quoting of whitespace or symbols is not required.

By default, empty parameters will be ignored. In case you explicitly want to pass
an empty command line argument (i.e. ”), you can deactivate the option Ignore
empty argument lines when starting a client (498).

If the value in one a line is expanded from a variable to a List or an Array, then
every element of the object is used as a separate parameter.

See section 2.2.5(17) about how to work with the tables.

Variable: Yes

Restrictions: None

42.7. Processes 694

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.6 Start PDF client

Use this node to load the PDF document to be tested into a viewer, which QF-
Test will start as a client process. Please refer to chapter 18(264) for information
about the testing of PDF documents.

Contained in: All kinds of sequences(558).

Children: None

Execution: The viewer is started and the PDF document loaded.

Attributes:

42.7. Processes 695

Figure 42.43: Start PDF client attributes

Client
This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

PDF document
The PDF document to be opened. If a relative path is specified it is resolved
relative to the directory containing the current test suite.

The ”Select file” button brings up a dialog in which you can select the pro-
gram file interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return , when the focus is in the text field.

Variable: Yes

Restrictions: Must not be empty

42.7. Processes 696

Page of PDF document

The page to show.

An integer number is interpreted as page number. A string in quotation marks is
interpreted as page name.
Example:
5 opens page number 5
”Index IV” opens the page with the name Index IV

Variable: Yes

Restrictions: Must be a integer number or valid page name in quotation marks.

Password
If the document requires a password, it can be specified here.

When using a password it may be desirable to avoid having the password showNote
up as plain text in the test suite or a run log. To that end the password can be
encrypted by inserting the plain-text password, right-clicking and selecting
Encrypt text from the popup menu. Please be sure to specify a password salt

before encrypting via the option Salt for crypting passwords(496).

Variable: Yes

Restrictions: Empty or a valid password, if required only.

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets

42.7. Processes 697

you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.7 Start windows application

Launch and attach to a native Windows application. Please refer to chapter
15(215) for further information about Windows testing.

Attributes:

42.7. Processes 698

Figure 42.44: Start windows application attributes

Client
This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

Windows application

42.7. Processes 699

The Windows executable to be launched.

Variable: Yes

Restrictions: Must not be empty

Directory

Here you can set the working directory for the program. If you leave this value
empty, the program will inherit QF-Test’s working directory.

The ”Select directory” button brings up a dialog in which you can select the
directory interactively. You can also get to this dialog by pressing

�� ��Shift-Return or�� ��Alt-Return , when the focus is in the text field.

Variable: Yes

Restrictions: Must be empty or an existing directory

Window title
The title of the window to attach to.

You can select Escape text for regular expressions from the context menu for es-
caping special characters of regular expressions of that text.

Variable: Yes

Restrictions: Valid regexp if required.

As regexp

If this attribute is set, the title is interpreted as a regexp (see section 49.3(955))
instead of a plain string.

Variable: Yes

Restrictions: None

Timeout
Time limit in milliseconds.

Variable: Yes

Restrictions: >= 0

Executable parameters

There is one tab for each of the following parameter lists:

The command line arguments for the Windows executable. Put each parameter
on a line of its own. Special quoting of whitespace or symbols is not required.
Parameters that start with ”-qfengine:” are directly forwarded to the QF-Test win-
engine process.

42.7. Processes 700

By default, empty parameters will be ignored. In case you explicitly want to pass
an empty command line argument (i.e. ”), you can deactivate the option Ignore
empty argument lines when starting a client (498).

If the value in one a line is expanded from a variable to a List or an Array, then
every element of the object is used as a separate parameter.

See section 2.2.5(17) about how to work with the tables.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.8 Attach to windows application

42.7. Processes 701

Attach to a native Windows application. Please refer to chapter 15(215) for
further information about Windows testing.

Attributes:

Figure 42.45: Attach to windows application attributes

Client
This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

Window title
The title of the window to attach to. Via -pid <process ID> you can also
specify the ID of the process. Via -class <class name>, the UI Automation
class name of a window can be defined.

You can select Escape text for regular expressions from the context menu for es-
caping special characters of regular expressions of that text.

Variable: Yes

42.7. Processes 702

Restrictions: Must not be empty. Valid regexp if required.

As regexp

If this attribute is set, the title is interpreted as a regexp (see section 49.3(955))
instead of a plain string.

Variable: Yes

Restrictions: None

Timeout
Time limit in milliseconds.

Variable: Yes

Restrictions: >= 0

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7. Processes 703

42.7.9 Launch Android emulator

Use the node to start an Android emulator and connect to it. Quickstart your
application(28) helps you to set up a sequence for launching the emulator and
starting an app along with the appropriate waiter nodes.

Please have a look at chapter 16(225) for detailed information on testing of Android apps.

Attributes:

Figure 42.46: Launch Android emulator attributes

Client
This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

42.7. Processes 704

Name of the Android emulator to use
The name of the emulator to be used, as shown, for example, in the Android
Virtual Device Manager in the column ’Name’ (see Android studio screen
showing available AVDs(233)). Using the variable deviceName you do not need to
hardcode it here.

In case you want to use an emulator created after you started QF-Test it may notNote
be showing in the drop down list. Then, just type the name in the text field.

Variable: Yes

Restrictions: Must not be empty

Executable parameters

QF-Test communicates with the emulator via a Java program started additionally
to the emulator, running in the background. Here, you can specify parameters for
that Java program. Put each parameter on a line of its own. Special quoting of
whitespace or symbols is not required. Sample: -Xmx1G to assign 1 GB memory
to the Java program.

By default, empty parameters will be ignored. In case you explicitly want to pass
an empty command line argument (i.e. ”), you can deactivate the option Ignore
empty argument lines when starting a client (498).

If the value in one a line is expanded from a variable to a List or an Array, then
every element of the object is used as a separate parameter.

See section 2.2.5(17) about how to work with the tables.

Variable: Yes

Restrictions: None

Emulator arguments

The command line arguments for the emulator to be launched, for example
-no-snapshot-save. Put each parameter on a line of its own. Special quoting
of whitespace or symbols is not required.

By default, empty arguments will be ignored. In case you explicitly want to pass
an empty command line argument (i.e. ”), you can deactivate the option Ignore
empty argument lines when starting a client (498).

If the value in one a line is expanded from a variable to a List or an Array, then
every element of the object is used as a separate parameter.

See section 2.2.5(17) about how to work with the tables.

Variable: Yes

Restrictions: None

42.7. Processes 705

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.10 Connect to Android device

The node connects to a running Android emulator or a real device. Quickstart
your application(28) helps you to set up a sequence for connecting to an An-
droid device, either emulator or real, and starting an app along with the ap-

propriate waiter nodes.

Please have a look at chapter 16(225) for detailed information on testing of Android apps.

Attributes:

42.7. Processes 706

Figure 42.47: Connect to Android device Attributes

Client
This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

Name of the Android device to use
The name of a real Android device attached to the computer or the emulator. The
available names are shown in the drop down list. Alternatively, you will find them
via the menu item Running Android Devices in the menu Extras .

You do not need to hardcode the name if you use the variable deviceName in-
stead.

In case you want to use a real Android device attached to the computer after youNote
started QF-Test it may not be showing in the drop down list. Then, just type the
name in the text field. The same applies to an emulator you created after you
started QF-Test.

Variable: Yes

Restrictions: Must not be empty

42.7. Processes 707

Executable parameters

QF-Test communicates with the real device, respectively the emulator, via a Java
program started additionally to the emulator, running in the background. Here,
you can specify parameters for that Java program. Put each parameter on a line
of its own. Special quoting of whitespace or symbols is not required. Sample:
-Xmx1G to assign 1 GB memory to the Java program.

By default, empty parameters will be ignored. In case you explicitly want to pass
an empty command line argument (i.e. ”), you can deactivate the option Ignore
empty argument lines when starting a client (498).

If the value in one a line is expanded from a variable to a List or an Array, then
every element of the object is used as a separate parameter.

See section 2.2.5(17) about how to work with the tables.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

42.7. Processes 708

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.11 Connect to iOS device

The node attaches QF-Test to a physically connected or a simulated iOS de-
vice. If required, the Simulator is started as well. Quickstart your application(28)

helps you to set up a sequence for checking the iOS test sysstem require-
ments, connecting to an iOS device and starting an app, along with the appropriate
waiter nodes.

Please have a look at chapter 17(247) for detailed information on testing of iOS apps.

Attributes:

Figure 42.48: Connect to iOS device Attributes

Client

42.7. Processes 709

This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

Name of (simulated) iOS device
The name of a real iOS device attached to the computer or a simulated iOS
device. QF-Test will try to find the best match for the given name with the
available devices, so to run with any (simulated) iPhone, it is enough to simply put
the string iPhone here.

You do not need to hardcode the name if you use the variable deviceName in-
stead.

Variable: Yes

Restrictions: Must not be empty

Executable parameters

QF-Test communicates with the iOS device using a Java-based controller
application. Here, you can specify parameters for that Java program. Put each
parameter on a line of its own. Special quoting of whitespace or symbols is not
required. Sample: -Xmx1G to assign 1 GB memory to the Java program.

By default, empty parameters will be ignored. In case you explicitly want to pass
an empty command line argument (i.e. ”), you can deactivate the option Ignore
empty argument lines when starting a client (498).

If the value in one a line is expanded from a variable to a List or an Array, then
every element of the object is used as a separate parameter.

See section 2.2.5(17) about how to work with the tables.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

42.7. Processes 710

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.12 Wait for client to connect

This node is used to make sure that the connection to a client is estab-
lished. If after a configurable timeout the client is still not connected, a
ClientNotConnectedException(901) is thrown. You can also use the Vari-

able for result attribute to store the result into a variable and the Throw exception on failure
attribute to suppress the exception.

Contained in: All kinds of sequences(558).

Children: None

Execution: QF-Test waits until either the connection to the Java client is established or
the timeout is up.

Attributes:

42.7. Processes 711

Figure 42.49: Wait for client to connect attributes

Client
The name of the Java client to wait for.

Variable: Yes

Restrictions: Must not be empty

Timeout
Time limit in milliseconds.

Variable: Yes

Restrictions: >= 0

42.7. Processes 712

GUI engine

The GUI engine to wait for. Only relevant for SUTs with more than one GUI
engine as described in chapter 45(933).

Variable: Yes

Restrictions: See chapter 45(933)

Variable for result
This optional attribute determines the name for the result variable of the action. If
set, the respective variable will be set to ’true’ for a successful check or wait and
to ’false’ in case of failure.

If this attribute is set, the attribute Error level of message is ignored and no error isNote
reported. The attribute Throw exception on failure always remains effective, so it is
possible to set a result variable and still throw an exception.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Error level of message

This attribute determines the error level of the message that is logged in case of
failure. Possible choices are message, warning and error.

If the attribute Throw exception on failure is set, this attribute is irrelevant and ifNote
Variable for result is set this attribute is ignored.

Variable: No

Restrictions: None

Throw exception on failure

42.7. Processes 713

Throw an exception in case of failure. For ’Check...’ nodes a
CheckFailedException(900) is thrown, for ’Wait for...’ nodes the respective
specific exception.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.13 Wait for mobile device

42.7. Processes 714

This node is used to make sure that the connection to a virtual or real Android
device has been established. If after a configurable timeout, the Android
device still has not been connected a ClientNotConnectedException(901)

is thrown. If QF-Test detects before the end of the timeout that a connection cannot be
established it will throw a ConnectionFailureException(902).

Contained in: All kinds of sequences(558).

Children: None

Execution: QF-Test waits until either the connection to the emulator or the real device
has been established or the timeout is up.

Attributes:

Figure 42.50: Wait for mobile device Attributes

Client
The name of the Android or iOS client to wait for.

Variable: Yes

Restrictions: Must not be empty

Timeout
Time limit in milliseconds.

Variable: Yes

Restrictions: >= 0

42.7. Processes 715

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.14 Open browser window

This node opens a particular web page in a new browser window in a running
web engine process. You should start that process via a Start web engine node.

Contained in: All kinds of sequences(558).

Children: None

Execution: Open a given web-page in the already running web engine process.

Attributes:

42.7. Processes 716

Figure 42.51: Open browser window attributes

Client
This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

URL
The URL of the web page to be shown in the browser. As a special case the URL
”about:nowindow” can be used to start the SUT process without opening an initial
browser window. In that state, cache or preference settings for the browser can
be modified which may be a prerequisite for opening a given URL. The browser
window with the actual target URL can then be opened via another Open browser
window node.

42.7. Processes 717

Variable: Yes

Restrictions: Must not be empty

Name of the browser window
This attribute can be ignored unless you need to test a web application with
multiple open browser windows holding similar documents. In that case the Name
of the browser window attribute can be used to identify the browser window. Here
you can specify the name for the browser window to be opened. You find a brief
description how to handle multiple browser windows in FAQ 25.

Variable: Yes

Restrictions: None

Geometry of browser window

These optional attributes for the X/Y coordinate, width and height can be used to
specify the geometry of the browser window to open.

Variable: Yes

Restrictions: Width and height must not be negative.

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

42.7. Processes 718

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.15 Launch a mobile app

Use the node to install and start a mobile app. Quickstart your application(28)

helps you to set up a sequence for launching the emulator/simulator - or at-
taching to a real Android or iOS device or running emulator/simulator - and

starting an app along with the appropriate waiter nodes.

Please have a look at chapter 16(225) for detailed information on testing of mobile apps.

Attributes:

42.7. Processes 719

Figure 42.52: Launch a mobile app attributes

Client
This is the identifier for the SUT client. It must remain unique as long as the
process is alive. Other nodes will refer to the client by this name.

Variable: Yes

Restrictions: Must not be empty

APK/APP/IPA file path

The path of the mobile app to use. If you want to specify the path relative to the
test suite, use the variable ${qftest:suite.dir} (cf. section 6.8(114)). Sample:
${qftest:suite.dir}/apps/myapp.apk.

In case the app has been preinstalled and the .apk/.app/.ipa file is not available
you can start the app via the attributes Package / Bundle ID und Activity (only for
Android).

42.7. Processes 720

Variable: Yes

Restrictions: Must not be empty

Force app reinstallation

Select the attribute to install the app in any case, irrespective of an existing
installation of the app on the Android emulator, the iOS simulator or real device.

Whether the reinstallation will delete existing settings and data of the app dependsNote
on the place where they have been saved.

Variable: No

Restrictions: None

Launch app

Select the attribute to start the app.

Variable: No

Restrictions: None

Package / Bundle ID

The package name of the Android app or the bundle id of the iOS app to be
launched. Only required in case the .apk/.app/.ipa file cannot be specified with
the attribute APK/APP/IPA file path. You also need to specify the attribute Activity
(only for Android). You can either use the Android Debug Bridge to get the
package name or launch or attach to an Android emulator or real device, start the
app manually and record a component. The package name will then be recorded
in the top level node of the component hierarchy.

Variable: Yes

Restrictions: None

Activity (only for Android)

The activity name of the Android app to be launched. Only required in case the
.apk file cannot be specified with the attribute APK/APP/IPA file path. You also
need to specify the attribute Package / Bundle ID. You can use the Android Debug
Bridge to get the activity name.

Variable: Yes

Restrictions: No

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

42.7. Processes 721

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.16 Stop client

This node forcibly terminates a client process started by QF-Test. If the pro-
cess has already terminated, nothing is changed. Otherwise, if the client is
an SUT client, QF-Test first tries to call the Java method System.exit(-1)

in the SUT to achieve a clean shutdown. If the client is not an SUT client or the process
is still alive after the exit call, the process is killed and its exit code is set to -1.

Note: On Windows child processes started by a process are not terminated when theWindows
parent process is killed. As explained in chapter 46(935), the java program for the SUT
is not started directly by QF-Test, but through an intermediate program. This means
that when the System.exit(-1) call fails to terminate the SUT for some reason, the
process for the SUT’s Java VM will be left hanging around.

Contained in: All kinds of sequences(558).

42.7. Processes 722

Children: None

Execution: Terminates the last process that was started under the given name.

Attributes:

Figure 42.53: Stop client attributes

Client
The client name of the process that is to be killed.

Variable: Yes

Restrictions: Must not be empty

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

42.7. Processes 723

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.7.17 Wait for process to terminate

This node waits until a process that was started by QF-Test terminates. If
a given time limit is exceeded and the process is still alive. Per default a
ClientNotTerminatedException(902) is thrown. Otherwise the client’s exit

code is read and tested against a given value. You can also use the Variable for result
attribute to store the result into a variable and the Throw exception on failure attribute to
suppress the exception.

Contained in: All kinds of sequences(558).

Children: None

Execution: Waits for the end of a process and checks its exit value unless the timeout
is exceeded.

Attributes:

42.7. Processes 724

Figure 42.54: Wait for process to terminate attributes

Client
The client name of the process to wait for.

Variable: Yes

Restrictions: Must not be empty

Timeout
Time limit in milliseconds.

Variable: Yes

Restrictions: >= 0

42.7. Processes 725

Expected exit code

If this attribute is set it is used to validate the exit code of the process. The type of
the comparison is defined by prepending one of the four operators ==, !=, < and
>. Just a number without preceding operation test for equality. If the test fails, an
UnexpectedExitCodeException(902) is thrown. The exception won’t be
thrown, if the attribute Throw exception on failure is not set.

Examples: If this attribute is set to 0, every exit code that is not 0 causes an
exception. This is the same as for ==0. A value of >0 causes an exception for
every exit code equal to or less than 0. This exception can be suppressed by
un-checking the attribute Throw exception on failure.

Variable: Yes

Restrictions: See above

Variable for result
This optional attribute determines the name for the result variable of the action. If
set, the respective variable will be set to ’true’ for a successful check or wait and
to ’false’ in case of failure.

If this attribute is set, the attribute Error level of message is ignored and no error isNote
reported. The attribute Throw exception on failure always remains effective, so it is
possible to set a result variable and still throw an exception.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Error level of message

This attribute determines the error level of the message that is logged in case of
failure. Possible choices are message, warning and error.

42.7. Processes 726

If the attribute Throw exception on failure is set, this attribute is irrelevant and ifNote
Variable for result is set this attribute is ignored.

Variable: No

Restrictions: None

Throw exception on failure

Throw an exception in case of failure. For ’Check...’ nodes a
CheckFailedException(900) is thrown, for ’Wait for...’ nodes the respective
specific exception.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.8. Events 727

42.8 Events

This section lists all kinds of nodes that trigger actions in the SUT. Besides true Java
events these include pseudo events with special behavior.

42.8.1 Mouse event

Mouse events simulate mouse movement and clicks as well as drag and drop
operations.

Contained in: All kinds of sequences(558).

Children: None

Execution: The coordinates and other attributes of the event are sent to the SUT to-
gether with the data about the target component. The TestEventQueue determines
the corresponding component in the SUT, adjusts the coordinates and triggers the re-
sulting event.

Attributes:

42.8. Events 728

Figure 42.55: Mouse event attributes

Client
The name of the SUT client process to which the event is sent.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the event.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return

42.8. Events 729

or
�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy

the target node with
�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID

into the text field by pressing
�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Event
This ComboBox lets you choose the type of the event. MOUSE_MOVED,
MOUSE_PRESSED, MOUSE_RELEASED, MOUSE_CLICKED and MOUSE_DRAGGED
are the standard event IDs of the Java class MouseEvent.

The abstract ’Mouse click’ event is a compound of the events MOUSE_MOVED,
MOUSE_PRESSED, MOUSE_RELEASED and MOUSE_CLICKED. During replay the
pseudo event is simulated as four separate events. This adds to the clarity of
a test suite and simplifies editing.

The special ’Double click’ event comprises all the individual events required to4.1.3+
simulate a complete double click.

The events MOUSE_DRAG_FROM, MOUSE_DRAG_OVER and MOUSE_DROP_TO are
used to simulate Drag&Drop in the SUT. See section 49.1(954) for details.

Variable: No

Restrictions: None

X/Y
These are the coordinates of the MouseEvent. They are relative to the upper left
corner of the Window(858), Component(869) or Item(875) that is the target of the event.
They can be negative, e.g. to simulate a click on the expansion toggle of a node
in a JTree.

Most of the time the exact coordinates for a mouse don’t really matter, any place
within the target will do. In this case you should leave the X and Y values empty to
tell QF-Test to aim at the center of the target. Where possible QF-Test will leave the
values empty when recording, provided the option Record MouseEvents without
coordinates where possible (475) is active.

Variable: Yes

Restrictions: Valid number or empty

42.8. Events 730

Modifiers
This value reflects the state of the mouse buttons and the modifier keys

�� ��Shift ,�� ��Control ,
�� ��Alt and

�� ��Meta during a mouse or key event. States are combined by
adding up their values.

Value Key/Button
1 Shift
2 Control
4 Meta or right mouse button (Longclick for Android and iOS)
8 Alt or middle mouse button

16 Left mouse button

Table 42.16: Modifier values

Variable: Yes

Restrictions: Valid number

Click count
This value lets a Java program distinguish between a single and a double (or
even multiple) click.

Variable: Yes

Restrictions: Valid number

Popup trigger

If this attribute is set, the event can trigger a PopupMenu. This is Java’s
somewhat peculiar way of supporting different conventions for triggering
PopupMenus on different platforms.

Variable: Yes

Restrictions: None

Replay as ”hard” event

If this attribute is set the event is replayed as a hard event, meaning it is triggered
as a real system event that moves the mouse around and not just inserted as soft
event into the event queue. Soft events are are typically better because they
avoid impact of concurrent user mouse actions and are less likely to break due to
interference from an overlapping window. Nevertheless there are certain special
situations where hard events are helpful.

Variable: Yes

Restrictions: None

42.8. Events 731

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.8.2 Key event

Key events simulate keyboard input in the SUT. These are used mainly for
control and function keys. Input of text is better represented as a Text input(734).

The special keyboard event InputMethodEvent supports international
character codes. QF-Test doesn’t support InputMethodEvents directly. Instead, it
converts events of type INPUT_METHOD_TEXT_CHANGED into Key events of type
KEY_TYPED.

Contained in: All kinds of sequences(558).

42.8. Events 732

Children: None

Execution: The key codes of the event are sent to the SUT together with the data
about the target component. The TestEventQueue determines the corresponding
component in the SUT and triggers the resulting event.

Attributes:

Figure 42.56: Key event attributes

Client
The name of the SUT client process to which the event is sent.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

42.8. Events 733

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the event.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Event
This ComboBox lets you choose the type of the event. KEY_PRESSED,
KEY_TYPED and KEY_RELEASED are the standard event IDs of the Java class
KeyEvent.

The ’Keystroke’ pseudo event is a compound of the events KEY_PRESSED,
KEY_TYPED and KEY_RELEASED. During replay the pseudo event is simulated as
two or three separate events, depending on whether it is a printable character key,
or a control or function key. In the latter case, no KEY_TYPED event is generated.

Variable: No

Restrictions: None

Key

This is a convenience method to set Key code(732), Key char(733) and Modifiers(733)

directly by pressing the corresponding key while this component has the
keyboard focus. For KEY_TYPED events Key char(733) is set to 0.

Unfortunately you can’t select the
�� ��Tab key this way since it is used for keyboard

traversal. Key code(732) and Key char(733) for the
�� ��Tab key are both 9.

Variable: No

Restrictions: None

Key code

This is a Java specific code for the key, the keyCode member of the Java class
KeyEvent.

42.8. Events 734

Variable: Yes

Restrictions: Valid number

Key char

This is the keyChar member of the Java class KeyEvent. Its value is the
character generated created by the last key press, taking the state of the

�� ��Shift
key into account. Control and function keys always have a Key char value of
65535.

Variable: Yes

Restrictions: Valid number

Modifiers
This value reflects the state of the mouse buttons and the modifier keys

�� ��Shift ,�� ��Control ,
�� ��Alt and

�� ��Meta during a mouse or key event. States are combined by
adding up their values.

Value Key/Button
1 Shift
2 Control
4 Meta or right mouse button (Longclick for Android and iOS)
8 Alt or middle mouse button

16 Left mouse button

Table 42.17: Modifier values

Variable: Yes

Restrictions: Valid number

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

42.8. Events 735

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.8.3 Text input

This is a pseudo event for simulating text input from the keyboard. A single
Text input node replaces a whole sequence of Key event(730) nodes. To achieve
this, QF-Test takes advantage of the fact that AWT and Swing text fields lis-

ten only to KEY_TYPED events, so input of text can be simulated by triggering one
KEY_TYPED event per text character. If your SUT uses custom text components that ac-
tually require the KEY_PRESSED and KEY_RELEASED events, you cannot use this node
type but have to resort to plain Key events(730).

Contained in: All kinds of sequences(558).

Children: None

Execution: The text is sent to the SUT together with the data about the target compo-
nent. The TestEventQueue determines the corresponding component in the SUT and
triggers the resulting events.

Attributes:

42.8. Events 736

Figure 42.57: Text input attributes

Client
The name of the SUT client process to which the event is sent.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the event.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-

42.8. Events 737

dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Text
The text that is to be sent to the SUT.

When inserting text into a password field it may be desirable to avoid having theNote
password show up as plain text in the test suite or a run log. To that end the
password can be encrypted by inserting the plain-text password, right-clicking and
selecting Encrypt text from the popup menu. Please be sure to specify a pass-
word salt before encrypting via the option Salt for crypting passwords(496).

Variable: Yes

Restrictions: No line breaks are possible.

Clear target component first

If this attribute is set, and the target component is a text field or text area, the
contents of the target component are removed before the new text is inserted.

Variable: Yes

Restrictions: None

Replay single events

If the target component is a text field or a text area, the text can optionally be
inserted by manipulating the component directly through its API. This is much
faster, but if KeyListeners are registered on the component they will not be
notified of the change. If this attribute is set, key events are simulated for every
single character.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

42.8. Events 738

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.8.4 Window event

WindowEvents are of limited use for a test suite since most of them are
not generated as a direct consequence of some user interaction. The only
exception is the WINDOW_CLOSING event that is triggered when the user

closes a window. It is also possible to simulate WINDOW_ICONIFIED and
WINDOW_DEICONIFIED events.

Contained in: All kinds of sequences(558).

Children: None

Execution: The event is sent to the SUT together with the data about the target window.
The TestEventQueue determines the corresponding window in the SUT and triggers
the resulting event.

Attributes:

42.8. Events 739

Figure 42.58: Window event attributes

Client
The name of the SUT client process to which the event is sent.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the event.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition

42.8. Events 740

criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Event
This ComboBox lets you choose the type of the event. Possible values are
WINDOW_OPENED, WINDOW_CLOSING, WINDOW_CLOSED, WINDOW_ACTIVATED,
WINDOW_DEACTIVATED, WINDOW_ICONIFIED and WINDOW_DEICONIFIED, the
standard event IDs of the Java class WindowEvent.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.8. Events 741

42.8.5 Component event

The name Component event for this node may be misleading, since QF-Test
filters all of these events except for windows, but since they represent the
Java class ComponentEvent, it is better to stick to that name. Except for

COMPONENT_MOVED and COMPONENT_SIZED events on a window, which are the result
of the user moving or resizing the window interactively, all ComponentEvents are arti-
ficial and thus ignored. If you replay the event during a Web test not on a Web page(864)

component, but on an HTML component, the browser window will be moved in a way
that size and position of the inner rendering area match the given values.

Contained in: All kinds of sequences(558).

Children: None

Execution: The event is sent to the SUT together with the data about the target window.
The TestEventQueue determines the corresponding window in the SUT and triggers
the resulting event.

Attributes:

Figure 42.59: Component event attributes

42.8. Events 742

Client
The name of the SUT client process to which the event is sent.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the event.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Event
This ComboBox lets you choose the type of the event. Possible values are
COMPONENT_SIZED and COMPONENT_MOVED, the standard event IDs of the Java
class ComponentEvent.

Variable: No

Restrictions: None

Y/Height

For a COMPONENT_MOVED event set this to the new Y-coordinate of the window,
for a COMPONENT_SIZED event to its new height.

Variable: Yes

Restrictions: Valid number, height > 0

X/Width
For a COMPONENT_MOVED event set this to the new X-coordinate of the window,
for a COMPONENT_SIZED event to its new width.

42.8. Events 743

Variable: Yes

Restrictions: Valid number, width > 0

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.8.6 Selection

A Selection node represents an abstract event like selecting a menu item,
choosing an entry in a combo box or selecting something from or closing
a system dialog. Currently this event node is used only for SWT, web and

Electron SUT clients, where some events cannot be triggered by ”soft” mouse events,
. The alternative of using ”hard” events has some disadvantages as described for the
Replay as ”hard” event(729) attribute of a Mouse event(726).

42.8. Events 744

The Detail(744) attribute determines the kind of operation to perform, or the value to select,
depending on the target component.

Contained in: All kinds of sequences(558).

Children: None

Execution: The event is sent to the SUT together with the data about the target compo-
nent. The component is resolved and an action performed which depends on the type
of component as listed in the table above.

Attributes:

Figure 42.60: Selection attributes

Client
The name of the SUT client process to which the event is sent.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the event.

42.8. Events 745

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Detail
The Detail attribute specifies the kind of operation to perform or the value to
select, depending on the target component. The possible combinations are listed
in detail below.

The following combinations of widgets and Detail values are currently supportedSWT
for SWT:

Class Detail attribute Action
CCombo sub-item Empty Choose item as current value
ColorDialog Color value in hex-

adecimal #rrggbb
format

Select given color

ColorDialog CANCEL Abort color selection
Combo sub-item Empty Choose item as current value
CTabFolder sub-item Empty Select tab
CTabFolder sub-item close Close tab
DirectoryDialog Directory name Select given directory
DirectoryDialog CANCEL Abort directory selection
FileDialog File name, including

directory
Select given file

FileDialog CANCEL Abort file selection
FontDialog Font description,

system specific
Select given font

FontDialog CANCEL Abort file selection
Menu close Cancel the menu (close without selec-

tion)
MenuItem Empty Select item

42.8. Events 746

MessageBox Any of OK YES NO
CANCEL ABORT
RETRY IGNORE
OPEN SAVE

Close with the given value as the user’s
choice

ProgressBar ProgressBar
value

Set the given value

Scale Scale value Set the given value
Slider Slider value Set the given value
Spinner Spinner value Set the given value
TabFolder sub-item Empty Select tab

Table 42.18: Supported SWT widgets for a Selection event

Eclipse/RCP makes heavy use of dynamic CTabFolders where the items canNote
be moved between folders. The items represent the actual business objects
whereas the folders are just scaffolding to hold them. Besides, the layout of the
folders and items can change drastically when switching perspectives. Thus it is
often desirable to be able to select or close an item independent of the
CTabFolder it currently resides in. This can be done by using the
Procedures(627) qfs.qft#qfs.swt.ctabfolder.selectTab and
qfs.qft#qfs.swt.ctabfolder.closeTab, provided in the qfs.qft
standard library. Besides the ubiquitous client parameter, the only other
parameter tabname must be set to the name of the item to select or close.

The following combinations of DOM nodes and Detail values are currently sup-Web
ported for web SUT clients:

Node type Detail attribute Action
Confirmation dialog Any of OK YES NO

CANCEL RETRY
Close the dialog with the given value as
the user’s choice

File dialog for download The file to save to or
CANCEL

Close the dialog and save to the specified
file or abort the download

Login dialog Username|Password
or CANCEL

Close the dialog and login with the spec-
ified data or abort. The password can
by encrypted by right-clicking the Detail
field and selecting Encrypt text . Please
be sure to specify a password salt before
encrypting via the option Salt for crypting
passwords(496).

Prompt dialog The text to enter or
CANCEL

Close the dialog and return the specified
text or abort

Top-level DOCUMENT back Navigate back to the previous page

42.8. Events 747

Top-level DOCUMENT forward Navigate forward to the next page
Top-level DOCUMENT goto:URL Navigate to the specified URL
Top-level DOCUMENT refresh Reload the current page
Top-level DOCUMENT stop Stop loading the current page
OPTION or SELECT
sub-item

0 Choose the OPTION as current value

OPTION or SELECT
sub-item

1 Add the OPTION to the selection

OPTION or SELECT
sub-item

-1 Remove the OPTION from the selection

Table 42.19: Supported DOM nodes for a Selection event

The following Combinations of DOM nodes and the Detail attribute are currentlyElectron
support for Electron applications (see chapter 21(286)), additionally to the ones listed
for Web as above.

Node type Detail Attribute Action
Menu clickmenu:@/<Menu path> Where <Menu path> specifies the

menu and the sub-menu item(s),
seperated by /. For example, if you
want to trigger the menu item Save
as in the menu File you would
enter clickmenu:@File/Save
as for the attribute. You also need
to enter the QF-Test ID of the node
Web page of the SUT in the attribute
QF-Test component ID.

Dialog select:@/<Return value> Salt for crypting passwords(496) Close
a previously opened dialog. For
details about possible return values
please refer to: Native Dialogs(287)

You also need to enter the QF-Test ID
of the node Web page of the SUT in
the attribute QF-Test component ID.

Error dialog select:1 Closes the open dialog.
Message box select:2:true Select the button with id ”2” and sets

the checkbox value to true.
Save dialog select:”C:\path\to\my.file” Closes the save dialog and returns

the given path.
Open dialog select:[”C:\path\to\my.file”] Closes the open dialog and returns

the given path.
Open dialog select:[”C:\path\to\my\first.file”,

”C:\path\to\my\second.file”]
Closes the open dialog and returns
the given paths.

42.8. Events 748

Table 42.20: Supported DOM nodes for Electron SUTs in a Selection Event

Android
The following values of the the Detail attribute are currently support for Android ap-iOS
plications (see chapter 16(225)) and iOS applications (see chapter 17(247)). If you pre-
fer to execute the Selection without having to bother about the syntax in the Detail
attribute have a look at the procedures in the packages qfs.android.device,
respectively qfs.ios.device, in the The standard library(165) qfs.qft.

Node type Detail attribute Action
All (will be ignored) HOME Click on the Home-Button of the Emula-

tor.
Android only, all (will
be ignored)

BACK Click on the Back-Button of the Emulator.

Android only, all (will
be ignored)

APP_SWITCH Click on the App-Switch-Button of the
Emulator.

All (will be ignored) rotate: <angle> Rotate the whole display by the given an-
gle. Valid values: 0, 90, 180, 270.

All (will be ignored) turn: <direction> turn rotates the whole display by 90 de-
grees in the given direction. Valid values:
left, right.

42.8. Events 749

All swipe:
<Direction>

Swipe on a component into a certain di-
rection. Available directions for a swipe
(all without quotes)

• from the left to the right border
of the component: ”right”, ” ”,
”go_left”, ”prevPage”, ””,

• from the right to the left bor-
der of the component: ”left”, ” ”,
”go_right”, ”nextPage”, ””,

• from the bottom to the top bor-
der of the component: ”up”, ” ”,
”go_down”, ”scrollDown”, ””,

• from the top to the bottom bor-
der of the component: ”down”, ” ”,
”go_up”, ”scrollUp”, ””,

• from the top left to the bottom
right corner of the component:
”down_right”, ” ”, ”go_up_left”, ””,

• from the bottom right to the top left
corner of the component: ”up_left”,
” ”, ”go_down_right”, ””,

• from the top right to the bot-
tom left corner of the component:
”down_left”, ””, ”go_up_right”, ””,

• from the bottom left to the top
right corner of the component:
”up_right”, ””, ”go_down_left” and
””.

All swipe: <Start
coordinate X>
<Start coordinate
Y> <End coordinate
X> <End coordinate
Y> [<time in ms>
[<steps>]]

Swipe on a component with start and end
position of the swipe. Optionally, you can
specify the time the swipe should take.
When giving the time you can option-
ally also specify the number of steps for
the execution of the swipe action. You
only need to put the steps in very spe-
cial cases.
The coordinates can be specified in num-
ber of pixels relative to the upper left cor-
ner of the component or as a position
within the component, see table Positions
for gestures(749). Samples: swipe: W
C E C will swipe in the middle of the
component from left (west) to the right
(east), and swipe: C N C S from top
to bottom and swipe: 0 0 E S from
top left to bottom right.

42.8. Events 750

All zoom: <Start
coordinate X>
<Start coordinate
Y> <distance>
<angle>

zoom is a two finger action. The start
position of the two fingers is definted by
the start coordinates, the movement via
the distance and (in pixels) and the an-
gle, a value from 0 to 359. Angle 0 for
a horizontal, 90 for a vertical movement.
The fingers each move the given distance
with the given angle in opposite direc-
tions.
The coordinates can be specified in num-
ber of pixels relative to the upper left cor-
ner of the component or as a position
within the component, see table Positions
for gestures(749).
Samples: zoom: C C 50 0 zoom,
starting from the middle the ”fingers”
move horizontally 50 pixels each.

All pinch: <Finger
1 X> <Finger 1
Y> <Finger 2 X>
<Finger 2 Y>

pinch is a two finger action. The co-
ordinats specify the positions of the two
fingers. From there they move towards
each other until they meet.
The coordinates can be specified in num-
ber of pixels relative to the upper left cor-
ner of the component or as a position
within the component, see table Positions
for gestures(749).
Samples: pinch: 20 C 50 C hori-
zontally in the middle of the component,
the ”fingers” start from pixel positions 20
and 50 and move towards each other un-
til they meet.

Table 42.21: Supported values for a Selection node for Android and iOS

Gestures have a start and an end point. Each point has an X and a Y coordinate.
It can either be the distance relative to the upper left corner of the component in
pixels or the position within the component. The following positions are available:

Position Explanation
N Top border of the component (north).
E Right border of the component (east).
S Bottom border of the component (south).
W Left border of the component (west).
C Middle of the component (center) for the respec-

tive dimension.

Table 42.22: Positions for gestures

42.8. Events 751

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.8.7 File selection

A File selection is a pseudo event that you only need in a special case.

If your SUT uses the standard AWT file selection dialog, implemented by the
class java.awt.FileDialog, QF-Test has no chance to record the events

the user generates while selecting a file, since they are all handled by the underlying
system and never passed on to Java. For the same reason, the selection cannot be

42.8. Events 752

simulated as a sequence of mouse and key events. This is not the case with Swing’s
javax.swing.JFileChooser which is implemented as a normal dialog.

Therefore QF-Test just records the result of the file selection in the form of this node and
stores that data in the FileDialog upon replay before closing it. For the SUT there is no
difference to an actual selection by the user.

Contained in: All kinds of sequences(558).

Children: None

Execution: File and directory are stored in an open java.awt.FileDialog and
the dialog is closed.If no FileDialog is open, a ComponentNotFoundException(896)

is thrown.

Attributes:

Figure 42.61: File selection attributes

Client
The name of the SUT client process to which the event is sent.

Variable: Yes

42.8. Events 753

Restrictions: Must not be empty.

File
The name of the file (without the directory part) that is to be selected.

Variable: Yes

Restrictions: Must not be empty

Directory

The directory of the file that is to be selected.

Variable: Yes

Restrictions: Must not be empty

GUI engine

The GUI engine in which to look for a file selection dialog. Only relevant for SUTs
with more than one GUI engine as described in chapter 45(933).

Variable: Yes

Restrictions: See chapter 45(933)

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

42.9. Checks 754

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.9 Checks

Checks are the means by which QF-Test validates correctness of the SUT. If the current
state of a component doesn’t match the expected value of the check node a message
with a configurable error level is written to the run log. Additionally or alternatively a
CheckFailedException(900) can be thrown and the result of the check can be as-
signed to a variable.

By setting a Timeout(757) checks can also be used to wait for a component to attain a
certain state, e.g. to wait for a MenuItem to become enable or for a CheckBox to
become selected.

Like events(726) each check must have a target window, component or sub-item. Depend-
ing on that target, different kinds of checks are supported which can be recorded in
check-mode as described in section 4.3(38) via right-clicking the target component and
selecting the check from the resulting menu. In case you need a check for a special com-
ponent that is not offered by default you can implement custom checks via the Checker
extension API described in section 54.4(1126).

There are six different data types available for checks and each of these corresponds to
a specific check node. Because it is possible to have different checks of the same data
type for the same target component, e.g. for the enabled state and the editable state of a
text field, both boolean, checks are further qualified by their Check type identifier attribute.
In most cases, when data type and target component are sufficient to uniquely identify
the kind of check, the value of this attribute is default. In case the specified check is
not supported for the given target component a CheckNotSupportedException(901)

is thrown.

You can display checks independetly of the result in the HTML report. The option can
be set via the check box List checks when interactively creating a report or via the
command line argument -report-checks(922). Please note: the option refers only to
checks with default result handling, i.e. just logging to the run log, not setting a variable
or throwing an exception. For more information please see section 24.1.2(307).

The following check nodes are available (if the respective component supports it):

• Check text(754)

42.9. Checks 755

• Boolean check(759)

• Check items(765)

• Check selectable items(770)

• Check image(775)

• Check geometry(780)

42.9.1 Check text

Validates the text displayed in a component or sub-item.

Contained in: All kinds of sequences(558).

Children: None

Execution: The text is sent to the SUT together with the data about the target com-
ponent. The TestEventQueue determines the corresponding component in the SUT,
reads its displayed text and compares it to the required value.

Attributes:

42.9. Checks 756

Figure 42.62: Check text attributes

42.9. Checks 757

Client
The name of the SUT client process to which the check is sent.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the check.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Text
The value to which the text displayed by the component or sub-item is compared.

You can select Escape text for regular expressions from the context menu for es-4.0+

caping special characters of regular expressions of that text.

Variable: Yes

Restrictions: Valid regexp if required.

As regexp

If this attribute is set, the component’s text is matched against a regexp (see
section 49.3(955)) instead of comparing plain strings.

Variable: Yes

Restrictions: None

Negate

This flag determines whether to execute a positive or a negative check. If it is set,

42.9. Checks 758

a negative check will be performed, i.e. the checked property must not match the
expected value.

Variable: Yes

Restrictions: None

Check type identifier

This attribute specifies the kind of check to perform. This makes it possible to
support different kinds of checks of the same data type for a given target
component without any ambiguity. With the help of a Checker additional check
types can be implemented as shown in section 54.4(1126). By default a Check text
node provides the following Check types (if the respective component supports it):

Check Description Engines
default Text of component All
tooltip Tooltip of component. In some cases

you need to run a Mouse event step be-
fore that check to initialize the tooltip.

All

text_positioned For details see PDF Check text(267). PDF only
text_font The text font of the component. For de-

tails see PDF ’Check Font’(272).
PDF only

text_fontsize The text font size of the component. For
details see PDF ’Check Font size’(272).

PDF only

class CSS class(es) of component Web only
id ’id’ attribute of component Web only
name ’name’ attribute of component Web only
value ’value’ attribute of component Web only
href ’href’ attribute of component Web only
attribute:NAME attribute named NAME of component Web only

Table 42.23: Provided Check types of Check text

Variable: Yes

Restrictions: Must not be empty

Timeout
Time limit in milliseconds until the check must succeed. To disable waiting, leave
this value empty or set it to 0.

Variable: Yes

Restrictions: Must not be negative.

42.9. Checks 759

Variable for result
This optional attribute determines the name for the result variable of the action. If
set, the respective variable will be set to ’true’ for a successful check or wait and
to ’false’ in case of failure.

If this attribute is set, the attribute Error level of message is ignored and no error isNote
reported. The attribute Throw exception on failure always remains effective, so it is
possible to set a result variable and still throw an exception.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Error level of message

This attribute determines the error level of the message that is logged in case of
failure. Possible choices are message, warning and error.

If the attribute Throw exception on failure is set, this attribute is irrelevant and ifNote
Variable for result is set this attribute is ignored.

Variable: No

Restrictions: None

Throw exception on failure

Throw an exception in case of failure. For ’Check...’ nodes a
CheckFailedException(900) is thrown, for ’Wait for...’ nodes the respective
specific exception.

Variable: No

Restrictions: None

42.9. Checks 760

Name
An optional name for the Check, mostly useful for the report.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.9.2 Boolean check

42.9. Checks 761

Compares the current state of a component or sub-item with an expected
value.

Contained in: All kinds of sequences(558).

Children: None

Execution: The expected state is sent to the SUT together with the data about the
target component. The TestEventQueue determines the corresponding component in
the SUT, determines its state and compares it to the required value.

Attributes:

42.9. Checks 762

Figure 42.63: Boolean check attributes

Client
The name of the SUT client process to which the check is sent.

Variable: Yes

42.9. Checks 763

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the check.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Expected state

The value to which the current state of the component or sub-item is compared.

Variable: Yes

Restrictions: None

Check type identifier

This attribute specifies the kind of check to perform. This makes it possible to
support different kinds of checks of the same data type for a given target
component without any ambiguity. Boolean check nodes in particular are often
used to check different kinds of states like ’enabled’, ’editable’ or ’selected’ (like
described in section 42.9(753)). The following table explains some of the check
types. It depends on the component class which check types are actually
available. With the help of a Checker additional check types can be
implemented as shown in section 54.4(1126).

42.9. Checks 764

Check type Example 1 Example 2 Details
visible Example 1 shows an invisi-

ble Textfield and CheckBox.
Both are visible in Example
2.

editable Example 1 shows a
Textfield which is not ed-
itable.
The Textfield in Example 2
is editable.
A CheckBox does not
support this kind of check.

enabled Neither the Textfield nor the
CheckBox is enabled in Ex-
ample 1, which means you
cannot interact with them.
Example 2 shows enabled
components.

checked (former selected) Example 1 shows a Check-
Box which is not selected.
It is selected in Example 2.
A Textfield does not support
this kind of check.

selected (Table) Example 1 shows a Table
where no cell is selected.
The lower cells are se-
lected in Example 2.
The check concerns the
row selection, not the
CheckBox.

focused Example 1 shows a fo-
cused Textfield (indicated
by the cursor).
The CheckBox is focused in
Example 2 (indicated by a
frame).

attribute:NAME ”attribute:sel” succeeds:
<p sel></p>
<p sel=””></p>
<p sel=”text”></p>
”attribute:sel” fails:
<p sel=”0”></p>
<p sel=”False”></p>
<p></p>

Web only: If the attribute
named NAME of the com-
ponent exists (even when
empty), this check suc-
ceeds unless the attribute
value is ”0” or ”false” (case-
insensitive). If the attribute
does not exist, the check
fails.

Table 42.24: Provided Check types of Boolean check

42.9. Checks 765

Variable: Yes

Restrictions: Must not be empty

Timeout
Time limit in milliseconds until the check must succeed. To disable waiting, leave
this value empty or set it to 0.

Variable: Yes

Restrictions: Must not be negative.

Variable for result
This optional attribute determines the name for the result variable of the action. If
set, the respective variable will be set to ’true’ for a successful check or wait and
to ’false’ in case of failure.

If this attribute is set, the attribute Error level of message is ignored and no error isNote
reported. The attribute Throw exception on failure always remains effective, so it is
possible to set a result variable and still throw an exception.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Error level of message

This attribute determines the error level of the message that is logged in case of
failure. Possible choices are message, warning and error.

If the attribute Throw exception on failure is set, this attribute is irrelevant and ifNote
Variable for result is set this attribute is ignored.

Variable: No

Restrictions: None

42.9. Checks 766

Throw exception on failure

Throw an exception in case of failure. For ’Check...’ nodes a
CheckFailedException(900) is thrown, for ’Wait for...’ nodes the respective
specific exception.

Variable: No

Restrictions: None

Name
An optional name for the Check, mostly useful for the report.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.9. Checks 767

42.9.3 Check items

Validates multiple displayed text strings in a component or sub-item.

Contained in: All kinds of sequences(558).

Children: None

Execution: The text strings are sent to the SUT together with the data about the target
component. The TestEventQueue determines the corresponding component in the
SUT, reads its displayed values and compares them to the required values.

Attributes:

42.9. Checks 768

Figure 42.64: Check items attributes

42.9. Checks 769

Client
The name of the SUT client process to which the check is sent.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the check.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Items
This table holds the values to which the text strings displayed by the component
or sub-item are compared. Each row represents one sub-item of the target
component. The ”Text” column holds the actual value while the ”Regexp” column
determines if this value is treated as a plain string or as a regexp (see section
49.3(955)). The ”Regexp” column allows using a variable via performing a double
click on the respective cell.

See section 2.2.5(17) about how to work with tables in QF-Test.

You can select Escape text for regular expressions from the context menu for es-4.0+

caping special characters of regular expressions of that cell text.

Variable: Yes for the ”Text” column, otherwise no.

Restrictions: Valid regexp if required.

Check type identifier

This attribute specifies the kind of check to perform. This makes it possible to
support different kinds of checks of the same data type for a given target

42.9. Checks 770

component without any ambiguity. With the help of a Checker additional check
types can be implemented as shown in section 54.4(1126).

The check types implemented for the generic classes are described in chapter
61(1242) in ”Additional checks”, as far as appropriate, for example for Accordion(1243),
List(1251), Table(1261), TabPanel(1264), TextArea(1265), Tree(1268) and TreeTable(1269).

With the generisc classes Table(1261) and TreeTable(1269) you can specify a subset of
items to be checked for the two check types column and row. This is done
via the parameters start and count. For example, the expression
row;start=2;count=3 would only check the items in row three to five,
column;start=0;count=4 would check the entries in the first four columns.

Variable: Yes

Restrictions: Must not be empty

Timeout
Time limit in milliseconds until the check must succeed. To disable waiting, leave
this value empty or set it to 0.

Variable: Yes

Restrictions: Must not be negative.

Variable for result
This optional attribute determines the name for the result variable of the action. If
set, the respective variable will be set to ’true’ for a successful check or wait and
to ’false’ in case of failure.

If this attribute is set, the attribute Error level of message is ignored and no error isNote
reported. The attribute Throw exception on failure always remains effective, so it is
possible to set a result variable and still throw an exception.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

42.9. Checks 771

Variable: No

Restrictions: None

Error level of message

This attribute determines the error level of the message that is logged in case of
failure. Possible choices are message, warning and error.

If the attribute Throw exception on failure is set, this attribute is irrelevant and ifNote
Variable for result is set this attribute is ignored.

Variable: No

Restrictions: None

Throw exception on failure

Throw an exception in case of failure. For ’Check...’ nodes a
CheckFailedException(900) is thrown, for ’Wait for...’ nodes the respective
specific exception.

Variable: No

Restrictions: None

Name
An optional name for the Check, mostly useful for the report.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

42.9. Checks 772

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.9.4 Check selectable items

Validates multiple displayed text strings in a component or sub-item and ad-
ditionally checks their selection state.

Contained in: All kinds of sequences(558).

Children: None

Execution: The text strings and selection state data are sent to the SUT together with
the data about the target component. The TestEventQueue determines the corre-
sponding component in the SUT, reads its displayed values, compares them to the re-
quired values and checks the required selection state.

Attributes:

42.9. Checks 773

Figure 42.65: Check selectable items attributes

42.9. Checks 774

Client
The name of the SUT client process to which the check is sent.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the check.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Items
This table holds the values to which the text strings displayed by the component
or sub-item are compared. Each row represents one sub-item of the target
component. The ”Text” column holds the actual value while the ”Regexp” column
determines if this value is treated as a plain string or as a regexp (see section
49.3(955)). The ”Selected” column holds the required selection state. The ”Regexp”
and the ”Selected” column allow using a variable via performing a double click on
the respective cell.

See section 2.2.5(17) about how to work with tables in QF-Test.

You can select Escape text for regular expressions from the context menu for es-4.0+

caping special characters of regular expressions of that cell text.

Variable: Yes for the ”Text” column, otherwise no.

Restrictions: Valid regexp if required.

Check type identifier

This attribute specifies the kind of check to perform. This makes it possible to

42.9. Checks 775

support different kinds of checks of the same data type for a given target
component without any ambiguity. With the help of a Checker additional check
types can be implemented as shown in section 54.4(1126).

The check types implemented for the generic classes are described in chapter
61(1242) in ”Additional checks”, as fas as appropriate, for example for Accordion(1243),
List(1251), Table(1261), Tree(1268) and TreeTable(1269).

Variable: Yes

Restrictions: Must not be empty

Timeout
Time limit in milliseconds until the check must succeed. To disable waiting, leave
this value empty or set it to 0.

Variable: Yes

Restrictions: Must not be negative.

Variable for result
This optional attribute determines the name for the result variable of the action. If
set, the respective variable will be set to ’true’ for a successful check or wait and
to ’false’ in case of failure.

If this attribute is set, the attribute Error level of message is ignored and no error isNote
reported. The attribute Throw exception on failure always remains effective, so it is
possible to set a result variable and still throw an exception.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

42.9. Checks 776

Error level of message

This attribute determines the error level of the message that is logged in case of
failure. Possible choices are message, warning and error.

If the attribute Throw exception on failure is set, this attribute is irrelevant and ifNote
Variable for result is set this attribute is ignored.

Variable: No

Restrictions: None

Throw exception on failure

Throw an exception in case of failure. For ’Check...’ nodes a
CheckFailedException(900) is thrown, for ’Wait for...’ nodes the respective
specific exception.

Variable: No

Restrictions: None

Name
An optional name for the Check, mostly useful for the report.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets

42.9. Checks 777

you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.9.5 Check image

Checks the displayed image of a component. This check is supported for all
kinds of components and for sub-items.

It is possible to check only parts of an image. To that end, a region within the
image can be defined, either by dragging a rectangle or by editing the region attributes.
Also, if the check image is smaller than the component, an offset into the component
can be given. When recording only the visible part of a component or when cropping
the check image to size after defining a region, the offset is determined automatically.

Contained in: All kinds of sequences(558).

Children: None

Execution: The image data is sent to the SUT together with the data about the target
component. The TestEventQueue determines the corresponding component in the
SUT and compares its current image to the required value.

Attributes:

42.9. Checks 778

Figure 42.66: Check image attributes

42.9. Checks 779

Client
The name of the SUT client process to which the check is sent.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the check.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

’Position of image relative to component’

If the image is smaller than the component, these offset coordinates together with
the size of the image determine the sub-region of the component that is checked.

Variable: Yes

Restrictions: Must not be negative.

Image

The recorded image of the component. It can be displayed at different zoom
levels, saved to or loaded from disk in the PNG format, or edited in an external
imaging tool. The tool to use must be defined with the option External imaging
program(466).

The text next to the icons displayes the size and the current zoom setting of the
image. Furthermore the text next to these icons may also display the current color
value of the pixel over which the mouse is positioned. QF-Test may either use the
hexadecimal or the rgba format in order to represent the color value. By clicking
on this text it is possible to switch between these two representations.

Variable: Yes

42.9. Checks 780

Restrictions: Must not be negative.

’Actual check region inside image’

If only some part of the image of a component needs to be checked, a region
within the image can be defined that will then be searched for in the displayed
image of the component.

Variable: Yes

Restrictions: Must not be negative.

’Algorithm for image comparison’

This attribute defines a special algorithm for image comparison. If left empty, the
option Default algorithm for image checks(507) may be used to set a default. If that
is still empty, images are compared pixel by pixel with a tolerance defined by the
option Tolerance for checking images(507). See Details about the algorithm for
image comparison(1223) for further information about the available algorithms and
their parameters.

Variable: Yes

Restrictions: Must match a special syntax.

Check type identifier

This attribute specifies the kind of check to perform. This makes it possible to
support different kinds of checks of the same data type for a given target
component without any ambiguity. The standard check type is ’default’. There are
two special check types for PDF, ’scaled’ and ’unscaled’, which are described in
the PDF section 18.3.2(270). With the help of a Checker additional check types
can be implemented as shown in section 54.4(1126).

Variable: Yes

Restrictions: Must not be empty

Negate

This flag determines whether to execute a positive or a negative check. If it is set,
a negative check will be performed, i.e. the checked property must not match the
expected value.

Variable: Yes

Restrictions: None

Timeout
Time limit in milliseconds until the check must succeed. To disable waiting, leave
this value empty or set it to 0.

Variable: Yes

42.9. Checks 781

Restrictions: Must not be negative.

Variable for result
This optional attribute determines the name for the result variable of the action. If
set, the respective variable will be set to ’true’ for a successful check or wait and
to ’false’ in case of failure.

If this attribute is set, the attribute Error level of message is ignored and no error isNote
reported. The attribute Throw exception on failure always remains effective, so it is
possible to set a result variable and still throw an exception.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Error level of message

This attribute determines the error level of the message that is logged in case of
failure. Possible choices are message, warning and error.

If the attribute Throw exception on failure is set, this attribute is irrelevant and ifNote
Variable for result is set this attribute is ignored.

Variable: No

Restrictions: None

Throw exception on failure

Throw an exception in case of failure. For ’Check...’ nodes a
CheckFailedException(900) is thrown, for ’Wait for...’ nodes the respective
specific exception.

Variable: No

Restrictions: None

42.9. Checks 782

Name
An optional name for the Check, mostly useful for the report.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.9.6 Check geometry

42.9. Checks 783

Checks the location and size of a component. This check is supported for all
kinds of components but not for sub-items.

Contained in: All kinds of sequences(558).

Children: None

Execution: The geometry data is sent to the SUT together with the data about the
target component. The TestEventQueue determines the corresponding component in
the SUT and compares location and size to the required values.

Attributes:

42.9. Checks 784

Figure 42.67: Check geometry attributes

42.9. Checks 785

Client
The name of the SUT client process to which the check is sent.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is the
target of the check.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Geometry

The X/Y coordinates, width and height to which the location and size of the
component are compared. To check only some of these, e.g. just the location or
just the size, leave the others empty.

Variable: Yes

Restrictions: Valid number, width and height > 0

Check type identifier

This attribute specifies the kind of check to perform. This makes it possible to
support different kinds of checks of the same data type for a given target
component without any ambiguity. With the help of a Checker additional check
types can be implemented as shown in section 54.4(1126).

Variable: Yes

Restrictions: Must not be empty

Negate

42.9. Checks 786

This flag determines whether to execute a positive or a negative check. If it is set,
a negative check will be performed, i.e. the checked property must not match the
expected value.

Variable: Yes

Restrictions: None

Timeout
Time limit in milliseconds until the check must succeed. To disable waiting, leave
this value empty or set it to 0.

Variable: Yes

Restrictions: Must not be negative.

Variable for result
This optional attribute determines the name for the result variable of the action. If
set, the respective variable will be set to ’true’ for a successful check or wait and
to ’false’ in case of failure.

If this attribute is set, the attribute Error level of message is ignored and no error isNote
reported. The attribute Throw exception on failure always remains effective, so it is
possible to set a result variable and still throw an exception.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Error level of message

This attribute determines the error level of the message that is logged in case of
failure. Possible choices are message, warning and error.

If the attribute Throw exception on failure is set, this attribute is irrelevant and ifNote

42.9. Checks 787

Variable for result is set this attribute is ignored.

Variable: No

Restrictions: None

Throw exception on failure

Throw an exception in case of failure. For ’Check...’ nodes a
CheckFailedException(900) is thrown, for ’Wait for...’ nodes the respective
specific exception.

Variable: No

Restrictions: None

Name
An optional name for the Check, mostly useful for the report.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

42.10. Queries 788

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.10 Queries

Automating a GUI test gets difficult whenever the SUT shows dynamic or unpredictable
behavior, i.e. when it displays values that change with every run of the program. This is
typically the case for fields that are filled automatically with things like the current time,
an automatic ID from a database, etc.

QF-Test addresses this issue with means to read values from the SUT’s components or
to determine the numerical index of a sub-item when given its name. These values are
stored in variables to be used again later as the test proceeds.

42.10.1 Fetch text

This node lets you read a value from the SUT during the execution of a test
run. The text is assigned to the local or global variable (see chapter 6(104))
named by the Variable name(789) attribute. To avoid negative side effects, the

variable content will not be auto-expanded when being read.

Not all components display text and some complex components contain multiple
textual items, so this operation is only supported for certain components
or sub-items. If you try to fetch the text from the wrong component, an
OperationNotSupportedException(901) is thrown, while an unsupported sub-item
leads to an UnexpectedIndexException(901). The following table lists the supported
component and sub-item targets for this operation. (P/S) means primary/secondary
index.

In web applications every node could contain some text, so QF-Test returns either theWeb
text or an empty value, but never throws an OperationNotSupportedException.

42.10. Queries 789

Class Index (P/S) Result
AbstractButton -/- getText()

Dialog -/- getTitle()

Frame -/- getTitle()

ComboBox -/- Current value (use renderer)
ComboBox List item/- List item (use renderer)
JEditorPane Character index/- Structural element at index (experimental)
Label -/- getText()

List Item/- Item (use renderer)
TabbedPane Tab/- Title of tab
Table Column/Row Cell contents (use renderer)
JTableHeader Column/- Column title (use renderer)
TextArea Line number/- Line of text
JTextComponent -/- getText()

Tree Node/- Node (use renderer)
Label -/- getText()

TextField -/- getText()

Table 42.25: Components supported by Fetch text

Contained in: All kinds of sequences(558).

Children: None

Execution: The data of the target component is sent to the SUT. The
TestEventQueue determines the corresponding component, retrieves the requested
value and sends it back to QF-Test, where it is stored in a global variable.

Attributes:

42.10. Queries 790

Figure 42.68: Fetch text attributes

Client
The name of the SUT client process from which to query the data.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is to be
queried.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).

42.10. Queries 791

When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Variable name
The name of the global variable to which the result of the query is assigned (see
chapter 6(104)).

Variable: Yes

Restrictions: Must not be empty.

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment

42.10. Queries 792

Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.10.2 Fetch index

With the help of this node you can determine the index of a sub-item during
the execution of a test, provided its displayed text is known. Obviously only
an Item(875) is supported as the target component. The result is assigned to

the local or global variable (see chapter 6(104)) named by the Variable name(792) attribute.

Contained in: All kinds of sequences(558).

Children: None

Execution: The data of the target component is sent to the SUT. The
TestEventQueue determines the corresponding component, searches for the
requested sub-item and sends its index back to QF-Test, where it is stored in a global
variable.

Attributes:

42.10. Queries 793

Figure 42.69: Fetch index attributes

Client
The name of the SUT client process from which to query the data.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is to be
queried.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).

42.10. Queries 794

When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Variable name
The name of the global variable to which the result of the query is assigned (see
chapter 6(104)).

Variable: Yes

Restrictions: Must not be empty.

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment

42.10. Queries 795

Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.10.3 Fetch geometry

Use this node to find out the geometry of a window, component or sub-item in
the SUT. The result is stored in up to four local or global variables, one each
for the X and Y coordinates, width and height.

This node is useful if you want to set the X(728) and Y(728) coordinates of a Mouse event(726)

relative to the right or bottom border of the target component. Simply fetch the compo-
nent’s width and height and define the coordinates using the extended variable syntax
for expressions (see section 11.2(171)).

The following table lists the supported sub-item targets for this operation. ”(P/S)” indi-
cates the primary/secondary index.

Class Index (P/S) Result
JList Item/- Item
JTabbedPane Tab/- Tab
JTable Column/- Column
JTable Column/Row Cell
JTableHeader Column/- Column title
JTree Node/- Node

Table 42.26: Components supported by Fetch geometry

Contained in: All kinds of sequences(558).

42.10. Queries 796

Children: None

Execution: The data of the target component is sent to the SUT. The
TestEventQueue determines the corresponding component, retrieves its geometry
and sends it back to QF-Test, where the values are stored in global variables.

Attributes:

Figure 42.70: Fetch geometry attributes

Client
The name of the SUT client process from which to query the data.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

42.10. Queries 797

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is to be
queried.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Location relative to window
This attribute determines whether the X and Y coordinate of a component or
sub-item is calculated relative to its parent component or relative to its parent
window. For windows there is no difference.

Variable: No

Restrictions: None

Variable for x
The name of the global variable to which the X coordinate of the window,
component or sub-item is assigned (see chapter 6(104)). If you are not interested in
the X coordinate, leave this value empty.

Variable: Yes

Restrictions: None

Variable for y

The name of the global variable to which the Y coordinate of the window,
component or sub-item is assigned (see chapter 6(104)). If you are not interested in
the Y coordinate, leave this value empty.

Variable: Yes

Restrictions: None

Variable for width
The name of the global variable to which the width of the window, component or

42.10. Queries 798

sub-item is assigned (see chapter 6(104)). If you are not interested in the width,
leave this value empty.

Variable: Yes

Restrictions: None

Variable for height

The name of the global variable to which the height of the window, component or
sub-item is assigned (see chapter 6(104)). If you are not interested in the height,
leave this value empty.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create local or global variable bindings. If unset,
the variables are bound in the global variables. If set, the topmost current binding
for a variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment

42.11. Miscellaneous 799

Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.11 Miscellaneous

This section lists the remaining nodes that don’t fit in well with any of the other sections.

42.11.1 Comment

This node is thought for documentation purpose. It allows you to add a com-
ment to your test suite.

Contained in: Everywhere

Children: None

Execution: A comment node does not affect execution.

Attributes:

42.11. Miscellaneous 800

Figure 42.71: Comment attributes

Heading

The string that should get displayed in the tree, a summary of the comment or the
comment itself.

This attribute allows to use the following HTML-Tags <i>italic Text</i>,
<u>underlined text</u>, <s>stroke text</s> and bold text in order to
beautify the representation in the tree. Furthermore it is possible to specify a text
color via a style=”color:colorname” or the color=”colorname” attribute (also in
combination with the , , or tag).

Variable: Yes

Restrictions: Must not be empty.

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.11. Miscellaneous 801

42.11.2 Error

With the Error node you can write an error to the run log. Use the attributes
to specify the information to be written to the run log.

The node can replace scripts containing only rc.logError. It can also
replace calls to the procedure qfs.run-log.logError of The standard library(165).

Contained in: All kinds of sequences(558).

Children: None

Execution: The Error node writes an error to the run log.

Attributes:

Figure 42.72: Error attributes

Text
The message text. In the tree node long texts will be truncated.

Variable: Yes

42.11. Miscellaneous 802

Restrictions: None

Add diagnostic client information

When selected, further information concerning each client process will be written
to the run log.

Variable: Yes

Restrictions: None

Print message to terminal also

If active, the message is also written to the QF-Test Terminal.

Variable: Yes

Restrictions: None

Create screenshots
The attribute indicates whether QF-Test should log screenshots to the run log of
the whole monitor(s) attached, taking into account the setting of the option Limit
screenshots to relevant screens(548) relevant to security and data protection. The
default setting of the option only allows screenshots of monitors where either a
window of QF-Test or the tested application is showing. By default, in batch mode
(no QF-Test GUI) no screenshot will be logged when no SUT window is showing.

42.11. Miscellaneous 803

Setting Description
Always Always log screenshots to the run log. This may

result in memory issues in case a test run has
many errors. Options for splitting run logs(543) may
be used to reduce memory consumption in such
a case.
The option overrules the following settings:

• Maximum number of errors with
screenshots per run log(548)

• Count screenshots individually for each split
log(548)

• Create screenshots of the whole screen
upon error(548)

Never Do NOT log screenshots.
Based on options Log and create screenshots depending on the

options set. See Options determining run log
content(546) for further information.

Variables, for example $(logScreenshots) A reference to a variable containing one of the
following values (case insensitive). Depending
on the value QF-Test will either always log the
screenshots or never or take the options into ac-
count.
The following values indicate QF-Test should al-
ways log screenshots:
always, 1, true or yes.
The following values indicate QF-Test should
never log screenshots:
never, 0, false or no.
The following values indicate QF-Test should de-
cide based on the options:
based on options, options or option.

Table 42.27: Settings for ”Create Screenshots”

Variable: Yes

Restrictions: None

Create client screenshots
The attribute indicates whether QF-Test should log screenshots of all client
windows to the run log, even if they may be hidden by other windows.

42.11. Miscellaneous 804

Setting Description
Always Always log screenshots to the run log. This may

result in memory issues in case a test run has
many errors. Options for splitting run logs(543) may
be used to reduce memory consumption in such
a case.
The option overrules the following settings:

• Maximum number of errors with
screenshots per run log(548)

• Count screenshots individually for each split
log(548)

• Create screenshots of the client’s windows
upon error in client(548)

• Create screenshots of all client windows
upon error(548)

Never Do NOT log screenshots.
Based on options Log and create screenshots depending on the

options set. See Options determining run log
content(546) for further information.
The setting of the option Create screenshots of
the client’s windows upon error in client(548) is ir-
relevant, as the node has effect on all clients, just
like a Server script.

Variables, for example $(logScreenshots) A reference to a variable containing one of the
following values (case insensitive). Depending
on the value QF-Test will either always log the
screenshots or never or take the options into ac-
count.
The following values indicate QF-Test should al-
ways log screenshots:
always, 1, true or yes.
The following values indicate QF-Test should
never log screenshots:
never, 0, false or no.
The following values indicate QF-Test should de-
cide based on the options:
based on options, options or option.

Table 42.28: Settings for ”Create Client Screenshots”

Variable: Yes

Restrictions: None

42.11. Miscellaneous 805

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.11.3 Warning

With the Warning node you can write a warning to the run log. Use the at-
tributes to specify the information to be written to the run log.

The node can replace scripts containing only rc.logWarning. It can also
replace calls to the procedure qfs.run-log.logWarning of The standard library(165).

Contained in: All kinds of sequences(558).

Children: None

Execution: The Warning node writes a warning to the run log.

42.11. Miscellaneous 806

Attributes:

Figure 42.73: Warning attributes

Text
The message text. In the tree node long texts will be truncated.

Variable: Yes

Restrictions: None

Include in report

When this option has been selected, the node will be written to the report.

Variable: Yes

Restrictions: None

42.11. Miscellaneous 807

Add diagnostic client information

When selected, further information concerning each client process will be written
to the run log.

Variable: Yes

Restrictions: None

Print message to terminal also

If active, the message is also written to the QF-Test Terminal.

Variable: Yes

Restrictions: None

Create screenshots
The attribute indicates whether QF-Test should log screenshots to the run log of
the whole monitor(s) attached, taking into account the setting of the option Limit
screenshots to relevant screens(548) relevant to security and data protection. The
default setting of the option only allows screenshots of monitors where either a
window of QF-Test or the tested application is showing. By default, in batch mode
(no QF-Test GUI) no screenshot will be logged when no SUT window is showing.

42.11. Miscellaneous 808

Setting Description
Always Always log screenshots to the run log. This may

result in memory issues in case a test run has
many errors. Options for splitting run logs(543) may
be used to reduce memory consumption in such
a case.
The option overrules the following settings:

• Maximum number of errors with
screenshots per run log(548)

• Count screenshots individually for each split
log(548)

• Create screenshots of the whole screen
upon error(548)

• Create screenshots for warnings(549)

Never Do NOT log screenshots.
Based on options Log and create screenshots depending on the

options set. See Options determining run log
content(546) for further information. Please note:
Screenshots will only be logged when the option
Create screenshots for warnings(549) is active.

Variables, for example $(logScreenshots) A reference to a variable containing one of the
following values (case insensitive). Depending
on the value QF-Test will either always log the
screenshots or never or take the options into ac-
count.
The following values indicate QF-Test should al-
ways log screenshots:
always, 1, true or yes.
The following values indicate QF-Test should
never log screenshots:
never, 0, false or no.
The following values indicate QF-Test should de-
cide based on the options:
based on options, options or option.

Table 42.29: Settings for ”Create Screenshots”

Variable: Yes

Restrictions: None

Create client screenshots

42.11. Miscellaneous 809

The attribute indicates whether QF-Test should log screenshots of all client
windows to the run log, even if they may be hidden by other windows.

42.11. Miscellaneous 810

Setting Description
Always Always log screenshots to the run log. This may

result in memory issues in case a test run has
many errors. Options for splitting run logs(543) may
be used to reduce memory consumption in such
a case.
The option overrules the following settings:

• Maximum number of errors with
screenshots per run log(548)

• Count screenshots individually for each split
log(548)

• Create screenshots of the client’s windows
upon error in client(548)

• Create screenshots of all client windows
upon error(548)

• Create screenshots for warnings(549)

Never Do NOT log screenshots.
Based on options Log and create screenshots depending on the

options set. See Options determining run log
content(546) for further information.
The setting of the option Create screenshots of
the client’s windows upon error in client(548) is
irrelevant, as the node has effect on all clients,
just like a Server script.
Please note: Screenshots will only be logged
when the option Create screenshots for
warnings(549) is active.

Variables, for example $(logScreenshots) A reference to a variable containing one of the
following values (case insensitive). Depending
on the value QF-Test will either always log the
screenshots or never or take the options into ac-
count.
The following values indicate QF-Test should al-
ways log screenshots:
always, 1, true or yes.
The following values indicate QF-Test should
never log screenshots:
never, 0, false or no.
The following values indicate QF-Test should de-
cide based on the options:
based on options, options or option.

Table 42.30: Settings for ”Create Client Screenshots”

42.11. Miscellaneous 811

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.11.4 Message

With the Message node you can write a message to the run log. Use the
attributes to specify the information to be written to the run log.

The node can replace scripts containing only rc.logMessage. It can also
replace calls to the procedure qfs.run-log.logMessage of The standard library(165).

Contained in: All kinds of sequences(558).

42.11. Miscellaneous 812

Children: None

Execution: The Message step writes a message to the run log.

Attributes:

Figure 42.74: Message attributes

Text
The message text. In the tree node long texts will be truncated.

Variable: Yes

Restrictions: None

Prevent compactification

The option is only relevant when the option Create compact run log(549) has been
set to compact run logs. In that case activate the option keep the node in the run
log.

Variable: Yes

42.11. Miscellaneous 813

Restrictions: None

Include in report

When selected, the node will be written to the report.

Variable: Yes

Restrictions: None

Add diagnostic client information

When selected, further information concerning each client process will be written
to the run log.

Variable: Yes

Restrictions: None

Print message to terminal also

If active, the message is also written to the QF-Test Terminal.

Variable: Yes

Restrictions: None

Create screenshots
The attribute indicates whether QF-Test should log screenshots to the run log of
the whole monitor(s) attached, taking into account the setting of the option Limit
screenshots to relevant screens(548) relevant to security and data protection. The
default setting of the option only allows screenshots of monitors where either a
window of QF-Test or the tested application is showing. By default, in batch mode
(no QF-Test GUI) no screenshot will be logged when no SUT window is showing.

42.11. Miscellaneous 814

Setting Description
Always Always log screenshots to the run log. This may

result in memory issues in case a test run has
many errors. Options for splitting run logs(543) may
be used to reduce memory consumption in such
a case.
The option overrules the following settings:

• Maximum number of errors with
screenshots per run log(548)

• Count screenshots individually for each split
log(548)

• Create screenshots of the whole screen
upon error(548)

Never Do NOT log screenshots.
Based on options Log and create screenshots depending on the

options set. See Options determining run log
content(546) for further information.

Variables, for example $(logScreenshots) A reference to a variable containing one of the
following values (case insensitive). Depending
on the value QF-Test will either always log the
screenshots or never or take the options into ac-
count.
The following values indicate QF-Test should al-
ways log screenshots:
always, 1, true or yes.
The following values indicate QF-Test should
never log screenshots:
never, 0, false or no.
The following values indicate QF-Test should de-
cide based on the options:
based on options, options or option.

Table 42.31: Settings for ”Create Screenshots”

Variable: Yes

Restrictions: None

Create client screenshots
The attribute indicates whether QF-Test should log screenshots of all client
windows to the run log, even if they may be hidden by other windows.

42.11. Miscellaneous 815

Setting Description
Always Always log screenshots to the run log. This may

result in memory issues in case a test run has
many errors. Options for splitting run logs(543) may
be used to reduce memory consumption in such
a case.
The option overrules the following settings:

• Maximum number of errors with
screenshots per run log(548)

• Count screenshots individually for each split
log(548)

• Create screenshots of the client’s windows
upon error in client(548)

• Create screenshots of all client windows
upon error(548)

Never Do NOT log screenshots.
Based on options Log and create screenshots depending on the

options set. See Options determining run log
content(546) for further information.
The setting of the option Create screenshots of
the client’s windows upon error in client(548) is ir-
relevant, as the node has effect on all clients, just
like a Server script.

Variables, for example $(logScreenshots) A reference to a variable containing one of the
following values (case insensitive). Depending
on the value QF-Test will either always log the
screenshots or never or take the options into ac-
count.
The following values indicate QF-Test should al-
ways log screenshots:
always, 1, true or yes.
The following values indicate QF-Test should
never log screenshots:
never, 0, false or no.
The following values indicate QF-Test should de-
cide based on the options:
based on options, options or option.

Table 42.32: Settings for ”Create Client Screenshots”

Variable: Yes

Restrictions: None

42.11. Miscellaneous 816

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.11.5 Set variable

This node lets you set the value of a global variable. If the test is run in-
teractively from QF-Test and not in batch mode (see section 1.7(12)) you can
optionally set the value interactively.

Contained in: All kinds of sequences(558).

Children: None

Execution: If the test is run interactively and the Interactive(816) attribute is set, a dialog is
shown in which the value for the variable can be entered. If the Timeout(817) is exceeded

42.11. Miscellaneous 817

or the value is confirmed with the OK button, the variable is bound accordingly in the
global variables. If the dialog is canceled, the test run is stopped. In the non-interactive
case the variable is bound directly to the Default value(816).

Attributes:

Figure 42.75: Set variable attributes

Variable name
The name of the global variable to which the value is assigned (see chapter 6(104)).

Variable: Yes

Restrictions: Must not be empty.

42.11. Miscellaneous 818

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Default value
The default value for the variable if the test is run non-interactively, the
Interactive(816) attribute is not set or the Timeout(817) is exceeded.

Variable: Yes

Restrictions: None

Explicit object type

QF-Test variables can contain strings or any other kinds of objects. The text field9.0+
for the value only accepts string values but this attribute makes it possible to
define how QF-Test should interpret the input:

• No selection: The input will not be further interpreted. In most cases, the
stored object will be a String. If the input was completely replaced by the value
of another variable by variable expansion, the object will be used without
further interpretation.

• String: The input will be converted into a string.

• Boolean: The input will be converted into a boolean value. 0, the empty
string and the strings false, no and nein will be interpreted as false,
other values as true.

• Number: The input will be converted into a number. Depending on the input,
this will be an Integer, Long, BigInteger, Double or a BigDecimal object. If the
conversion fails, a ValueCastException(904) will be thrown.

• Object from JSON: The input will be interpreted as JSON string and con-
verted into nested Maps and Lists with Strings, Numbers, and Booleans. If
the conversion fails, a ValueCastException(904) will be thrown.

42.11. Miscellaneous 819

Interactive
Whether a dialog should be shown in which the value for the global variable can
be entered. Ignored if the test is run non-interactively.

Variable: Yes

Restrictions: None

Description

A short description to display in the dialog. If you leave this value empty, the
description Value for <Variable name> will be used.

Variable: Yes

Restrictions: None

Timeout
An optional timeout value for the dialog. If the dialog is shown and the value is left
unchanged for the specified period of time, the dialog is closed automatically and
the default value is used. This avoids blocking a test that is started interactively
from QF-Test and then left to run unattended.

Variable: Yes

Restrictions: Empty or > 0.

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets

42.11. Miscellaneous 820

you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.11.6 Wait for component to appear

This node is very important for the timing of a test run. The reaction time
of the SUT varies depending on system and memory load, so it may take
a while until, say, a complex dialog is opened. This node will delay further

execution of the test until the desired component or sub-item is available. If the time
limit is exceeded without success, a ComponentNotFoundException(896) is thrown.
You can also use the Variable for result attribute to store the result into a variable and the
Throw exception on failure attribute to suppress the exception.

This node is intended only for relatively long delays. Short delays are handled automat-
ically by the Timeout options(514).

By setting the Wait for absence(820) attribute this node can also be used to ensure the
absence of a component.

Contained in: All kinds of sequences(558).

Children: None

Execution: The data of the target component are sent to the SUT. The
TestEventQueue waits until either the corresponding component becomes available
or the time limit is exceeded.

Attributes:

42.11. Miscellaneous 821

Figure 42.76: Wait for component to appear attributes

Client
The name of the Java process in which to wait.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) to wait for.

42.11. Miscellaneous 822

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Timeout
Time limit in milliseconds.

Variable: Yes

Restrictions: >= 0

Wait for absence
If this attribute is set, QF-Test waits for the absence of a component or a
sub-item. This is useful e.g. to ensure that a dialog has been closed or was never
opened in the first place. If the component or sub-item remains visible for the
whole time, a ComponentFoundException(897) is thrown.

Variable: Yes

Restrictions: None

Variable for result
This optional attribute determines the name for the result variable of the action. If
set, the respective variable will be set to ’true’ for a successful check or wait and
to ’false’ in case of failure.

If this attribute is set, the attribute Error level of message is ignored and no error isNote
reported. The attribute Throw exception on failure always remains effective, so it is
possible to set a result variable and still throw an exception.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,

42.11. Miscellaneous 823

the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Error level of message

This attribute determines the error level of the message that is logged in case of
failure. Possible choices are message, warning and error.

If the attribute Throw exception on failure is set, this attribute is irrelevant and ifNote
Variable for result is set this attribute is ignored.

Variable: No

Restrictions: None

Throw exception on failure

Throw an exception in case of failure. For ’Check...’ nodes a
CheckFailedException(900) is thrown, for ’Wait for...’ nodes the respective
specific exception.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

42.11. Miscellaneous 824

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.11.7 Wait for document to load

This node is a variant of the Wait for component to appear(818) node specificallyWeb
for web pages. It not only checks the existence of a given document. If
the target document was already known to exist the last time an event was

replayed, this node waits for the document to get reloaded. When working with web
pages it is often the case that the same or very similar documents are loaded many
times. Without this node’s functionality QF-Test could not discern the case where the
old document is still around from the one where the document is already reloaded. In
the former case, replaying an event could cause it to have no effect at all because at the
same time reloading of the document begins.

The Name of the browser window attribute can be used to limit the search to a given
browser window or to define a name for a new window. If Stop loading if timeout exceeded
is set, QF-Test will abort loading the document if it doesn’t finish in time. You can also
use the Variable for result attribute to store the result in a variable and the Throw exception
on failure attribute to suppress the DocumentNotLoadedException(896).

Contained in: All kinds of sequences(558).

Children: None

Execution: The data of the target document are sent to the SUT. The
TestEventQueue waits until corresponding document gets loaded or the time limit is
exceeded in which case a DocumentNotLoadedException is thrown.

Attributes:

42.11. Miscellaneous 825

Figure 42.77: Wait for document to load attributes

Client
The name of the SUT client process from which to query the data.

Variable: Yes

Restrictions: Must not be empty.

42.11. Miscellaneous 826

QF-Test component ID

The QF-Test ID(859) of the Window(858), Component(869) or Item(875) node that is to be
queried.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return
or

�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy
the target node with

�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID
into the text field by pressing

�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

Name of the browser window
This attribute has a dual use. If set to an existing name for a browser window,
QF-Test waits for the document to load in that window. If the name is set but no
browser window by that name exists, the search is limited to documents in new or
not-yet-named windows. If the wait succeeds and a new document is loaded, the
window name is assigned to the document’s browser window. This is the only
way to define a name for a popup window. Explicitly launched browsers can have
their name set via the Name of the browser window(716) attribute of a
Open browser window(714) node. You find a brief description how to handle multiple
browser windows in FAQ 25.

Variable: Yes

Restrictions: None

Timeout
Time limit in milliseconds.

Variable: Yes

Restrictions: >= 0

Stop loading if timeout exceeded

If this attribute is set and the timeout is exceeded without a matching document
finishing to load, QF-Test will cause loading to stop, either in all browsers or, if
Name of the browser window is set, the browser window specified therein. Result

42.11. Miscellaneous 827

and exception handling are not affected by this attribute. If the timeout is
exceeded the operation is considered a failure regardless of whether loading is
stopped or not.

Variable: Yes

Restrictions: None

Variable for result
This optional attribute determines the name for the result variable of the action. If
set, the respective variable will be set to ’true’ for a successful check or wait and
to ’false’ in case of failure.

If this attribute is set, the attribute Error level of message is ignored and no error isNote
reported. The attribute Throw exception on failure always remains effective, so it is
possible to set a result variable and still throw an exception.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Error level of message

This attribute determines the error level of the message that is logged in case of
failure. Possible choices are message, warning and error.

If the attribute Throw exception on failure is set, this attribute is irrelevant and ifNote
Variable for result is set this attribute is ignored.

Variable: No

Restrictions: None

Throw exception on failure

Throw an exception in case of failure. For ’Check...’ nodes a

42.11. Miscellaneous 828

CheckFailedException(900) is thrown, for ’Wait for...’ nodes the respective
specific exception.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.11.8 Wait for download to finish

This specialized node is applicable only for web Clients. It can be used to waitWeb
for the completion of a download that was earlier started via QF-Test. This is

42.11. Miscellaneous 829

important in case you need to verify the contents of the file or to measure the
time it took to download it.

If the timeout is exceeded without the download finishing, a DownloadNotCompleteEx-
ception is thrown unless suppressed via the Throw exception on failure attribute. Either
way the download can be canceled by activating the Cancel download if timeout exceeded
attribute, which may be necessary to enable another download to the same file. The
result can also be stored in a variable by defining its name in the Variable for result at-
tribute.

Contained in: All kinds of sequences(558).

Children: None

Execution: The target file identifying the download is sent to the SUT where QF-
Test waits for the download to finish or the time limit is exceeded in which case a
DownloadNotCompleteException is thrown.

Attributes:

42.11. Miscellaneous 830

Figure 42.78: Wait for download to finish attributes

Client
The name of the SUT client process from which to query the data.

Variable: Yes

Restrictions: Must not be empty.

File
The target file for the downloaded.

42.11. Miscellaneous 831

Variable: Yes

Restrictions: Valid file name

Timeout
Time limit in milliseconds.

Variable: Yes

Restrictions: >= 0

Cancel download if timeout exceeded
If this attribute is set and the timeout is exceeded without the download finishing
the download is canceled.

Variable: Yes

Restrictions: None

Variable for result
This optional attribute determines the name for the result variable of the action. If
set, the respective variable will be set to ’true’ for a successful check or wait and
to ’false’ in case of failure.

If this attribute is set, the attribute Error level of message is ignored and no error isNote
reported. The attribute Throw exception on failure always remains effective, so it is
possible to set a result variable and still throw an exception.

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create a local or global variable binding. If unset,
the variable is bound in the global variables. If set, the topmost current binding for
the variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Error level of message

42.11. Miscellaneous 832

This attribute determines the error level of the message that is logged in case of
failure. Possible choices are message, warning and error.

If the attribute Throw exception on failure is set, this attribute is irrelevant and ifNote
Variable for result is set this attribute is ignored.

Variable: No

Restrictions: None

Throw exception on failure

Throw an exception in case of failure. For ’Check...’ nodes a
CheckFailedException(900) is thrown, for ’Wait for...’ nodes the respective
specific exception.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

42.11. Miscellaneous 833

Variable: Yes

Restrictions: None

42.11.9 Load resources

This node is used to load a ResourceBundle and make its values
available for the extended variable syntax ${group:name} (see section
6.7(113)). To learn more about ResourceBundles see the description of the

ResourceBundle(832) attribute.

Contained in: All kinds of sequences(558).

Children: None

Execution: The ResourceBundle is loaded and its values are made available under
the Group(831) name.

Attributes:

Figure 42.79: Load resources attributes

Group

The name of the group by which values of the ResourceBundle are referred to.

42.11. Miscellaneous 834

The value of a definition of the form name=value in the ResourceBundle can
be retrieved with ${group:name} (see section 6.7(113)).

Variable: Yes

Restrictions: Must not be empty and should not contain special characters like ’:’
or ’$’.

ResourceBundle
The name of the ResourceBundle to load. A little Java background is needed
to understand this attribute.

The resources are read with the help of the Java method
ResourceBundle.getBundle(). For this to work, a matching file with the
extension .class or .properties must be located somewhere on the class
path. Use the fully qualified name for the file, including packages, with a dot (’.’)
as separator, but without extension or locale identifier.

Example: QF-Test comes with a German ResourceBundle in the file
de/qfs/apps/qftest/resources/properties/qftest_de.properties,
which is contained in the archive qfshared.jar.
To load that ResourceBundle, set this attribute to
de.qfs.apps.qftest.resources.properties.qftest and the Locale(832)

to de.

Variable: Yes

Restrictions: Must name a ResourceBundle on the Java class path.

Locale
The main use of ResourceBundles is to provide data in different languages.
This attribute determines, which version of a ResourceBundle is retrieved. The
value must follow the ISO standard language_country_variant. Language
is a two letter lowercase code like en for English, country a two letter uppercase
code like US for American or UK for British English. The variant discriminates
further but is rarely used.

As mentioned, QF-Test relies on the Java method
ResourceBundle.getBundle() to load the ResourceBundle, which is
described in detail in the Java documentation and works as follows:

To load a ResourceBundle named res for the locale en_US, Java first searches
the class path for a file named res_en_US.class or res_en_US.properties,
then for res_en.class or res_en.properties and finally for res.class and
res.properties. The less specific files are loaded even if more specific files
are found, but only values not defined in the more specific files are used. That
way you can define all English resources in res_en.properties and place only
those that differ in res_en_UK.properties and res_en_US.properties.

42.11. Miscellaneous 835

Unfortunately Java has a ”feature” that can lead to surprising results. If no specific
file but only the base file res.properties is found, Java tries the whole process
a second time, this time for the current default locale of the VM. As a result, if
the current locale for QF-Test is German and you want to load English resources
that are defined in res.properties and no res_en.properties exists, Java
will load the German version from res_de.properties, even if you request the
locale en. You can work around this be setting this attribute to the underscore ’_’.
In that case, only the base file res.properties is loaded.

To use the current locale of the VM, leave this value empty.

Variable: Yes

Restrictions: Empty or valid locale identifier.

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.11. Miscellaneous 836

42.11.10 Load properties

This node is used to load data from a Properties file and make its val-
ues available for the extended variable syntax ${group:name} (see section
6.7(113)).

Properties files are easier to handle than ResourceBundles since you request the
file directly, but they are less powerful. The format of a Properties file is simple: lines
of the form name=value with arbitrary whitespace around the ’=’ character. Complex
definitions spanning multiple lines are possible. Please see the Java documentation for
details or ask a developer.

Contained in: All kinds of sequences(558).

Children: None

Execution: The Properties file is loaded and its values are made available under the
Group(834) name.

Attributes:

Figure 42.80: Load properties attributes

Group

The name of the group by which values of the Properties file are referred to.

42.11. Miscellaneous 837

The value of a definition of the form name=value in the Properties file can be
retrieved with ${group:name} (see section 6.7(113)).

Variable: Yes

Restrictions: Must not be empty and should not contain special characters like ’:’
or ’$’.

Properties file

The file to load the Properties from. This can either be an absolute path name
or a path relative to the directory of the current suite. In either case you should
always use ’/’ as the separator for directories, even under Windows. QF-Test will
translate this to the correct value for the current operating system.

The ”...” button brings up a dialog in which you can select the file interactively. You
can also get to this dialog by pressing

�� ��Shift-Return or
�� ��Alt-Return , when the focus

is in the text field.

Variable: Yes

Restrictions: Must be an existing Properties file.

File encoding is UTF-8

Up to Java 8 the class java.util.Properties enforced a file encoding of
ISO-Latin-1 for properties files. In Java 9 the default encoding is UTF-8. QF-Test
supports both and uses the UTF-8 encoding if this attribute is activated and
ISO-Latin-1 otherwise.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment

42.11. Miscellaneous 838

Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.11.11 Unit test

This node is used to execute JUnit tests.

JUnit tests are made for executing unit and integration tests. They should
be short and easily repeatable. Unit Tests can be defined in an SUT script or

loaded from the SUT or other classpaths.

Contained in: All kinds of sequences(558).

Children: None

Execution: The required resources and injections are loaded and the test classes are
executed step by step.

Attributes:

42.11. Miscellaneous 839

Figure 42.81: Unit test server attributes

42.11. Miscellaneous 840

Figure 42.82: Unit test client attributes

Run in Unit Test Execution Environment
Whether to execute the unit tests inside the SUT. If disabled a execution
environment is setup for the tests.

42.11. Miscellaneous 841

Variable: No

Restrictions: None

Client
The name of the SUT client process in which to execute the script.

Variable: Yes

Restrictions: Must not be empty.

Source for the tests
The source for the JUnit tests. This can either be an SUT script or Java classes
that are loaded into the SUT.

Script

The script to execute.

You may use QF-Test variables of the syntax $(var) or ${group:name} in JythonNote
scripts. They will be expanded before the script is passed to the Jython interpreter.
This can lead to unexpected behavior. rc.getStr is the preferred method in this
case (see section 11.3.3(174) for details).

In spite of syntax highlighting and automatical indentation this attribute might notNote
be the right place to write complex scripts. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets you
define an external editor in which scripts can be edited conveniently by pressing�� ��Alt-Return or by clicking the button. Complex scripts can also be written as
separate modules which can then be imported for use in this attribute. See chapter
50(961) for details.

Variable: Yes

Restrictions: Valid syntax

Templates

This dropdown menu contains a list of useful template scripts. The available
templates will differ depending on the chosen script type and interpreter.

When you choose one of these templates, the current contents of your script will
be replaced.

You can add your own templates to this menu by choosing ”Open user templates
directory” and placing your template files there. The following file types are valid:

• [directory]: Will be converted into a submenu.

• .py: A Jython script template.

• .groovy: A Groovy script template.

42.11. Miscellaneous 842

• .js: A JavaScript script template.

Script language

This attribute determines the interpreter in which to run the script, or in other
words, the scripting language to use. Possible values are ”Jython”, ”Groovy” and
”JavaScript”.

Variable: No

Restrictions: None

Test classes
These are the classes that are executed. They have to be loaded with the defined
classpath. They are executed as test steps.

Instead of address the classes by their full name regular expressions can be used.

Test classes can be found if they contain a JUnit 4 Test annotation, if they extend
the JUnit 3 unit.org.TestCase or if they contain a RunWith annotation.

You can use one of the following regular expressions:

Regular expression Explanation
**.MainTest All MainTest classes in all packages.
de.qfs.test.* All test-classes from the de.qfs.test package.
de.qfs.**.* All test classes from all sub packages of de.qfs.

Table 42.33: Possible regular expressions

During the search of the test classes all classes in the given directory are loaded.Note
The statement **.* loads all classes in the classpath and their static initializers.
So this should be used carefully.

Variable: Yes

Restrictions: The class has to be loaded.

Classpath

Files and folders to load for the execution of the Unit Test.

Variable: Yes

Restrictions: The path has to be valid.

Injections

Injections enable working with Objects from QF-Test inside the tests.

42.11. Miscellaneous 843

Type Description
String QF-Test variables or direct values.
Component Components of QF-Test.
WebDriver WebDriver objects of the current browser.

Table 42.34: Injection types

The value of ’field’ can be left empty. In this case the default value instance isNote
used.

Variable: Yes

Restrictions: Object has to be available.

GUI engine

The GUI engine in which to execute the unit test. Only relevant for SUTs with
more than one GUI engine as described in chapter 45(933).

Variable: Yes

Restrictions: See chapter 45(933)

Name
The name of a Unit test is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the script.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment

42.11. Miscellaneous 844

Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.11.12 Install CustomWebResolver

This node is used to install or update the CustomWebResolver.

The configuration of the Install CustomWebResolver node is described in detail
in The Install CustomWebResolver node(1008).

Contained in: All kinds of sequences(558).

Children: Dependency(589), SUT scripts(673), Procedure call(630) and Comment(797).

Execution: The CustomWebResolver is installed or updated according to the given con-
figuration.

Afterwards, all contained child nodes are executed one by one. In the context of the
Install CustomWebResolver node, the variables $(client) and $(guiengine) are set
to the values of the attributes Client and GUI engine.

If the Install CustomWebResolver node contains a Setup node, it will be executed before
the configuration is applied. Execution of a contained Cleanup node will be delayed until
uninstallation of the CustomWebResolver.

Attributes:

42.11. Miscellaneous 845

Figure 42.83: Install CustomWebResolver attributes

Client
The name of the SUT client process in which to execute the CustomWebResolver.

Variable: Yes

42.11. Miscellaneous 846

Restrictions: Must not be empty.

YAML
The configuration instructions for the CustomWebResolver. These are described in
section 51.1.2(1008). The YAML syntax described there must be followed.

Figure 42.84: CustomWebResolver configuration template actions

If the syntax is known, the YAML configuration can be edited directly. In case of an
invalid configuration, corresponding error dialogs are displayed during execution
or reformatting.

Variable: Yes

Restrictions: Valid syntax

Edit menu

42.11. Miscellaneous 847

This menu serves to simplify editing of the YAML configuration. Depending on the
position in the document, it will offer different actions.

It can also be invoked at any time in the YAML editor via
�� ��Ctrl-Space .

Among others, the following actions can be available:

Name Description
Reformat data Formats the given data in the most compact form

possible. In case of an invalid configuration, a di-
alog with all configuration errors is displayed in-
stead.

New entry for ”...” Creates a new mapping for the category or
generic class.

Add/Remove HTML tag Controls if the mapping is dependent on the name
of the HTML tag of the element.

Add/Remove CSS class Controls if the mapping is dependent on a CSS
class of the element.

Add/Remove HTML attribute Controls if the mapping is dependent on a HTML
attribute of the element.

Change generic class Controls the generic class that is assigned to the
element.

Add/Remove ancestor Controls if the mapping is dependent on an an-
cestor of the element.

Convert ”...” to/Remove regular expression Controls if the value is interpreted as a regular
expression.

Show configuration errors Displays a dialog containing a list of all problems
with the current configuration. As long as the con-
figuration is invalid, the Install CustomWebResolver
can not be executed.

Table 42.35: Actions of the edit menu

42.11. Miscellaneous 848

Figure 42.85: CustomWebResolver edit menu

More information about the possiblities of the configuration syntax can be found in
section 51.1.2(1008).

New mapping

Clicking this button opens a list of available configuration categories. When you
select an entry, an entry is created in the appropriate category. You then can
replace any placeholders with the desired values.

Generic classes
Clicking on this button opens a list from which you can create a new mapping for
the respective generic class. You can read about the properties assigned to each
class in Generic classes(1242).

Script resolvers

42.11. Miscellaneous 849

Clicking this button opens a list from which you can select a template for one of
the resolvers described in The resolvers module(1075). The template is created
as a separate SUT script(673) node in the CustomWebResolver node. If the text cursor
is on a mapping in genericClasses, the resolver will be registered for the
respective generic class.

Inspector

Clicking this button opens the UI inspector, see UI Inspector(97).

You should use the UI inspector to check your application for characteristics suit-
able for CustomWebResolver mappings, and to check the effect of the CustomWe-
bResolver on the component structure of your application.

This button is available only when a web client is active.

Reformat
When clicking this button, the existing YAML code is reformatted as compactly as
possible according to the syntax described in section 51.1.2(1008). This can also be
used to detect syntax errors.

This action is also performed implicitly every time the configuration is modified e.g.
through the edit menu.

Update installed CustomWebResolver during execution

If this attribute is set, then when the node is executed, the currently installed
CustomWebResolver is not replaced by a new one, but the assignments of the
installed CustomWebResolver are supplemented by the values specified in this
node. If no CustomWebResolver was installed, then a TestException(896) is
raised.

Variable: Yes

Restrictions: None

GUI engine

The GUI engine in which the CustomWebResolver is to be installed or updated.
Only relevant for SUTs with more than one GUI engine as described in chapter
45(933).

Variable: Yes

Restrictions: See chapter 45(933)

Name
The name is a kind of short description. It is displayed in the tree view, so it
should be concise and say something about the function of the node.

Variable: No

42.12. HTTP Requests 850

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.12 HTTP Requests

This section describes how to send HTTP Request using QFTest.

42.12.1 Server HTTP request

42.12. HTTP Requests 851

This highly specialized node sends a web request via HTTP/HTTPS directlyWeb
to a web server. Such a request can be very helpful for load tests or mass
data computing scenarios (e.g. filling out a form) since the simulation of user

interactions and the respective loading time of the SUT are omitted during replay. The
use of requests is an enhancement of the functionalities for load tests and data-driven
testing described in chapter 33(408) and section 42.4(603).

If the status code returned from the server is 400 or higher, an exception is thrown.
This behaviour can be changed using the Error level if status code >= 400
attribute. A detailed description of the different status codes can be found at
http://www.w3.org/Protocols/HTTP/HTRESP.html. Additionally you can store the
response from the server in a variable and if the attribute Add server response to run log
is active the response is also written to the run log.

Contained in: All kinds of sequences(558).

Children: None

Execution: The web request is sent directly by QF-Test via HTTP/HTTPS to the speci-
fied URL. If the status code returned from the server is >= 400, an exception is thrown.
This behaviour can be changed using Error level if status code >= 400 attribute.

Attributes:

42.12. HTTP Requests 852

Figure 42.86: Server HTTP request Attribute

42.12. HTTP Requests 853

URL
The URL to which to send the request, not including parameters. HTTP and
HTTPS are acceptable values for the protocol.

Variable: Yes

Restrictions: Must not be empty.

Method
This attribute defines the method of the request, GET, POST,HEAD, PUT,
DELETE, TRACE or CONNECT .

Variable: Yes

Restrictions: None

Executable parameters

Here you can specify the parameters for the request. The parameters will be URL
encoded by QF-Test at execution. See section 2.2.5(17) for further information how
to work with the table.

Variable: Yes

Restrictions: None

Headers
To use custom headers you can set them with this value. You can specify the
name of the header and the header value. See section 2.2.5(17) for further
information how to work with the table.

Variable: Yes

Restrictions: None

Additional headers
As an alternative or in addition to the headers table, this field holds additional
headers in text form. This makes it easier to use variables and maybe exclude
some headers. Each line holds one header in the format Header: Value.

Variable: Ja

Restrictions: Keine

Payload

For POST Methods additional payload can be attached to the request. It can be
of various types like plain text, JSON or XML. To successfully add
the specific format the ”Content-Type” header needs to be set to the
corresponding value. For more information about the ”Content-Type” see:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type.

42.12. HTTP Requests 854

Variable: Yes

Restrictions: None

Variable for HTTP status code
The name of the variable to which the HTTP status code is assigned (see chapter
6(104)).

Variable: Yes

Restrictions: None

Variable for response headers

The name of the variable to which the response headers value is assigned (see
chapter 6(104)).

Variable: Yes

Restrictions: None

Variable for response body

The name of the variable to which the server response is assigned (see chapter
6(104)).

Variable: Yes

Restrictions: None

Local variable
This flag determines whether to create local or global variable bindings. If unset,
the variables are bound in the global variables. If set, the topmost current binding
for a variable is replaced with the new value, provided this binding is within the
context of the currently executing Procedure(627), Dependency(589) or Test case(558) node.
If no such binding exists, a new binding is created in the currently executing
Procedure, Dependency or Test case node or, if there is no such node in the topmost
node on the variables stack, falling back to the global bindings if necessary. See
chapter 6(104) for a detailed explanation of variable binding and lookup.

In order to predefine the option use Enable ’Local variable’ attribute by default(552).

Variable: No

Restrictions: None

Add server response to run log

If activated the server response is written to the run log in addition to the status
code.

Variable: Yes

Restrictions: None

42.12. HTTP Requests 855

Save response to file

If set the response is written to this file. This enables QF-Test to download files.

Variable: Yes

Restrictions: QF-Test must be able to write to the file.

Error level if status code >= 400
This attribute can change the error level of requests that return with a status code
greater than or equal to 400.

Variable: No

Restrictions: None

Timeout
Time limit in milliseconds until the HTTP Request must succeed. To disable the
limit, leave this value empty.

Variable: Yes

Restrictions: Must not be negative.

Error level if time limit exceeded
This attribute determines what happens in case the time limit is exceeded. If set
to ”exception”, a CheckFailedException(900) will be thrown. Otherwise a
message with the respective error-level will be logged in the run log.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment

42.12. HTTP Requests 856

Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.12.2 Browser HTTP request

This highly specialized node sends a GET or POST request via HTTP/HTTPSWeb
directly to a web server. Such a request can be very helpful for load tests or
mass data computing scenarios (e.g. filling out a form) since the simulation of

user interactions and the respective loading time of the SUT are omitted during replay.
The use of requests is an enhancement of the functionalities for load tests and data-
driven testing described in chapter 33(408) and section 42.4(603).

Contained in: All kinds of sequences(558).

Children: None

Execution: The GET/POST request is sent within the browser via HTTP/HTTPS to the
specified URL. The response is shown directly in the Browser.

Attributes:

42.12. HTTP Requests 857

Figure 42.87: Browser HTTP request Attribute

Client
The name of the SUT client process in which to execute the request.

Variable: Yes

Restrictions: Must not be empty.

QF-Test component ID

The Web page(864) in which the request should be submitted.

The ”Select component” button brings up a dialog in which you can select the
component interactively. You can also get to this dialog by pressing

�� ��Shift-Return

42.12. HTTP Requests 858

or
�� ��Alt-Return , when the focus is in the text field. As an alternative you can copy

the target node with
�� ��Ctrl-C or Edit→Copy and insert its QF-Test component ID

into the text field by pressing
�� ��Ctrl-V .

This attribute supports a special format for referencing components in other test
suites (see section 26.1(332)). Furthermore, sub-elements of nodes can be ad-
dressed directly without requiring separate nodes for them (see section 5.9(82)).
When using SmartIDs, you can address a GUI element directly via its recognition
criteria. For more information, refer to SmartID(72) and Component nodes versus
SmartID(46).

Variable: Yes

Restrictions: Must not be empty.

URL
The URL to which to send the request, not including parameters. HTTP and
HTTPS are acceptable values for the protocol.

Internationalized domain names (IDN) are not supported in the URL attribute as
well as links to local file system starting with ’file:///’.

Variable: Yes

Restrictions: Must not be empty.

Method
This attribute defines the method of the request, GET or POST.

Variable: Yes

Restrictions: None

Executable parameters

Here you can specify the parameters for the request. The parameters will be URL
encoded by QFTest at execution. See section 2.2.5(17) for further information how
to work with the table.

Variable: Yes

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

42.13. Windows, Components and Items 859

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.13 Windows, Components and Items

Windows(858), Components(869) and Items(875) are the foundation on which a test suite is built.
They represent the windows and components of the SUT as well as the sub-items of
complex components.

Many of the other node types need a window or component as a target, e.g. events(726)

or checks(753). To that end their QF-Test component ID attribute must be set to the
QF-Test ID(859) of an existing Window(858), Component(869) or Item(875) node.

All of the windows and components of a test suite are collected under the
Windows and components(881) node, which is always located at the bottom of the suite.

In the chapters Components(42) and the section How to achieve robust component
recognition(49) in the ”Best Practices” chapter you will find more information about the
usage of components.

42.13. Windows, Components and Items 860

42.13.1 Window

This node is a surrogate for a window in the SUT. Events(726), checks(753) and
other nodes refer to it by its QF-Test ID(859).

Contained in: Window group(878), Windows and components(881).

Children: Component group(879), Component(869).

Execution: Cannot be executed.

Attributes:

42.13. Windows, Components and Items 861

Figure 42.88: Window attributes

QF-Test ID
This ID is the means by which other nodes refer to this window. Therefore it may
appear in many places and you should take care to assign an ID with a meaning,
i.e. one that is easy to remember and recognize. A QF-Test ID must be unique
within the test suite.

42.13. Windows, Components and Items 862

Variable: No

Restrictions: Must not be empty, contain any of the characters ’#’, ’$’, ’@’, ’&’, or
’%’ or start with an underscore (’_’).

Class name
The fully qualified name of the Java class of the window or one of its
superclasses.

Variable: Yes

Restrictions: Must not be empty.

Name
The name of the window that was set by the developers of the SUT with the
setName(String) method. See section 48.1(948) for why and how names should
be set on all ”interesting” components.

Variable: Yes

Restrictions: None

Feature
If there is no Name(860) available for the window, QF-Test tries to recognize it by a
characteristic feature. In the case of a Frame or a Dialog this is the window’s title.

See section 48.1(948) for more information about component recognition.

You can select Escape text for regular expressions from the context menu for es-4.0+

caping special characters of regular expressions of that text.

Variable: Yes

Restrictions: None

As regexp

If this attribute is set, the Feature(860) is a regular expression (see section 49.3(955)).

Variable: Yes

Restrictions: None

Extra features
Besides the main Feature a Component can have additional features represented
as name/value pairs. The kind of component determines which extra features are
recorded. Each extra feature can have one of three states:

Ignore (Hint for searching: currently represented as 0)
This extra feature is just for information. It has no influence on component

recognition.

42.13. Windows, Components and Items 863

Should match (Hint for searching: currently represented as 1)
Target components matching this extra feature have a higher probability for

component recognition than those that don’t match it.

Must match (Hint for searching: currently represented as 2)
The target component must match this extra feature. Any component not

matching it is no candidate for component recognition.

Additional columns allow for matching against a regular expression or to negate
the expression, e.g. to define that the ”class” attribute of a DOM node in a web
page should not be ”dummy”. The absence of an extra feature can be enforced
by adding one with an empty value. It’s also allowed to use variables for those
columns. You can open a textual editor via double clicking the cell and specify the
respective variable then.

You can select Escape text for regular expressions from the context menu for es-4.0+

caping special characters of regular expressions of the value.

QF-Test automatically assigns some extra features to recorded components.

42.13. Windows, Components and Items 864

Name Engine Description
columns Web Column count in TABLE components.
imagehash Swing, SWT Shows the hash value of icons of a button or

menuitem.
qfs:class All Dedicated component class, e.g.

de.qfs.QfsTextField.
qfs:genericclass All Generic class of the component, e.g. TextField.
qfs:item Web Shows the item index of a DomNode, if it’s an

item of a complex GUI component. This could
get recorded, if some child nodes are addition-
ally recorded as those component might be in-
teresting as well. This could affect content of
lists, tables, tabfolders or trees.

qfs:label All Up to QF-Test version 6 qfs:label shows a
matching label for the component, e.g. the text
of a button or a label close to the respective
component. If no own text or label could be
found, it also tries to use tooltips or icon de-
scriptions.
From QF-Test Version 7.0 several labels for
the component may be recording in an ex-
tra feature starting with ”qfs:label” - the
one ranking highest with the status ”Should
match”, the others with ”Ignore”. For example
qfs:labelText for the text of the component
itself or qfs:labelLeft for a label left of the
component. For more information please see
qfs:label* variants(66).

qfs:matchindex All Index of components with the same name.
Possibly assigned automatically when the
Validate component recognition during
recording(484) option is active.

qfs:modal Web Shows if a component of the class ”Window” is
modal.

qfs:originalid Web Shows the real ’ID’ attribute specified in the
DOM for that node.

qfs:systemclass All The toolkit-specific system class, e.g.
javax.swing.JTextField.

qfs:text All Contains the text of the component. Not
recorded by default. However, it can be used
for component recognition during replay in
SmartIDs or when added (manually) to Com-
ponent nodes.

qfs:type All The generic type of the component, e.g.
TextField:PasswordField.

Table 42.36: Extra features assigned by QF-Test

42.13. Windows, Components and Items 865

Variable: Yes

Restrictions: Names must not be empty

Modal
In case of a Dialog this attribute determines whether the dialog is modal.

Variable: Yes

Restrictions: None

Geometry

The X/Y coordinate, width and height of the window form the basis for the
recognition(948) of the window. However, they play a minor roll as long as either a
Name(860) was provided or a Feature(860) is available.

For windows whose location and size vary widely you should clear these attributes.

If no values are specified, the recognition algorithm starts with a perfect geometryNote
match for all candidates. To prevent false positive hits you can disable geometry
matching by setting the values to a single ’-’ character.

Variable: Yes

Restrictions: Width and height must not be negative.

GUI engine

The GUI engine to which the Window and all its Component children belong.
QF-Test records awt for AWT/Swing and swt for SWT. Only really relevant for
SUTs with more than one GUI engine as described in chapter 45(933).

Variable: Yes

Restrictions: See chapter 45(933)

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

42.13. Windows, Components and Items 866

Variable: Yes

Restrictions: None

42.13.2 Web page

A Web page is a variant of a Window(858) node specifically used for testing webWeb
applications. It represents the top-level document in a Browser. Nested doc-
uments in FRAME nodes are represented as Components(869).

In contrast to a Window a Web page has no Class name, Modal, geometry or GUI engine
attributes as these are either implicitly defined or redundant.

Contained in: Window group(878), Windows and components(881).

Children: Component group(879), Component(869).

Execution: Cannot be executed.

Attributes:

42.13. Windows, Components and Items 867

Figure 42.89: Web page attributes

QF-Test ID
This ID is the means by which other nodes refer to this page. Therefore it may
appear in many places and you should take care to assign an ID with a meaning,
i.e. one that is easy to remember and recognize. A QF-Test ID must be unique
within the test suite.

Variable: No

Restrictions: Must not be empty, contain any of the characters ’#’, ’$’, ’@’, ’&’, or
’%’ or start with an underscore (’_’).

Name of the browser window
This attribute can be ignored unless you need to test a web application with
multiple open browser windows holding similar documents. In that case the Name
of the browser window attribute can be used to identify the browser window. The

42.13. Windows, Components and Items 868

name of a browser window can be defined via the Name of the browser window(716)

attribute of a Open browser window(714) node. You find a brief description how to
handle multiple browser windows in FAQ 25.

Variable: Yes

Restrictions: None

Name
A web page has no name unless one is implemented via a NameResolver. See
section 54.1.7(1082) about the extension API for NameResolvers.

Variable: Yes

Restrictions: None

Feature
The main Feature of a web page is its URL with the parameters removed. If the
option Limit URL feature of ’Web page’ node to host or file(529) is set, the URL is
further reduced to the host or file name.

See section 48.1(948) for more information about component recognition.

You can select Escape text for regular expressions from the context menu for es-4.0+

caping special characters of regular expressions of that text.

Variable: Yes

Restrictions: None

As regexp

If this attribute is set, the Feature(866) is a regular expression (see section 49.3(955)).

Variable: Yes

Restrictions: None

Extra features
Besides the main Feature a Component can have additional features represented
as name/value pairs. The kind of component determines which extra features are
recorded. Each extra feature can have one of three states:

Ignore (Hint for searching: currently represented as 0)
This extra feature is just for information. It has no influence on component

recognition.

Should match (Hint for searching: currently represented as 1)
Target components matching this extra feature have a higher probability for

component recognition than those that don’t match it.

42.13. Windows, Components and Items 869

Must match (Hint for searching: currently represented as 2)
The target component must match this extra feature. Any component not

matching it is no candidate for component recognition.

Additional columns allow for matching against a regular expression or to negate
the expression, e.g. to define that the ”class” attribute of a DOM node in a web
page should not be ”dummy”. The absence of an extra feature can be enforced
by adding one with an empty value. It’s also allowed to use variables for those
columns. You can open a textual editor via double clicking the cell and specify the
respective variable then.

You can select Escape text for regular expressions from the context menu for es-4.0+

caping special characters of regular expressions of the value.

QF-Test automatically assigns some extra features to recorded components.

42.13. Windows, Components and Items 870

Name Engine Description
columns Web Column count in TABLE components.
imagehash Swing, SWT Shows the hash value of icons of a button or

menuitem.
qfs:class All Dedicated component class, e.g.

de.qfs.QfsTextField.
qfs:genericclass All Generic class of the component, e.g. TextField.
qfs:item Web Shows the item index of a DomNode, if it’s an

item of a complex GUI component. This could
get recorded, if some child nodes are addition-
ally recorded as those component might be in-
teresting as well. This could affect content of
lists, tables, tabfolders or trees.

qfs:label All Up to QF-Test version 6 qfs:label shows a
matching label for the component, e.g. the text
of a button or a label close to the respective
component. If no own text or label could be
found, it also tries to use tooltips or icon de-
scriptions.
From QF-Test Version 7.0 several labels for
the component may be recording in an ex-
tra feature starting with ”qfs:label” - the
one ranking highest with the status ”Should
match”, the others with ”Ignore”. For example
qfs:labelText for the text of the component
itself or qfs:labelLeft for a label left of the
component. For more information please see
qfs:label* variants(66).

qfs:matchindex All Index of components with the same name.
Possibly assigned automatically when the
Validate component recognition during
recording(484) option is active.

qfs:modal Web Shows if a component of the class ”Window” is
modal.

qfs:originalid Web Shows the real ’ID’ attribute specified in the
DOM for that node.

qfs:systemclass All The toolkit-specific system class, e.g.
javax.swing.JTextField.

qfs:text All Contains the text of the component. Not
recorded by default. However, it can be used
for component recognition during replay in
SmartIDs or when added (manually) to Com-
ponent nodes.

qfs:type All The generic type of the component, e.g.
TextField:PasswordField.

Table 42.37: Extra features assigned by QF-Test

42.13. Windows, Components and Items 871

Variable: Yes

Restrictions: Names must not be empty

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.13.3 Component

Component nodes represent the components of the SUT. Other nodes refer to
them by their QF-Test ID(870), similar to the way Windows(858) are referenced.

The Window(858) node that is the direct or indirect parent of the component
must be the equivalent of the component’s window parent in the SUT.

Contained in: Component group(879), Window(858).

Children: Item(875).

Execution: Cannot be executed.

Attributes:

42.13. Windows, Components and Items 872

Figure 42.90: Component attributes

QF-Test ID
This ID is the means by which other nodes refer to this component. Therefore it
may appear in many places and you should take care to assign an ID with a
meaning, i.e. one that is easy to remember and recognize. A QF-Test ID must be
unique within the test suite.

42.13. Windows, Components and Items 873

Variable: No

Restrictions: Must not be empty, contain any of the characters ’#’, ’$’, ’@’, ’&’, or
’%’ or start with an underscore (’_’).

Class name
For SWT and Swing application this is the fully qualified name of the Java class of
the component or one of its super-classes whereas for web applications there is a
pseudo class hierarchy described in section 5.4.1(56).

The actual class recorded by QF-Test depends on the setting of the option Record
system class only(483) and on potentially registered ClassNameResolvers (see
section 54.1.9(1085)). Upon replay, class matching is based on the actual or pseudo
class hierarchy, so you can manually change this attribute to any of the element’s
base classes.

Variable: Yes

Restrictions: Must not be empty.

Name
The name of the component that was set by the developers of the SUT with the
setName(String) method. See section 48.1(948) for why and how names should
be set on all ”interesting” components.

Variable: Yes

Restrictions: None

Feature
If there is no Name(871) available for the component, QF-Test tries to recognize it by
a characteristic feature.

See section 48.1(948) for more information about component recognition.

You can select Escape text for regular expressions from the context menu for es-4.0+

caping special characters of regular expressions of that text.

Variable: Yes

Restrictions: None

As regexp

If this attribute is set, the Feature(871) is a regular expression (see section 49.3(955)).

Variable: Yes

Restrictions: None

42.13. Windows, Components and Items 874

Extra features
Besides the main Feature a Component can have additional features represented
as name/value pairs. The kind of component determines which extra features are
recorded. Each extra feature can have one of three states:

Ignore (Hint for searching: currently represented as 0)
This extra feature is just for information. It has no influence on component

recognition.

Should match (Hint for searching: currently represented as 1)
Target components matching this extra feature have a higher probability for

component recognition than those that don’t match it.

Must match (Hint for searching: currently represented as 2)
The target component must match this extra feature. Any component not

matching it is no candidate for component recognition.

Additional columns allow for matching against a regular expression or to negate
the expression, e.g. to define that the ”class” attribute of a DOM node in a web
page should not be ”dummy”. The absence of an extra feature can be enforced
by adding one with an empty value. It’s also allowed to use variables for those
columns. You can open a textual editor via double clicking the cell and specify the
respective variable then.

You can select Escape text for regular expressions from the context menu for es-4.0+

caping special characters of regular expressions of the value.

QF-Test automatically assigns some extra features to recorded components.

42.13. Windows, Components and Items 875

Name Engine Description
columns Web Column count in TABLE components.
imagehash Swing, SWT Shows the hash value of icons of a button or

menuitem.
qfs:class All Dedicated component class, e.g.

de.qfs.QfsTextField.
qfs:genericclass All Generic class of the component, e.g. TextField.
qfs:item Web Shows the item index of a DomNode, if it’s an

item of a complex GUI component. This could
get recorded, if some child nodes are addition-
ally recorded as those component might be in-
teresting as well. This could affect content of
lists, tables, tabfolders or trees.

qfs:label All Up to QF-Test version 6 qfs:label shows a
matching label for the component, e.g. the text
of a button or a label close to the respective
component. If no own text or label could be
found, it also tries to use tooltips or icon de-
scriptions.
From QF-Test Version 7.0 several labels for
the component may be recording in an ex-
tra feature starting with ”qfs:label” - the
one ranking highest with the status ”Should
match”, the others with ”Ignore”. For example
qfs:labelText for the text of the component
itself or qfs:labelLeft for a label left of the
component. For more information please see
qfs:label* variants(66).

qfs:matchindex All Index of components with the same name.
Possibly assigned automatically when the
Validate component recognition during
recording(484) option is active.

qfs:modal Web Shows if a component of the class ”Window” is
modal.

qfs:originalid Web Shows the real ’ID’ attribute specified in the
DOM for that node.

qfs:systemclass All The toolkit-specific system class, e.g.
javax.swing.JTextField.

qfs:text All Contains the text of the component. Not
recorded by default. However, it can be used
for component recognition during replay in
SmartIDs or when added (manually) to Com-
ponent nodes.

qfs:type All The generic type of the component, e.g.
TextField:PasswordField.

Table 42.38: Extra features assigned by QF-Test

42.13. Windows, Components and Items 876

Variable: Yes

Restrictions: Names must not be empty

Structure
These two fields hold additional structural information needed for component
recognition(948) during a test run. The Class count is the number of components
within the same parent container and with the same class (or a class derived
thereof). The Class index is the index that this component has in the list of these
components with matching class. As usual the first component has index 0.

When counting the components of matching class, invisible components are con-
sidered as well. This is more robust but means that the values may be higher than
expected.

It is possible to specify just the Class index or the Class count attribute.Note

Variable: Yes

Restrictions: None

Geometry

The X/Y coordinate, width and height of the component form the basis for the
recognition(948) of the component. However, they play a minor roll as long as either
a Name(871) was provided or a Feature(871) or structural information(874) is available.

For components whose location or size typically vary widely at runtime, these
values are not recorded.

If no values are specified, the recognition algorithm starts with a perfect geometryNote
match for all candidates. To prevent false positive hits you can disable geometry
matching by setting the values to a single ’-’ character.

Variable: Yes

Restrictions: Width and height must not be negative.

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

42.13. Windows, Components and Items 877

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.13.4 Item

For complex Swing components like JTable or JTree it is possible to define
Mouse events(726), checks(753) or queries(786) relative to a sub-item of the compo-
nent instead of the component itself. Such a sub-item is identified with the

help of an index, the Primary index(876). This index can be given in one of three ways: as
a string, a number or a regexp (see section 49.3(955)). A string or regexp designate a
sub-item with a corresponding representation while a number refers to a sub-item by its
index. Like in Java the first sub-item’s index is 0.

The JTable supports an additional index to refer directly to a table cell. The
Primary index(876) determines the column and the Secondary index(876) the row of the cell.

There are two representations for the nodes of a JTree component, flat like a list or as
a hierarchy using paths. A node named tmp under a node named usr is represented
as just tmp in the first case, as /usr/tmp in the latter. The option Represent tree node
as path(489) determines the representation used when recording sub-items.

Currently sub-items are supported for the following Swing components:

Class Primary Secondary
JComboBox List element -
JEditorPane Structural element (experimental) -
JList List element -
JTabbedPane Tab -
JTable Table column Row
JTableHeader Table column -
JTextArea Line -
JTree Node/Row -

Table 42.39: Sub-items of complex Swing components

Contained in: Component(869).

Children: None.

Execution: Cannot be executed.

Attributes:

42.13. Windows, Components and Items 878

Figure 42.91: Item attributes

QF-Test ID
This ID is the means by which other nodes refer to this sub-item. Therefore it may
appear in many places and you should take care to assign an ID with a meaning,
i.e. one that is easy to remember and recognize. A QF-Test ID must be unique
within the test suite.

Variable: No

Restrictions: Must not be empty, contain any of the characters ’#’, ’$’, ’@’, ’&’, or
’%’ or start with an underscore (’_’).

Primary index

Designates the sub-item. Depending on whether As string(877), As number(877) or
As regexp(877) is selected, the sub-item is determined by its index or by a string or
regexp match.

It is OK to have an empty index, e.g. to designate a table column with an empty
heading.

Variable: Yes

Restrictions: Must be a valid number or regexp if required.

Secondary index

For the JTable class two kinds of sub-items are supported. If only the

42.13. Windows, Components and Items 879

Primary index(876) is given, a whole column is referenced. An additional Secondary
index designates a cell in this column.

To define a secondary index its checkbox must be selected first. This is neces-
sary to tell an empty index from a non-existent one. An empty secondary index
designates a table cell with empty content.

Variable: Yes

Restrictions: Must be a valid number or regexp if required.

As string

The Primary index(876) or Secondary index(876) is interpreted as a plain string. The
sub-item is determined by matching its representation against that string.

Variable: No

Restrictions: None

As number
The Primary index(876) or Secondary index(876) is interpreted as a number. The
sub-item is determined by its index.

Variable: No

Restrictions: None

As regexp

The Primary index(876) or Secondary index(876) is interpreted as a regexp (see section
49.3(955)). The sub-item is determined by matching its representation against that
regexp.

Variable: No

Restrictions: None

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

42.13. Windows, Components and Items 880

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.13.5 Window group

A Window group’s only purpose is to provide structure to the Windows(858) of a
test suite. If you have to manage a large number of Windows(858) you can even
nest Window groups.

Contained in: Windows and components(881), Window group(878).

Children: Window group(878), Window(858).

Execution: Cannot be executed.

Attributes:

Figure 42.92: Window group attributes

Name
You can choose an arbitrary name. It is displayed in the tree view of the suite.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

42.13. Windows, Components and Items 881

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.13.6 Component group

A Component group’s only purpose is to provide structure to the Components(869)

of a Window(858). If you have to manage a large number of Components(869) inside
a Window(858) you can even nest Component groups.

Contained in: Window(858), Component group(879).

Children: Component group(879), Component(869).

Execution: Cannot be executed.

Attributes:

42.13. Windows, Components and Items 882

Figure 42.93: Component group attributes

Name
You can choose an arbitrary name. It is displayed in the tree view of the suite.

Variable: No

Restrictions: None

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.13. Windows, Components and Items 883

42.13.7 Windows and components

The Windows and components node is always located at the end of the suite.
It is the place where all of the Windows(858), Components(869) and Items(875) of the
test suite are collected.

Contained in: Root node

Children: Window group(878), Window(858).

Execution: Cannot be executed.

Attributes:

Figure 42.94: Windows and components attributes

QF-Test ID
At the moment the QF-Test ID attribute has no meaning for this type of node.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

42.14. Deprecated nodes 884

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.14 Deprecated nodes

The following nodes have been replaced by newer node types. The nodes can still be
executed, but you shouldn’t use them anymore.

42.14.1 Test

Before QF-Test version 2 the Test node was one of the main building blocks ofNote
a test suite. It had a few shortcomings however: Its setup/cleanup structure
was too linear and inflexible for complex scenarios and it was never clear

whether a Test node represented a logical test case or was just used to implement some
sequence. Thus Test nodes have been replaced with Test set(566) and Test case(558) nodes.

A Test is a special Sequence(577) that executes extra setup and cleanup code before and
after the execution of its child nodes to ensure that each of the children runs under
similar conditions and to prevent unwanted side effects between the execution of one
child and the next. To do so, a Test has two special, optional child nodes besides its
normal children, a Setup(595) as the first and a Cleanup(598) as the last node.

With its Implicitly catch exceptions(885) attribute a Test also offers special exception handling
to prevent exceptions in one Test from aborting a whole test run.

For special cases of data driven testing a Test may also contain a Data driver(603), whereas
such is typically done in combination with Test sets(566) as described in chapter 23(295). That
functionality can be achieved by using Test step nodes.

For backwards compatibility and to ease transition from old-style Test nodes to Test set
and Test case nodes QF-Test treats nodes as a Test set or Test case for documentation
and report if their place in the hierarchy allows it. In some cases Test nodes have been
treated as Test step nodes, e.g. if data-driven test steps have been used.

Old test suites with a structure based on Test nodes can by migrated to make use of the
new features of Test sets and Test cases. To this end, right-click on a Test node to bring up
the context menu. If a transformation is allowed, QF-Test will offer to transform the Test
node into a Test set, Test case or Test step node.

It is possible to convert a whole hierarchy of Test nodes to a hierarchy of Test set and Test3.0+
case nodes by selecting the recursive conversion option in the popup menu.

42.14. Deprecated nodes 885

Both Test set and Test case nodes may contain Setup or Cleanup nodes for backwardsNote
compatibility. In a Test set, these work just as in a Test: Setup and Cleanup are executed
for each test contained in the Test set. In a Test case however, Setup and Cleanup are only
run once at the beginning and end of its execution. If a Test set or Test case has both a
Dependency and Setup/Cleanup nodes, the Dependency will be executed first. Setup and
Cleanup will have no impact on the dependency stack described in section 8.6.3(147).

Contained in: All kinds of sequences(558).

Children: Optional Data driver(603) followed by an optional Setup(595) at the beginning, then
any kind of executable nodes and an optional Cleanup(598) as last node.

Execution: The Variable definitions(885) of the Test are bound. If there is a Data driver(603)

node, it is executed to create a data driving context and bind one or more Data binders
for iteration over the determined data sets as described in chapter 23(295). For each of
its normal child nodes, the Setup(595) is executed, then the child and then the Cleanup(598).
After the last execution of the Cleanup is complete, the variables are unbound again.

Attributes:

42.14. Deprecated nodes 886

Figure 42.95: Test attributes

Name
The name of a sequence is a kind of short description. It is displayed in the tree
view, so it should be concise and say something about the function of the
sequence.

Variable: No

Restrictions: None

Name for separate run log

If this attribute is set it marks the node as a breaking point for split run logs and
defines the filename for the partial log. When the node finishes, the respective
log entry is removed from the main run log and saved as a separate, partial run

42.14. Deprecated nodes 887

log. This operation is completely transparent, the main run log retains references
to the partial logs and is fully controllable. Please see section 7.1.6(129) for further
information about split run logs.

This attribute has no effect if the option Create split run logs(543) is disabled or split
run logs are explicitly turned off for batch mode via the -splitlog(926) command
line argument.

There is no need to keep the filename unique. If necessary, QF-Test appends a
number to the filename to avoid collisions. The filename may contain directories
and, similar to specifying the name of a run log in batch mode on the command
line, the following placeholders can be used after a ’%’ or a ’+’ character:

Character Replacement
% Literal ’%’ character.
+ Literal ’+’ character.
i The current runid as specified with -runid <ID>(925).
r The error level of the partial log.
w The number of warnings in the partial log.
e The number of errors in the partial log.
x The number of exceptions in the partial log.
t The thread index to which the partial log belongs (for tests run with parallel threads).
y The current year (2 digits).
Y The current year (4 digits).
M The current month (2 digits).
d The current day (2 digits).
h The current hour (2 digits).
m The current minute (2 digits).
s The current second (2 digits).

Table 42.40: Placeholders for the Name for separate run log attribute

Variable: Yes

Restrictions: None, characters that are illegal for a filename will be replaced with
’_’.

Variable definitions
This is where you define the values of the variables that remain bound during the
execution of the sequence’s child nodes (see chapter 6(104)). See section 2.2.5(17)

about how to work with the table.

Variable: Variable names no, values yes

Restrictions: None

42.14. Deprecated nodes 888

Implicitly catch exceptions

When an exception is thrown during the execution of one of the Test’s normal child
nodes, the Test is usually terminated prematurely. This may not be what you want,
since no information is gained from the execution of the rest of the child nodes.

If the Setup and Cleanup of the test are set up so you can guarantee the same initial
conditions for each child node even in the case of an exception, you can set this
attribute to make the Test catch the exception implicitly. That way, if an exception
is caught from a normal child node, the exception is logged and the execution of
that child node is stopped. Then the Test continues with the Cleanup as if nothing
had happened.

Exceptions thrown during the execution of either the Setup or the Cleanup cannot
be caught that way and will always terminate the Test

Variable: No

Restrictions: None

Maximum error level
When a warning, error or exception occurs during a test run, the state of the
corresponding node of the run log is set accordingly. This state is normally
propagated to the parent node in a way that ensures that the error state of a run
log node represents the worst of its child nodes’ states. Using this attribute, the
maximum error state that the run log node for a sequence will propagate, can be
limited.

This value has no effect on the way exceptions are handled. It only affects theNote
error states of the run log nodes and by that the exit code of QF-Test when run in
batch mode (see. section 1.7(12)). It also has no effect on the creation of compact
run logs (see command line argument -compact(916)). The node for a sequence in
which a warning, error or exception occurs is never removed from a compact log,
even if the error is not propagated due to the setting of this attribute.

Variable: No

Restrictions: None

Execution timeout
Time limit for the node’s execution in milliseconds. If that limit expires the
execution of that node will get interrupted.

Variable: Yes

Restrictions: >= 0

QF-Test ID
When using the command line argument -test <n>|<ID>(928) for execution in

42.14. Deprecated nodes 889

batch mode you can specify the QF-Test ID of the node as an alternative to its
qualified name.

Variable: No

Restrictions: Must not contain any of the characters ’\’, ’#’, ’$’, ’@’, ’&’, or ’%’ or
start with an underscore (’_’).

Delay before/after

These attributes cause a delay before or after the execution of the node. If a
value is empty, the Default delay(513) from the global options is used.

Variable: Yes

Restrictions: Valid number >= 0

Comment
Here you can enter a comment that explains the purpose of this node. This is the
preferred way of documenting the test suite.

For detailed documentation, especially for Test set, Test case or Procedure nodes,Note
this text area might not be the right place. There are many excellent editors that
are much better suited to this task. The option External editor command(464) lets
you define an external editor in which comments can be edited conveniently by

pressing
�� ��Alt-Return or by clicking the button.

You can trigger special behaviors of some nodes using doctags, please see
Doctags(1271).

If you enter text in the comment field of a Component node, the node will be con-
sidered as ’used’ when you want to mark or delete unused components.

Variable: Yes

Restrictions: None

42.14.2 Procedure installCustomWebResolver

Until QF-Test 7, the mapping of HTML objects to QF-Test components was done via the
procedure qfs.web.ajax.installCustomWebResolver from the standard library
qfs.qft. It has been replaced by the Install CustomWebResolver(842) node.

42.14. Deprecated nodes 890

Figure 42.96: CustomWebResolver call in Setup node of the Quickstart Wizard

The sections installCustomWebResolver - Parameters(888) and
installCustomWebResolver - Parameter syntax(892) explain the parameters and the
syntax of the procedure.

installCustomWebResolver - Parameters

The parameters are sorted by relevance. So, for example, as component recognition is
mostly based on determining QF-Test generic class names from CSS classes or other
attributes the parameters genericClasses and attributesToGenericClasses
come first.

installCustomWebResolver

Configure component recognition for web applications.
Parameters

resolver
The short name of the resolver to extend. Either
- autodetect (default) to determine the framework automatically or
- custom if you do not use any of the frameworks supported by QF-Test or
- the framework name, e.g. zk or vaadin. For the correct name please refer to
the table table 51.7(1048).
If you created the start sequence via the quick start wizzard and entered a
framework there, it will be shown in the parameter.

version
The resolver version, e.g. 1 or 1.0 or 1.1.1. The latest available version with

the given restriction will be used. So, if 1.0 is given then the latest 1.0.x will
apply. If empty, the latest available version will be used.
Delete or leave empty when auto detection is used.

42.14. Deprecated nodes 891

genericClasses
(Optional) A list of assignments mapping a css class to a generic QF-Test class.
The parameter evaluates the class attribute of the GUI element only. The
class attribute can hold several css classes, separated by spaces. For the
mapping of a GUI element you can specify one of the css classes.
Can be overridden by attributesToGenericClasses.
e.g. css-button=Button,ui-table=Table.
Sample for a GUI element with sereral css classes:
class=”button css-button active”. Above example makes use of the
css class css-button.
(uses node.getAttribute(class)).

attributesToGenericClasses
(Optional) A list of assignments mapping GUI elements with the given attribute

value to QF-Test components of the given generic class.
The mapping refers to the whole value of the attribute.
Assignments from here can override mappings done in the genericClasses
parameter.
e.g. id=table=Table,name=%.*combo.*=ComboBox.
Sample for overriding the parameter genericClasses with several css classes:
class=button css-button active=Button.

tagsToGenericClasses
(Optional) A list of assignments mapping a tag to a generic QF-Test class.
Tags have to be written in capital letters,
e.g. LI=ListItem.

ignoreTags
(Optional) A list of class names or tags for which to ignore nodes when creating

the parent hierarchy of a node. Tags have to be written in capital letters,
e.g. DIV,TBODY. In this example all DIV and TBODY nodes not mapped to some
other class will be ignored.

ignoreByAttributes
(Optional) A list of attributes values for which to ignore nodes when creating the

parent hierarchy of a node.
e.g. id=container,id=header.

autoIdPatterns
(Optional) A list of patterns specifying ids generated automatically by the

framework. If the id attribute matches the pattern the node will be ignored,
e.g. myAutoId,%auto.*.

customIdAttributes
(Optional) A list of attribute names which can act as id for the component,

42.14. Deprecated nodes 892

e.g. myid,qft-id will use the attributes myid and qft-id for id resolution.

interestingByAttributes
(Optional) A list of attribute values telling QF-Test to create a node in the

component tree for the respective GUI object,
e.g. id=container,id=header.

attributesToQftFeature
(Optional) A list of attributes where the values will to be used for the Feature

attribute of the QF-Test component.

documentJS
(Optional) Javascript code to be injected into the web page. Can be used to

inject custom Javascript functions.

attributesToQftName
(Optional) A list of attributes which will be used for QF-Test name recognition of

components.
Use with care. If not sure contact the QF-Test support team.

nonTrivialClasses
(Optional) A list of CSS classes of objects which shouldn’t be ignored by

QF-Test. Trivial nodes are I, FONT, BOLD etc. If you want to keep them, you
need to activate them here specifying a proper CSS class.
Use with care. If not sure contact the QF-Test support team.

allBrowsersSemihardClasses
(Optional) A list of classes to activate semi-hard events for, e.g. Button, for all

browsers.
Use with care. If not sure contact the QF-Test support team.
An Alternative might be setting the global
Options.OPT_WEB_SEMI_HARD_EVENTS option to true, which works for all
components.

chromeSemihardClasses
(Optional) A list of classes to activate semi-hard events for, e.g. Button, for

Chrome.
Use with care. If not sure contact the QF-Test support team.
An Alternative might be setting the global
Options.OPT_WEB_SEMI_HARD_EVENTS option to true, which works for all
components.

ieSemihardClasses
(Optional) A list of classes to activate semi-hard events for, e.g. Button, for IE.
Use with care. If not sure contact the QF-Test support team.

42.14. Deprecated nodes 893

An Alternative might be setting the global
Options.OPT_WEB_SEMI_HARD_EVENTS option to true, which works for all
components.

mozSemihardClasses
(Optional) A list of classes to activate semi-hard events for, e.g. Button, for

Firefox.
Use with care. If not sure contact the QF-Test support team.
An Alternative might be setting the global
Options.OPT_WEB_SEMI_HARD_EVENTS option to true, which works for all
components.

edgeSemihardClasses
(Optional) A list of classes to activate semi-hard events for, e.g. Button, for

Edge.
Use with care. If not sure contact the QF-Test support team.
An Alternative might be setting the global
Options.OPT_WEB_SEMI_HARD_EVENTS option to true, which works for all
components.

allBrowsersHardClasses
(Optional) A list of classes to activate hard events for, e.g. Button, for all

browsers.
Use with care. If not sure contact the QF-Test support team.
An alternative might be activating ”Replay as hard event” for mouse-click nodes.

chromeHardClasses
(Optional) A list of classes to activate hard events for, e.g. Button, for Chrome.
Use with care. If not sure contact the QF-Test support team.
An alternative might be activating ”Replay as hard event” for mouse-click nodes.

ieHardClasses
(Optional) A list of classes to activate hard events for, e.g. Button, for IE.
Use with care. If not sure contact the QF-Test support team.
An alternative might be activating ”Replay as hard event” for mouse-click nodes.

mozHardClasses
(Optional) A list of classes to activate hard events for, e.g. Button, for Firefox.
Use with care. If not sure contact the QF-Test support team.
An alternative might be activating ”Replay as hard event” for mouse-click nodes.

edgeHardClasses
(Optional) A list of classes to activate hard events for, e.g. Button, for Edge.
Use with care. If not sure contact the QF-Test support team.
An alternative might be activating ”Replay as hard event” for mouse-click nodes.

42.14. Deprecated nodes 894

installCustomWebResolver - Parameter syntax

If a parameter can take more than one entry you need to separate the entries by com-
mas. The comma may be followed by a line break, however, not by a space.

The parameter syntax consists of the following expressions, sorted by relevance:

%
% denotes the following string as a regular expression.

%list.* refers to all values starting with list

Can be used with all parameters.

css-class=generic class
Maps an HTML element with the given css class to a QF-Test component of the

given generic class.

css-button=Button maps an HTML element with the css class css-button
to a QF-Test component of the generic class Button.

Can be used with the parameter genericClasses.

attribute=value=generic class
Maps an HTML element with the given attribute value to a QF-Test component

with the given generic class.

role=datatable=Table assigns the generic QF-Test class Table if the at-
tribute role has the value datatable.

Can be used with the parameter attributesToGenericClasses.

TAG=generic class
Maps an HTML element with the given tag to a QF-Test component of the given

generic class. Tags have to be written in capital letters.

LI=ListItem maps the HTML element with the tag li to a QF-Test component
with the generic class ListItem.

Can be used with the parameter tagsToGenericClasses.

@::ancestor=class name or TAG
Suffix to entries in the parameter lists. The entry will only be evaluated when one

of the ancestors of the GUI element has the given class name or the given tag.
Please use capital letters for the tag.

Can be used with all parameters.

Sample for parameter tagsToGenericClasses:

42.14. Deprecated nodes 895

LI=TableCell@::ancestor=TableRow maps an HTML element with the tag
li to a QF-Test component of the generic class TableCell if an ancestor has
the class TableRow.

...=TAG
The preceding expression is only evaluated if the tag of the HTML element

matches. Precedes the @:: operator.
Tags have to be written in capital letters.

Can be used with all parameters.

Sample for parameter genericClasses:

row=TableRow=SPAN maps an HTML element with the class row to a QF-Test
component of the generic class TableRow if the tag is SPAN.

Sample for parameter genericClasses:

row=TableRow=SPAN@::ancestor=Table maps an HTML element with the
css class row to a QF-Test TableRow only if the tag is SPAN and if it has a some
parent of the class Table.

Sample for parameter interestingByAttributes:

myid=%.*=CONTAINER maps HTML elements with the tag container only if
they have the attribute myid.

@::parent=class name or TAG
Suffix to entries in the parameter lists. The entry will only be evaluated when the

direct parent of the GUI element has the given class name or the given tag.
Please use capital letters for the tag.

Can be used with all parameters.

Sample for parameter genericClasses:

css-data-row=TableRow@::parent=Table
maps the HTML element with the css class css-data-row to a QF-Test compo-
nent of the generic class TableRow only if the direct parent has the class Table.

@::parent<level>=class name or TAG
Suffix to entries in the parameter lists. The entry will only be evaluated when the

parent of the given level of the GUI element has the given class name or the
given tag. Please use capital letters for the tag.

The level relies on the component structure recorded by QF-Test or the generated
DomNode, so they could fail if the web-page or your resovler get changed. You
should consider using the normal @::ancestor operator in that case or map-
ping a dedicated parent to a specific parent class which you can then use with
@::parent or @::ancestor. The sample in CustomWebResolver – Tables(1021)

shows this technique.

42.14. Deprecated nodes 896

Can be used with all parameters.

Sample for parameter genericClasses:

css-button=Button:ComboBoxButton@::parent<3>=ComboBox maps
the button as of type ComboBoxButton if the parent at level three has the class
ComboBox.

@::ancestor<level>=class name or TAG
Suffix to entries in the parameter lists. The entry will only be evaluated when a

parent of the GUI element up to the given level has the given class name or the
given tag. Please use capital letters for the tag.

Can be used with all parameters.

Sample for parameter genericClasses:

cbx=CheckBox:ListItemCheckBox@::ancestor<3>=List maps the check
box as of type ListItemCheckBox if an ancestor within three parent levels has
the class List. (Count of levels as with @::parent.)

attribute=value
Can be used with the parameters ignoreByAttributes and

interestingByAttributes.

With the parameter ignoreByAttributes the entry has the effect that no nodes
will be created in the component hierarchy for HTML elements with the given at-
tribute value.

With the parameter interestingByAttributes the entry has the effect that a
component will be recorded for HTML elements where the attribute has the given
value.

Sample for parameter ignoreByAttributes:

type=container ignores all nodes where the attribute type has the value
container when creating the parent hierarchy of a node.

Sample for parameter interestingByAttributes:

type=splitpane creates a node in the parent hierarchy if the attribute type has
the value splitpane.

In case you are interested:
@::ancestor=class internally uses the object method
obj.getAncestorOfClass(class).
@::ancestor<level>=class internally uses the object method
obj.getAncestorOfClass(class, level)
@::parent= internally uses the object method obj.getParent()
@::parent<level>= internally uses the object method obj.getNthParent(level)

42.14. Deprecated nodes 897

For details of the methods please refer to Pseudo DOM API(1171).

Chapter 43

Exceptions

There are quite a lot of exceptions that can be thrown during the execution of a test.
This chapter lists the exceptions in hierarchical order, shows the typical error messages
and gives a short explanation.

If you want to work with those exceptions in scripts, please take a look into section
50.10(1002).

TestException

This is the base class of all exceptions that can be thrown during a test run. The
actual exception thrown should almost always be of a derived class. A Catch(661)

with the Exception class(662) set to TestException will catch all possible
exceptions. Just like in Java you should normally not use such a Catch(661) since it
may hide unexpected Exceptions.

ComponentNotFoundException

This exception is thrown whenever the target component for an event(726) or a
check(753) cannot be determined. Failure of a Wait for component to appear(818) will
also cause a ComponentNotFoundException unless the node’s
Wait for absence(820) attribute is set.

ScopeNotFoundException

This exception is thrown whenever the target component of an explicit
scope for an event(726) or a check(753) cannot be determined. Failure of a
Wait for component to appear(818) with an explicit scope will also cause a
ComponentNotFoundException unless the node’s Wait for absence(820) attribute
is set.

Exceptions 899

DocumentNotLoadedException

This exception is a variant of ComponentNotFoundException and thrown
specifically if a Wait for document to load(822) node fails.

PageNotFoundException

This exception is a variant of a ComponentNotFoundException and thrown
specifically if a Selection(742) node fails to select a desired page in a
PDF-Document.

ComponentFoundException

This is the opposite of a ComponentNotFoundException, thrown by a
Wait for component to appear(818) with the Wait for absence(820) attribute set.

ModalDialogException

This exception is thrown when an event(726) is blocked by a modal dialog. See the
option Check for modal dialogs(505) for details.

ComponentCannotGetFocusException

This exception is obsolete and should not occur anymore.Note

This exception is thrown when the target component for a Key event(730) or
Text input(734) is a text component that cannot get the keyboard focus for some
reason. With JDK 1.4 the event cannot be delivered to the component in that
case.

DisabledComponentException

This exception is thrown when the target component for a Mouse event(726),
Key event(730) or Text input(734) is not enabled. In that case the event would be silently
ignored, very likely leading to unexpected results during further execution of the
test.

For backwards compatibility this kind of exception can be suppressed by deacti-
vating the option Throw DisabledComponentException(506).

DisabledComponentStepException

This exception is thrown when the target component for a Mouse event(726),
Key event(730) or Text input(734) is disabled under Windows and components.

Exceptions 900

BadItemException

This exception is thrown by ItemResolvers if element and item types do not
match.

ExecutionTimeoutExpiredException

This exception is thrown when the execution timeout of a node has been
exceeded.

BusyPaneException

This exception is thrown when the target component for a Mouse event(726),
Key event(730) or Text input(734) is covered by a GlassPane with a ”busy” mouse
cursor. The option Wait for ’busy’ GlassPane (ms)(518) determines how long
QF-Test will wait for the GlassPane to disappear before the exception is actually
triggered.

InvisibleDnDTargetException

This exception is thrown when the location in the target component for a
Mouse event(726) of type DRAG_FROM, DRAG_OVER or DROP_TO for a Drag&Drop
operation is invisible and cannot be made visible by scrolling the target
component.

InvisibleTargetComponentException

This exception is thrown when the target component is invisible.

InvisibleTargetItemException

This exception is thrown if the surrounding target component is visible, but the
target element in it is invisible.

DeadlockTimeoutException

This exception is thrown when the SUT does not react for a given amount of time
which is defined in the option Deadlock detection (s)(516).

DownloadNotCompleteException

This exception is thrown, when waiting for a download that is not complete.

Exceptions 901

DownloadStillActiveException

This exception is thrown, when trying to download to a file that is still blocked by
another download.

NoSuchDownloadException

This exception is thrown, when waiting for a download that was never started.

VariableException

This exception is never thrown itself but is the base class for exceptions thrown in
the context of variable expansion.

BadVariableSyntaxException

This exception is thrown when a value that is to be expanded doesn’t follow a
proper variable syntax (e.g. no closing brace).

MissingPropertiesException

This exception is thrown when no properties or ResourceBundle are available for
the group name of a property or resource looked up with ${group:prop} (see
Load resources(831) and Load properties(834)).

MissingPropertyException

This exception is thrown when a property looked up with ${id:property} is not
available (see Load resources(831) and Load properties(834)).

ReadOnlyPropertyException

This exception is thrown when a script tried to set a value in a special group,9.0+
which does not support changing the value (cf. Special groups(114)).

RecursiveVariableException

This exception is thrown when the expansion of a variable expression leads to
recursive variable lookup, e.g. if you set the variable named x to $(y) and the
variable named y to $(x) and then try to expand the value $(x).

Exceptions 902

UnboundVariableException

This exception is thrown when a variable for a value that is to be expanded
doesn’t exist.

VariableNumberException

This exception is thrown when a variable expansion for a numeric attributes
results in something other than a number.

BadExpressionException

This exception is thrown when evaluating a $[...] expression fails (see section
11.2(171)).

BadTestException

This exception is thrown when evaluating the Condition(648) of an If(647) or Elseif(651)

node fails.

BadRegexpException

This exception is thrown whenever converting a String to a regular expression
(see section 49.3(955)) fails, e.g. for Item(875) or Check text(754) nodes.

BadRangeException

This exception is thrown when the syntax of the Iteration ranges for a Data binder
node has invalid syntax or specifies an index outside the valid data range.

CannotExecuteException

This exception is thrown when execution of a process from a Start SUT client(681),
Start Java SUT client(677) or Start process(684) node fails.

InvalidDirectoryException

This exception is thrown when the Directory(682) attribute of a Start SUT client(681)

node refers to a non-existent directory.

CheckFailedException

Exceptions 903

This exception is thrown when a check(753) node with activated
Throw exception on failure(758) attribute fails.

CheckNotSupportedException

As explained in the section about checks(753), each check can handle only a limited
set of target components. This exception is thrown when the target component is
not suitable for a check.

OperationNotSupportedException

This exception is thrown when an operation like Fetch text(786) is not supported for
the designated target component.

BadComponentException

This exception is thrown, when a component for an event(726) is not suitable, i.e. a
non-window for a Window event(737).

IndexFormatException

This exception is thrown when an invalid index format for a sub-item is
encountered (see section 5.9.1(84)).

IndexFoundException

This exception is thrown when a sub-item is found during execution of a
Wait for component to appear(818) node that looks for the absence of the item.

IndexNotFoundException

This exception is thrown when no sub-item can be located for a given index.

IndexRequiredException

This exception is thrown when no sub-item index is provided for an operation that
requires one, e.g. a Check text(754) on a JTree.

UnexpectedIndexException

This exception is thrown when a sub-item index is provided for an operation that
does not require one, e.g. a Check items(765) on a JTree.

Exceptions 904

ClientNotConnectedException

This exception is thrown when the target client for an operation is not connected.
It differs from a NoSuchClientException(902) in that there is an active process
for that name but no RMI connection.

CannotAttachException

This exception is thrown when attaching to a Windows application failed.

ConnectionFailureException

This exception is thrown when the connection to a client failed.

NoSuchClientException

This exception is thrown when the target client for an operation does not exist.

NoSuchEngineException

This exception is thrown when an engine is referenced that does not exist or
when an attempt is made to use an engine that has not (yet) been connected to
QF-Test.

DuplicateClientException

This exception is thrown if an attempt is made to run more than one client
simultaneously under the same name.

UnexpectedClientException

This exception is thrown when an unexpected exception is thrown in the SUT
during the replay of an event(726). Unless it is due to a bug in QF-Test, it indicates a
problem in the SUT.

ExtensionException

This exception is thrown when a client throws an unexpected exception.

ClientNotTerminatedException

This exception is thrown when a Wait for process to terminate(722) node is executed
and the process doesn’t terminate.

Exceptions 905

UnexpectedExitCodeException

This exception is thrown when the exit code of a terminated client doesn’t match
the expected value in a Wait for process to terminate(722) node’s Expected exit code(723)

attribute.

BadExitCodeException

This exception is thrown when the Expected exit code(723) attribute of a
Wait for process to terminate(722) node doesn’t match the specification and cannot be
parsed.

ComponentIdMismatchException

This exception is thrown when the QF-Test component ID(727) attribute of a node
points to a node that is not a Window(858), Component(869) or Item(875).

UnresolvedComponentIdException

This exception is thrown when the target of the QF-Test component ID(727) attribute
of a node cannot be determined.

TestNotFoundException

This exception is thrown when the Test case(558) or Test set(566) for a Test call(572) cannot
be determined.

DependencyNotFoundException

This exception is thrown when the Dependency(589) for a Dependency reference(592)

cannot be determined.

InconsistentDependenciesException

This exception is thrown when the Dependency(589) cannot be linearized due to
inconsistent references.

RecursiveDependencyReferenceException

This exception is thrown when the Dependency(589) cannot be linearized due to
recursive references.

Exceptions 906

ProcedureNotFoundException

This exception is thrown when the Procedure(627) for a Procedure call(630) cannot be
determined.

StackOverflowException

This exception is thrown when the nesting of Procedure calls(630) gets too deep,
hinting to a problem with endless recursion. See also the option Call stack
size(495).

ValueCastException

This exception is thrown when the value in a Set variable(814) oder Return(633) step
cannot be converted into the specified object type-

UserException

This exception is thrown explicitly by a Throw(667) node.

CannotRethrowException

This exception is thrown when an attempt is made to rethrow an exception with a
Rethrow(669) node but no exception was caught by a Catch(661) node.

ScriptException

This exception is thrown when the execution of a script from a Server script(670) or
SUT script(673) fails.

AndroidSdkException

This is a base class. In order to test Android Applications, a valid Android SDK
needs to be installed. In case QF-Test detects any problem with the Android
SDK, an exception derived from this base class will be thrown.

InvalidAndroidSdkPathException

This exception will be thrown if the specified path does not point to a valid
Android SDK installation.

Exceptions 907

AndroidSdkNotFoundException

This exception will be thrown in case when QF-Test is unable to determine the
Android SDK location.

InvalidAndroidAdbPathException

This exception will be thrown in case a given ADB class path is invalid.

AndroidAdbNotFoundException

This exception will be thrown when no Android Adb was found on the computer.

InvalidAndroidEmulatorPathException

This exception will be thrown in case a given Android emulator path is invalid.

AndroidEmulatorNotFoundException

This exception will be thrown when no Android emulator was found on the
computer.

AndroidVirtualDeviceException

This is a base class. In order to test Android Applications, a valid android
emulator needs to be installed. The emulator can then run an android virtual
device (AVD). If QF-Test is not able to find the android virtual device or if testing
this device is not supported, an exception derived from this base class will be
thrown.

NoAndroidVirtualDeviceException

An exception of this type will be thrown if no avd was found on which the tests
may get executed.

NoSupportedAndroidVirtualDeviceException

An exception of this type will be thrown if no supported avd was found on which
the tests may get executed.

AndroidVirtualDeviceNotFoundException

Exceptions 908

An exception of this type will be thrown if QF-Test was unable to find the specified
avd.

AndroidVirtualDeviceNotSupportedException

An exception of this type will be thrown if QF-Test is not able to test the specified
avd.

AndroidVirtualDeviceParsingException

An exception of this type will be thrown if QF-Test fails to parse the string
specifying the android emulator to use.

BreakException

This is not a standard TestException and cannot be caught by a Catch(661) node. It
is thrown by a Break(646) node in order to break out of a loop. From a script, raising
a BreakException will have the same effect. If thrown outside of a loop, a
BreakException will cause the error below.

ReturnException

This is not a standard TestException and cannot be caught by a Catch(661) node. It
is thrown by a Return(633) node in order to return from a Procedure(627). From a script,
raising a ReturnException will have the same effect. If thrown outside of a
Procedure, a ReturnException will cause the error below.

TestOutOfMemoryException

This is a special exception that is thrown when QF-Test determines that it is
running out of memory during test execution. The exception causes the test to
abort immediately and cannot be caught because once QF-Test has run out of
memory there is little it can do to handle it. QF-Test tries to keep a little reserve
memory so it will at least try to save the run log.

Part IV

Technical reference

Chapter 44

Command line arguments and exit
codes

44.1 Call syntax

The call syntax for interactive and batch mode varies widely since some command line
arguments are specific to interactive mode or batch mode or even sub-modes of batch
mode. Note that all of the arguments have sensible default values which you only need
to override for special cases. In most cases you’ll only need to execute either qftest
[<suite> | <run log>]* to run QF-Test in interactive mode, or qftest -batch
[-runlog [<file>]] [-report <directory>] <suite> to execute a test in
batch mode.

For maximum flexibility the names of all QF-Test arguments are case-insensitive and5.2+
embedded ’-’, ’_’, ’.’ and ’:’ characters are ignored, so -report.html is equivalent to
-reportHtml or -report-html. The latter is the officially documented form because
it avoids conflicts with Windows PowerShell.

The program qftest.exe is a Windows GUI application. When started from a com-Windows
mand shell, it will not wait for QF-Test to terminate but return immediately. Thus, when
executing a test in batch mode, you cannot see whether QF-Test has finished or not
(you may put the command into a .bat file to deal with this behaviour). Furthermore
you won’t see any output from QF-Test in the console window when using qftest.exe.
For both reasons you may prefer to utilize the qftestc.exe Console application when
launching QF-Test from a command shell: It waits for QF-Test to terminate and print
output from Server scripts(670) will be displayed in the console window. Apart from that,
everything said about qftest.exe in this chapter holds true for qftestc.exe too.

In case the macOS App is used those parameters can be defined directly in QF-TestMac

via Edit→Options under General->Startup (please also see the macOS specific note

44.1. Call syntax 911

under Starting QF-Test(12)).

Interactive mode
The full call syntax for interactive mode is:
qftest [-dbg(913)] [-java <executable> (deprecated)(914)]
[-noconsole(914)] [-J<java-argument>]*
[-allow-shutdown [<shutdown ID>](914)] [-daemon(916)]
[-daemonhost <host>(917)] [-daemonport <port>(917)]
[-daemonrmiport <port>(917)] [-dontkillprocesses(917)]
[-engine <engine>(917)] [-groovydir <directory>(918)]
[-help(918)] [-ipv6(918)] [-javascriptdir <directory>(919)]
[-jythondir <directory>(919)] [-jythonport <number>(919)]
[-keybindings <value>(919)] [-keystore <keystore file>(919)]
[-keypass <keystore password>(919)] [-libpath <path>(919)]
[-license <file>(919)] [-license-waitfor <seconds>(919)]
[-logdir <directory>(920)] [-noplugins(921)] [-noupdatecheck(921)]
[-option <name>=<value>(921)] [-options <file>(921)]
[-plugindir <directory>(922)] [-port <number>(922)] [-reuse(924)]
[-run(924)] [-runlogdir <directory>(925)] [-runtime(925)]
[-serverhost <host>(926)] [-shell <executable>(925)]
[-shellarg <argument>(925)] [-suitesfile <file>(927)]
[-systemcfg <file>(927)] [-systemdir <directory>(927)]
[-tempdir <directory>(927)] [-test <n>|<ID>(928)]*
[-usercfg <file>(929)] [-userdir <directory>(929)]
[-variable <name>=<value>(929)]* [-version(930)] [<suite> | <run
log>]*

There are several sub-modes for running QF-Test in batch mode. The default is to
execute one or more test suites. Alternatively QF-Test can be invoked to create test
documentation from test suites or reports from run logs. QF-Test can also be run in
daemon mode where it sits in the background waiting for calls from the outside telling it
what to do (see chapter 55(1193) for further information about the daemon mode). Finally,
showing help or version information can also be seen as separate sub-modes.

Test execution
To execute one or more test suites and create a run log and/or report as a

result, use: qftest -batch [-run(924)] [-dbg(913)]
[-java <executable> (deprecated)(914)] [-noconsole(914)]
[-J<java-argument>]* [-allow-shutdown [<shutdown ID>](914)]
[-clearglobals(916)] [-compact(916)] [-engine <engine>(917)]
[-exitcode-ignore-exception(917)]
[-exitcode-ignore-error(917)] [-exitcode-ignore-warning(918)]
[-groovydir <directory>(918)] [-ipv6(918)]

44.1. Call syntax 912

[-javascriptdir <directory>(919)] [-jythondir <directory>(919)]
[-jythonport <number>(919)] [-keystore <keystore file>(919)]
[-keypass <keystore password>(919)] [-libpath <path>(919)]
[-license <file>(919)] [-license-waitfor <seconds>(919)]
[-logdir <directory>(920)] [-nolog(920)] [-nomessagewindow(920)]
[-noplugins(921)] [-option <name>=<value>(921)]
[-options <file>(921)] [-plugindir <directory>(922)]
[-port <number>(922)] [-report <directory>(922)]
[-report-checks(922)] [-report-customdir <directory>(923)]
[-report-doctags(923)] [-report-errors(923)]
[-report-exceptions(923)] [-report-html <directory>(923)]
[-report-ignorenotimplemented(923)] [-report-ignoreskipped(923)]
[-report-junit <directory>(923)] [-report-name <name>(923)]
[-report-nodeicons(923)] [-report-passhtml(923)]
[-report-piechart(924)] [-report-include-suitename(924)]
[-report-scale-thumbnails <percent>(924)]
[-report-teststeps(924)] [-report-thumbnails(924)]
[-report-warnings(924)] [-report-xml <directory>(924)]
[-runid <ID>(925)] [-runlogdir <directory>(925)]
[-runlog [<file>](925)] [-runtime(925)] [-serverhost <host>(926)]
[-shell <executable>(925)] [-shellarg <argument>(925)]
[-sourcedir <directory>(926)] [-suitesfile <file>(927)]
[-splitlog(926)] [-systemcfg <file>(927)]
[-systemdir <directory>(927)] [-test <n>|<ID>(928)]*
[-threads <number>(929)] [-userdir <directory>(929)]
[-variable <name>=<value>(929)]* [-verbose [<level>](929)]
<suite>+

Test execution via QF-Test daemon
The following parameters can be specified when executing a test

case by calling a daemon: qftest -batch -calldaemon(916)

[-cleanup(916)] [-clearglobals(916)] [-dbg(913)]
[-java <executable> (deprecated)(914)] [-noconsole(914)]
[-J<java-argument>]* [-daemonhost <host>(917)]
[-daemonport <port>(917)] [-exitcode-ignore-exception(917)]
[-exitcode-ignore-error(917)] [-exitcode-ignore-warning(918)]
[-ipv6(918)] [-keystore <keystore file>(919)]
[-keypass <keystore password>(919)] [-nomessagewindow(920)]
[-ping(921)] [-option <name>=<value>(921)] [-options <file>(921)]
[-runid <ID>(925)] [-runlogdir <directory>(925)]
[-runlog [<file>](925)] [-startclean(926)] [-startsut(926)]
[-stopclean(927)] [-stoprun(927)] [-systemdir <directory>(927)]
[-suitedir <dir>(927)] [-systemdir <directory>(927)]

44.1. Call syntax 913

[-terminate(928)] [-timeout <milliseconds>(929)]
[-userdir <directory>(929)] [-variable <name>=<value>(929)]*
[-verbose [<level>](929)] <suite#test case>

Change the XML format of existing test suites
qftest -batch -convertxml(916)

[-convertxml-indent <number>(916)]
[-convertxml-linelength <number>(916)]
[-convertxml-utf8 <true|false>(916)] (<suite> | <directory>)+

Create test documentation
Package or test case documentation can be create for one or more

test suites or whole directories. This is described further in chapter
24(305). The command line syntax is: qftest -batch -gendoc(918)

[-dbg(913)] [-java <executable> (deprecated)(914)]
[-noconsole(914)] [-J<java-argument>]* [-license <file>(919)]
[-license-waitfor <seconds>(919)] [-nomessagewindow(920)]
[-option <name>=<value>(921)] [-options <file>(921)]
[-pkgdoc <directory>(921)] [-pkgdoc-dependencies(921)]
[-pkgdoc-doctags(921)] [-pkgdoc-html <directory>(921)]
[-pkgdoc-includelocal(921)] [-pkgdoc-nodeicons(921)]
[-pkgdoc-passhtml(922)] [-pkgdoc-sortpackages(922)]
[-pkgdoc-sortprocedures(922)] [-pkgdoc-xml <directory>(922)]
[-sourcedir <directory>(926)] [-systemdir <directory>(927)]
[-testdoc <directory>(928)] [-testdoc-doctags(928)]
[-testdoc-followcalls(928)] [-testdoc-html <directory>(928)]
[-testdoc-nodeicons(928)] [-testdoc-passhtml(928)]
[-testdoc-sorttestcases(928)] [-testdoc-sorttestsets(928)]
[-testdoc-teststeps(929)] [-testdoc-xml <directory>(929)]
(<suite> | <directory>)+

Create a report from run logs
To create a report from one or more run logs or whole directories use:

qftest -batch -genreport(918) [-dbg(913)] [-java <executable>
(deprecated)(914)] [-noconsole(914)] [-J<java-argument>]*
[-license <file>(919)] [-license-waitfor <seconds>(919)]
[-nomessagewindow(920)] [-option <name>=<value>(921)]
[-options <file>(921)] [-report <directory>(922)]
[-report-checks(922)] [-report-customdir <directory>(923)]
[-report-doctags(923)] [-report-errors(923)]
[-report-exceptions(923)] [-report-html <directory>(923)]
[-report-ignorenotimplemented(923)] [-report-ignoreskipped(923)]
[-report-junit <directory>(923)] [-report-name <name>(923)]
[-report-nodeicons(923)] [-report-passhtml(923)]

44.1. Call syntax 914

[-report-piechart(924)] [-report-include-suitename(924)]
[-report-scale-thumbnails <percent>(924)]
[-report-teststeps(924)] [-report-thumbnails(924)]
[-report-warnings(924)] [-report-xml <directory>(924)]
[-runlogdir <directory>(925)] (<run log> | <directory>)+

Daemon mode
To run QF-Test in daemon mode as described chapter

55(1193) use: qftest -batch -daemon(916) [-dbg(913)]
[-java <executable> (deprecated)(914)] [-noconsole(914)]
[-J<java-argument>]* [-daemonhost <host>(917)]
[-daemonport <port>(917)] [-daemonrmiport <port>(917)]
[-engine <engine>(917)] [-groovydir <directory>(918)] [-ipv6(918)]
[-javascriptdir <directory>(919)] [-jythondir <directory>(919)]
[-jythonport <number>(919)] [-keystore <keystore file>(919)]
[-keypass <keystore password>(919)] [-libpath <path>(919)]
[-license <file>(919)] [-license-waitfor <seconds>(919)]
[-logdir <directory>(920)] [-nolog(920)] [-nomessagewindow(920)]
[-noplugins(921)] [-option <name>=<value>(921)]
[-options <file>(921)] [-plugindir <directory>(922)]
[-port <number>(922)] [-runtime(925)] [-serverhost <host>(926)]
[-shell <executable>(925)] [-shellarg <argument>(925)]
[-splitlog(926)] [-systemcfg <file>(927)]
[-systemdir <directory>(927)] [-userdir <directory>(929)]
[-variable <name>=<value>(929)]*

Import one test suite into another
qftest -batch -import(918) [-import-from <test suite>(918)]

[-import-into <test suite>(918)] [-import-components(918)]
[-import-procedures(918)] [-import-tests(918)]

Analyze references of a test suite
qftest -batch -analyze(915) [-analyze-target <directory>(915)]

[-suitedir <dir>(927)] [-analyze-references(915)]
[-analyze-duplicates(915)] [-analyze-invalidchar(915)]
[-analyze-emptynodes(915)] [-analyze-components(915)]
[-analyze-procedures(915)] [-analyze-dependencies(915)]
[-analyze-tests(915)] [-analyze-packages(915)]
[-remove-unused-callables(915)] [-remove-unused-components(915)]
[-analyze-transitive(915)] [-analyze-followincludes(916)]
(<suite> | <directory>)+

Merging run logs
qftest -batch -mergelogs(920) [-mergelogs-mode [<mode>](920)]

44.2. Command line arguments 915

[-mergelogs-usefqn(920)] [-mergelogs-resultlog [<file>](920)]
[-mergelogs-masterlog [<file>](920)] (<run log> |
<directory>)+

Get version information
qftest -batch -version(930)

Cleanly terminate one specific QF-Test instance running on the local system (see
-allow-shutdown [<shutdown ID>](914))

qftest -batch -shutdown <ID>(926) 4711

Pause the current test run on the local system
qftest -batch -interrupt-running-instances(918)

[-timeout <milliseconds>(929)]

Compress images in an existing test suite
qftest -batch -compress(916) <suite>+

Get help
qftest -batch -help(918)

44.2 Command line arguments

Command line arguments for QF-Test fall in three categories. They can be mixed freely.

44.2.1 Arguments for the starter script

These arguments are evaluated directly by the qftest shell script or executable and
override settings determined during installation. On Linux these settings are stored in
the file launcher.cfg in QF-Test’s system directory, on Windows the file is called
launcherwin.cfg.

-batch
Run QF-Test in batch mode. This causes QF-Test to load and execute a test

suite directly and finish with an exit code that represents the result of the test run.

-dbg
Turn on debugging output for the starter script. The same effect is achieved by

setting the environment variable QFTEST_DEBUG to a non-empty value. On
Windows this causes QF-Test to open a console window to display the output that
would otherwise be invisible unless the argument -noconsole(914) is also given.
This also turns on debugging output for the qfclient and java helper
programs when using the old connection mechanism (see chapter 46(935)).

44.2. Command line arguments 916

-java <executable> (deprecated)
The Java executable used to run QF-Test. The default is java on Linux and
javaw.exe on Windows, unless a different value was set during installation.
This argument will be removed in a future version of QF-Test.

-noconsole (Windows only)
On Windows this argument suppresses the console window that would otherwise
be opened in case -dbg(913) is specified.

44.2.2 Arguments for the Java VM

You can pass arguments to the Java VM through the starter script by prepending them
with -J, e.g. -J-Duser.language=en to set a system property. To set the classpath,
prepend -J only to the -cp or -classpath argument, not to the actual value, e.g.
-J-classpath myclasses.jar. When setting the classpath this way, QF-Test’s own
jar archives need not to be taken into account.

44.2.3 Arguments for QF-Test

The rest of the arguments are handled by QF-Test itself when it is executed by the Java
virtual machine. These arguments can also be placed in a file using the syntax
<name>=<value> for arguments with parameters or <name>=true or
<name>=false to turn a simple argument on or off. By default this file is called
qftest.options, located in the bin directory of QF-Test and used only for internal
logging purposes. If you change anything in this file, you can move it to QF-Test’s
system directory so your changes will still apply after upgrading. Alternatively you can
use the -options <file>(921) argument to specify a different file. Arguments given on
the command line override arguments from an option file except for those which can be
given multiple times. In the latter case the arguments are merged.

-allowkilling
Deprecated, use -allow-shutdown without shutdown ID instead.

-allow-shutdown [<shutdown ID>]
Explicitly specifies that this QF-Test instance can be cleanly terminated via a

batch call with the -shutdown <ID>(926) argument. An optional string argument
can be provided as shutdown ID which allows selective process termination
without knowing the process ID. The shutdown ID must contain at least one
non-numeric character to be distinguishable from the numerical process ID. If
-allow-shutdown [<shutdown ID>](914) has not been specified on the
command line, a running QF-Test process can only be terminated cleanly by

44.2. Command line arguments 917

means of the process ID. The argument -allow-shutdown false prohibits all
clean termination of the QF-Test instance, even if -shutdown <ID>(926) is used
with the correct process ID.

-analyze (batch mode only)
Run the static validation of test suites. Analyzing results are stored to a given file.

-analyze-target <directory> (batch mode only)
The target folder, where the result file should be created.

-analyze-references (batch mode only)
Switch for analyzing references the given test suite.

-analyze-duplicates (batch mode only)
Switch for analyzing duplicates of the given test suite.

-analyze-invalidchar (batch mode only)
Checks the given test suite for invalid characters in node names.

-analyze-emptynodes (batch mode only)
Checks the given test suite for empty nodes.

-analyze-components (batch mode only)
Switch for analyzing components of the given test suite.

-analyze-dependencies (batch mode only)
Switch for analyzing dependency references of the given test suite.

-analyze-procedures (batch mode only)
Switch for analyzing procedure calls of the given test suite.

-analyze-tests (batch mode only)
Switch for analyzing test calls of the given test suite.

-analyze-packages (batch mode only)
Switch for analyzing packages of the given test suite.

-remove-unused-callables (batch mode only)
Switch to remove unused callable nodes.

-remove-unused-components (batch mode only)
Switch to remove unused components.

-analyze-transitive (batch mode only)
Switch for analyzing references and calls transitively, i.e. follow the calls and

analyze its content also.

44.2. Command line arguments 918

-analyze-followincludes (batch mode only)
Switch for analyzing all included test suites of the given test suite.

-calldaemon (batch mode only)
Connect to a running QF-Test daemon to execute a test case.

-cleanup (calldaemon mode only)
With this argument all TestRunDaemons belonging to a daemon are cleaned up

and all clients killed before running the test.

-clearglobals (batch mode and calldaemon mode only)
If more than one test suite is specified for batch execution, clear global variables

and resources before the execution of each test suite. Can also be used in
calldaemon mode to clear globals before assigning variables from the command
line and starting the test and, if used in combination with -stopclean(927), to
clear globals after the test.

-compact (batch mode only)
Create a compact run log which retains only those branches and nodes that

contain warnings, errors, exceptions or other information that is relevant to the
report. This is equivalent to activating the option Create compact run log(549) in
interactive mode. Ignored if log file creation is suppressed with -nolog(920).

-compress (batch mode only)
Loss-free compresses the images in an existing test suite.

-convertxml (batch mode only)
Run in batch mode to automatically convert the XML file format of test suites

according to the following arguments or options.

-convertxml-indent <number> (convertxml mode only)
Number of blank characters to use per level of indentation. If not specified the

value of the option Number of blanks for indentation when saving test suites(457) is
used.

-convertxml-linelength <number> (convertxml mode only)
Maximum length of lines containing XML attributes. If not specified the value of

the option Line length for saving test suites(457) is used.

-convertxml-utf8 <true|false> (convertxml mode only)
Whether to save the converted suites with UTF-8 (value true) or ISO-8859-1

encoding (value false). If not specified the value of the option Use UTF-8
encoding for saving test suites(457) is used.

-daemon
Run QF-Test in daemon mode. Further information is provided in chapter 55(1193).

44.2. Command line arguments 919

-daemonhost <host> (daemon or calldaemon mode only)
In calldaemon mode, specify the host where to locate the QF-Test daemon. The

default is localhost. When starting a daemon, either in interactive or in batch
mode, this parameter defines the hostname or IP address that daemon objects
use at RMI level. The default in this case is chosen by Java, typically the IP
address of the primary local network interface.

-daemonport <port>
Specify the registry port for the QF-Test daemon to listen on and to connect to

respectively. The default is 3543 or the port defined with -port <number>(922).

-daemonrmiport <port>
Specify the port that the QF-Test daemon should use for RMI communication.

Useful only when running the daemon behind a firewall. When running
unprotected without SSL (see section 55.3(1210)) this can be identical to the
daemon port specified with -daemonport <port>(917). If using SSL, two
different ports are required.

-dontkillprocesses (batch mode only)
When finishing batch execution, don’t explicitly kill processes started by QF-Test

as part of the tests. However, whether or not a sub-process of QF-Test survives
QF-Test’s exit is system-dependent.

-engine <engine>
Specify which engine license(s) to use. This option is only useful in case the

QF-Test license contains a mix of GUI engine(s) with different numbers of engine
licenses. In that case it may be necessary to specify the engine license(s) to use
in order to prevent license conflicts with colleagues using the same license.
Possible values are ”all” to use all supported licenses, ”ask” to bring up a dialog
for engine selection or any combination of ”awt” for AWT/Swing, ”fx” for JavaFX,
”swt” for SWT or ”web” for Web, e.g. ”awt,web”. This is explained in more detail in
section 41.1.9(471).

-exitcode-ignore-exception (batch and calldaemon mode)
For exit code calculation exceptions, errors and warnings are ignored. This

means if exceptions, errors or warnings occurred during a test run the exit code
will be 0. This option is helpful when integrating QF-Test with build tools that rate
a build as failed dependent on the the exit code.

-exitcode-ignore-error (batch and calldaemon mode)
For exit code calculation errors and warnings are ignored. This means if just

errors and warnings occurred during a test run the exit code will be 0. This option
is helpful when integrating QF-Test with build tools that rate a build as failed
dependent on the the exit code.

44.2. Command line arguments 920

-exitcode-ignore-warning (batch and calldaemon mode)
For exit code calculation warnings are ignored. This means if just warnings

occurred during a test run the exit code will be 0. This option is helpful when
integrating QF-Test with build tools that rate a build as failed dependent on the
the exit code.

-gendoc (batch mode only)
Tell QF-Test that this batch run serves to create test documentation from test

suites.

-genreport (batch mode only)
Tell QF-Test that this batch run serves to create a report from run logs.

-groovydir <directory>
This argument overrides the default location of the directory for additional Groovy
modules. The default directory called groovy is located under QF-Test’s system
directory.

-help
Show help about available command line arguments.

-import (batch mode only)
Import a given test suite into another one. This mode can be used to merge two

test suites.

-import-from <test suite> (batch mode only)
The source test suite, which should be imported into another one.

-import-into <test suite> (batch mode only)
The target tests-suite for importing.

-import-components (batch mode only)
Switch for merging components of two given test suites.

-import-procedures (batch mode only)
Switch for merging packages and procedures of two given test suites.

-import-tests (batch mode only)
Switch for merging test cases and test sets of two given test suites.

-interrupt-running-instances (batch mode only)
Interrupt a test run on the current system and brings up a dialog which allows to

pause or to interrupt the current test run.

-ipv6
QF-Test uses only IPv4 communication, so by default IPv6 support is disabled at

Java level which can reduce startup time significantly. In case you need to enable

44.2. Command line arguments 921

IPv6 support in QF-Test, for example for use within a plugin, you can use this
argument.

-javascriptdir <directory>
This argument overrides the default location of the directory for additional

JavaScript modules. The default directory called javascript is located under
QF-Test’s system directory.

-jythondir <directory>
This argument overrides the default location of the directory for additional Jython

modules. The default directory called jython is located under QF-Test’s system
directory.

-jythonport <number>
Tell the embedded Jython interpreter to listen for TCP connections at the

specified port. You can then use telnet to connect to that port and get an
interactive Jython command line.

-keybindings <value> (interactive mode only)
Currently used only for macOS to switch between the new default Mac bindings

(value system) or the old, Windows oriented QF-Test bindings (value classic).

-keystore <keystore file>
An alternative keystore file to use for securing daemon communication with SSL.

See section 55.3(1210) for details. To disable SSL by specifying no keystore, use
this argument in the form -keystore=.

-keypass <keystore password>
The password for the keystore file used for securing daemon communication with
SSL. See section 55.3(1210) for details.

-kill-kunning-instances
Deprecated, use -shutdown all instead.

-libpath <path>
Override the library path option (Directories holding test suite libraries(469)). The

directories of the library path should be separated by the standard path separator
character for the system, i.e. ’;’ for Windows and ’:’ for Linux. QF-Test’s include
directory will automatically be appended to the path.

-license <file>
Set the location of the license file (see section 1.5(9)).

-license-waitfor <seconds>;
Specify an interval in seconds to wait during QF-Test startup in case a license is

not immediately available. This timeout is also in effect when renewing a lease
from the QF-Test license server and the server is temporarily unavailable.

44.2. Command line arguments 922

-logdir <directory>
This argument overrides the default location of the directory into which QF-Test

saves its internal log files. The default log directory is called log and located
under QF-Test’s system directory.

-mergelogs (batch mode only)
Tell QF-Test that this batch run serves to merge several run logs. You can find a

detailed description at section 7.1.9(131).

-mergelogs-masterlog [<file>] (batch mode only)
The path to the run log which will act as master run log for log mering, if the run

log should be patched with newer results. Use this switch, if you want to replace
individual test cases in that run log with results from a rerun.

-mergelogs-mode [<mode>] (batch mode only)
Specifies the mode how run logs should be merged based in the main run log,

specified with the -mergelogs-masterlog [<file>](920) switch. You can
specify the modes ”replace”, ”merge” and ”append”. ”replace” takes the new
results and overwrites the existing test cases from the main run log. ”merge”
adds the new test cases to main run log and ”append” simply adds the new run
log to the main run log.

-mergelogs-resultlog [<file>] (batch mode only)
The path to the run log which will contain the merged results of the master run

log and the new run logs with updates. So, this will be the new and clean run log
file.

-mergelogs-usefqn (batch mode only)
Use that switch, if the full qualified name of test cases should be used in case of

merging run logs. Otherwise only the name of test cases will be used without test
set names.

-nolog (batch mode only)
Suppress the automatic creation of a run log. If any of -runlog [<file>](925),
-report <directory>(922), -report-html <directory>(923),
-report-xml <directory>(924) or -report-junit <directory>(923) is
given, this argument is ignored. This option is retained for backwards
compatibility only. To keep memory use manageable, split run logs should be
used instead (see -splitlog(926)).

-nomessagewindow (batch mode only)
In case of a fatal error in batch mode QF-Test prints an error message to the

console and for improved visibility also brings up an error dialog for about 30
seconds. That dialog can be suppressed with the help of this argument. Batch

44.2. Command line arguments 923

commands that don’t require an actual display, i.e. all batch commands that do
not execute tests, will run in AWT headless mode if this argument is specified.

-noplugins
Prevent from loading plugins in QF-Test as well as in clients. This may help to

debug problems caused by plugins.

-noupdatecheck
Using this argument disables the automatic update check. This overrides the

update options (see section 41.1.10(472)).

-option <name>=<value>
Specifies options. -option <name>=<value> sets a value of the option with a

name <name> to <value>. This argument can be given more than once to set
several options.

-options <file>
Override the location of the file used to specify additional command line

arguments. This argument can be given more than once to use several sources
of command line arguments.

-ping (calldaemon mode only)
Use this option, if you want to check whether a daemon is up and running.

-pkgdoc <directory> (batch mode only)
With this argument QF-Test creates both HTML and XML pkgdoc documentation.
If no directory is given, it is created from the basename of the suite.

-pkgdoc-dependencies (batch mode only)
Whether to list dependencies when creating the pkgdoc documentation. Default

is true, use -pkgdoc-dependencies=false to disable.

-pkgdoc-doctags (batch mode only)
Whether to use the QFS doctag extensions when creating the pkgdoc

documentation. Default is true, use -pkgdoc-doctags=false to disable.

-pkgdoc-html <directory> (batch mode only)
With this argument QF-Test creates HTML pkgdoc documentation. If no directory
is given, it is created from the basename of the suite.

-pkgdoc-includelocal (batch mode only)
Whether to include local packages and procedures (those whose names begin

with an ’_’). Default is false.

-pkgdoc-nodeicons (batch mode only)
Whether to show icons for nodes in the pkgdoc documentation. Default is true,

use -pkgdoc-nodeicons=false to disable.

44.2. Command line arguments 924

-pkgdoc-passhtml (batch mode only)
Whether to pass HTML tags in comments through to the HTML pkgdoc. Default

is true, use -pkgdoc-passhtml=false to disable.

-pkgdoc-sortpackages (batch mode only)
Whether to sort packages alphabetically. Default is true, use

-pkgdoc-sortpackages=false to disable.

-pkgdoc-sortprocedures (batch mode only)
Whether to sort procedures alphabetically. Default is true, use

-pkgdoc-sortprocedures=false to disable.

-pkgdoc-splitparagraph (batch mode only)
Specifies whether comments are splitted into paragraphs by using empty lines.

Default is true, with -pkgdoc-splitparagraph=false it is possible to disable
this option.

-pkgdoc-stylesheet <file> (batch mode only)
Optional XSLT Stylesheet for the second step of the transformation.

-pkgdoc-xml <directory> (batch mode only)
With this argument QF-Test creates XML pkgdoc documentation. If no directory

is given, it is created from the basename of the suite.

-plugindir <directory>
This argument overrides the default location of the directory for plugins, jar files

that should be made accessible to scripts. The default directory called plugin is
located under QF-Test’s system directory. See section 50.2(962) for more
information about plugins.

-port <number>
The TCP port on which QF-Test communicates with the SUT. By default QF-Test

uses an arbitrary dynamic port where it creates its own RMI registry. A specific
port should only be requested if it must be hard-coded when starting the SUT.

-report <directory> (batch mode only)
Create a combined XML/HTML report. The directory name may contain

placeholders as explained in section 44.2.4(930).

-report-checks (batch mode only)
Whether to list checks in the report. Default is false. Please note: the argument

refers only to checks with default result handling, i.e. just logging to the run log,
not setting a variable or throwing an exception. For more information please see
section 24.1.2(307).

44.2. Command line arguments 925

-report-customdir <directory> (batch mode only)
Directory containing css stylesheets and icons for custom reports.

-report-doctags (batch mode only)
Whether to use the QFS doctag extensions when creating the report. Default is

true, use -report-doctags=false to disable.

-report-errors (batch mode only)
Whether to list errors in the report. Default is true, use

-report-errors=false to disable.

-report-exceptions (batch mode only)
Whether to list exceptions in the report. Default is true, use

-report-exceptions=false to disable.

-report-html <directory> (batch mode only)
Create an HTML report. The directory name may contain placeholders as

explained in section 44.2.4(930).

-report-ignorenotimplemented (batch mode only)
Whether to ignore nodes that are not implemented in the report in which case

the legend and respective columns for not implemented tests are also not shown.
Default is false.

-report-ignoreskipped (batch mode only)
Whether to ignore skipped nodes in the report in which case the legend and

respective columns for skipped tests are also not shown. Default is false.

-report-junit <directory> (batch mode only)
Create a report in JUnit XML format as understood by many Continuous

Integration Tools. The directory name may contain placeholders as explained in
section 44.2.4(930).

-report-name <name> (batch mode only)
Specify the name for the report, meaning its identifier, not a file name. Default is

the runid. The name may contain placeholders as explained in section 44.2.4(930).

-report-nodeicons (batch mode only)
Whether to show icons for nodes in the report. Default is true, use

-report-nodeicons=false to disable.

-report-passhtml (batch mode only)
Whether to pass HTML tags in comments through to the HTML report. Default is

true, -report-passhtml=false to disable.

44.2. Command line arguments 926

-report-piechart (batch mode only)
Whether to create a pie chart in the top part of the HTML report. Default is true,
-report-piechart=false to disable.

-report-include-suitename (batch mode only)
Whether to use the value of the Name(556) attribute of the Test suite(555) step

as label of a testsuite in the HTML report. Default is true,
-report-include-suitename=false to use the file name instead.

-report-scale-thumbnails <percent> (batch mode only)
How to scale thumbnail images for screenshots in the error listings of the report.

A plain integer value is interpreted as percent of the original image size. Since
QF-Test version 9.0 the preferred alternative is a string of the form
<width>x<height> that causes images to be scaled proportionally so that neither
the given width nor height are exceeded. Default is 140x70.

-report-teststeps (batch mode only)
Whether to list test steps in the report. Default is true, use

-report-teststeps=false to disable.

-report-thumbnails (batch mode only)
Whether to display thumbnail images for screenshots in the error listings of the

report. Default is false.

-report-warnings (batch mode only)
Whether to show warning information in the report. Default is true.

-report-xml <directory> (batch mode only)
Create an XML report. The directory name may contain placeholders as

explained in section 44.2.4(930).

-reuse (interactive mode only)
This argument is used mainly when launching QF-Test from a desktop icon or

the Windows explorer through a file association. It tells the newly started QF-Test
instance to search for an already running version of QF-Test and ask that to open
the given file(s). If another instance can be reused in that way, the newly started
program will terminate immediately and new windows for the file(s) will be opened
by the old instance.

-run (interactive and batch mode)
If this parameter is set for the interactive mode, it will directly start the specified

test suites or tests after launching QF-Test. Using it in batch mode explicitly tells
QF-Test that this batch run is for actual test execution as opposed to generating
documentation or a report. As this is the default operation for batch mode this
argument can be omitted.

44.2. Command line arguments 927

-runid <ID> (batch and calldaemon mode)
Specify an ID for the test run. The ID may contain placeholders as explained in

section 44.2.4(930) and will itself serve as a replacement for the placeholder %i/+i.

-runlog [<file>] (batch and calldaemon mode)
Save the run log in the given file. The optional filename may contain

placeholders as explained in section 44.2.4(930). If no filename is given, it is
composed of the basename of the suite and a timestamp. If missing, the
extension .qrz is added automatically and the run log is saved compressed.
Otherwise the extension .qrl or .qrz determines compression. Even without
this argument a run log is created unless suppressed with -nolog(920) or when a
report is generated. The default value is %p%b.qrz. In calldaemon mode, a run
log will be stored only if a (local) filename is specified.

-runlogdir <directory>
In interactive mode this argument overrides the option Directory for run logs(541) at

a special layer for command line arguments. If specified, interactively changing
the option has no effect whereas changing it at script level is still possible. In
batch mode this directory serves as the target base directory for saving run logs
unless the filename of the run logs specified with -runlog [<file>](925) is an
absolute path. If this argument is given and a report is generated, the files in the
report will be laid out according to the structure of the run logs relative to this
directory. The directory name may contain placeholders as explained in section
44.2.4(930).

-runtime
Use a runtime license only. In batch mode, QF-Test will normally use a runtime

license (or multiple runtime licenses if -threads <number>(929) is given). If not
enough free runtime licenses are available, full development licenses will be used
instead unless -runtime is given in which case no development license is used
and QF-Test will fail with an error message. In interactive mode, if -runtime is
given, QF-Test will use a runtime license instead of a full development license. In
that mode, any test suite can be loaded and tests can be run interactively as
usual, including debugging support. Saving of test suites will be disabled,
however, though test suites can be modified for temporary experiments.

-shell <executable>
The shell to use when executing a Execute shell command(687) node. Default for

Linux is /bin/sh, for Windows COMMAND.COM or cmd.exe.

-shellarg <argument>
The argument that causes the shell specified with -shell <executable>(925)

to execute the following argument and then exit. For Linux shells this is typically
-c, COMMAND.COM and cmd.exe expect /c. If you have Linux tools installed on

44.2. Command line arguments 928

Windows and specify sh or bash as the shell to use, don’t forget to change
-shellarg <argument> to -c.

-shutdown <ID> (batch mode only)
Cleanly terminates the QF-Test instance with the given process ID (only

digits) or shutdown ID on the local system, if allowed (see
-allow-shutdown [<shutdown ID>](914)). In batch mode this means that a
running test is stopped, connected clients are terminated, the run log is saved,
and the QF-Test instance terminates with the exit code -12. If QF-Test is running
interactively, all open testsuites are closed without saving modifications. In
special cases this might be useful, especially if auto-save is configured in a
meaningful way (see Auto-save interval (s)(468)). The special shutdown ID all
terminates all running QF-Test processes that were started with the
-allow-shutdown [<shutdown ID>](914) argument to explicitly allow that.

-serverhost <host>
Set the host name or IP address for communication between QF-Test and the

SUT. You may need to do this when running QF-Test and the SUT on different
machines or if you experience troubles with reverse name lookup. The default is
to use the loopback interface. To use the primary network interface of the local
host, specify -serverhost= with an empty value.

-sourcedir <directory> (batch mode only)
If this argument is given and a report is generated, the files in the report will be

laid out according to the structure of the test suites relative to this directory unless
-runlogdir <directory>(925) is also specified. In any case, the directory of a
test suite listed in the report will only be listed if this argument is specified and the
test suite is located below this directory.

-splitlog (batch mode only)
In batch mode split run logs (see section 7.1.6(129)) are enabled by default and

can be turned off via -splitlog=false. If -splitlog is explicitly specified
without parameter, the default extension for run logs is changed from .qrz to
.qzp so as to create split run logs in ZIP format. The same can be achieved by
specifying the name of the run log explicitly with the desired extension.

-startclean (calldaemon mode only)
With this argument all contexts of the shared TestRunDaemon are cleaned up

and released before running the test.

-startsut (only for internal use)
This argument is used to start a client application on a remote host. You should

not work with this argument directly. The standard library qfs.qft contains a
procedure qfs.daemon.startRemoteSUT which can be use for this purpose.

44.2. Command line arguments 929

-stopclean (calldaemon mode only)
With this argument all contexts of the shared TestRunDaemon are cleaned up

and released after running the test.

-stoprun (calldaemon mode only)
Stop a running test executed by the Daemon on the given host and port. This

argument can be combined with -cleanup(916) or -stopclean(927).

-suitedir <dir> (calldaemon mode only)
Specify the (remote) directory where the QF-Test Daemon looks for test suites.

Use an absolute path when specifying the test to execute, if this argument is not
given.

-suitesfile <file> (interactive and batch mode)
Specify a text file containing test suites or test cases to be executed. You should

specify one test suite per line. Individual test cases can be added as for the the
-test <n>|<ID> argument. You can find some samples in the table below.

Entries in file Description
path/suite1.qft
path/suite2.qft Both test suites will be executed.

path/suite1.qft
path/suite2.qft#id-tc1

Test suite suite1.qft will be executed completely
and test case ’id-tc1’ of suite2.qft will be executed.

path/suite1.qft
-test tc1
-test tc2 Test cases tc1 and tc2 of suite1.qft will be executed.

Table 44.1: Samples -suitesfile <file>

-systemcfg <file>
Set the location of the system configuration file (see section 1.6(11)).

-systemdir <directory>
Override the location of the directory holding the system configuration files (see

section 1.6(11)) including optional plugins and scripting modules. If
any of -systemcfg <file>(927), -plugindir <directory>(922),
-jythondir <directory>(919), -groovydir <directory>(918) or
-javascriptdir <directory>(919) are also specified they have precedence.

-tempdir <directory> (interactive mode only)
Can be used to specify a temporary directory which is needed on Windows only

for the context sensitive help system. By default the values of the environment
variables TEMP and TMP are tried.

44.2. Command line arguments 930

-terminate (calldaemon mode only)
Use this option, if you want to terminate a running QF-Test daemon.

-test <n>|<ID> (interactive and batch mode)
Without this argument all the top-level tests of the suite are executed one after

the other. Using -test <n>|<ID>, you can select specific tests. An arbitrary
node located anywhere in a test suite can be accessed by its QF-Test ID(565).
Test case(558) or Test set(566) nodes can be referenced also by their qualified name.
Top-level tests can also be selected by their index, the index for the first test being
0. You can use this argument multiple times, even for the same test.

-testdoc <directory> (batch mode only)
With this argument QF-Test creates both HTML and XML testdoc documentation.
If no directory is given, it is created from the basename of the suite.

-testdoc-doctags (batch mode only)
Whether to use the QFS doctag extensions when creating the testdoc

documentation. Default is true, use -testdoc-doctags=false to disable.

-testdoc-followcalls (batch mode only)
By default QF-Test ignores Test call(572) nodes during testdoc creation. With this

argument the target Test case, Test set or whole test suite are processed as if they
were part of the original test suite. Thus it is possible to create a subset testdoc
documentation by creating a dedicated test suite with Test calls to the required
parts.

-testdoc-html <directory> (batch mode only)
With this argument QF-Test creates HTML testdoc documentation. If no directory
is given, it is created from the basename of the suite.

-testdoc-nodeicons (batch mode only)
Whether to show icons for nodes in the testdoc documentation. Default is true,

use -testdoc-nodeicons=false to disable.

-testdoc-passhtml (batch mode only)
Whether to pass HTML tags in comments through to the HTML testdoc. Default

is true, use -testdoc-passhtml=false to disable.

-testdoc-sorttestcases (batch mode only)
Whether to sort test cases alphabetically. Default is true, use

-testdoc-sorttestcases=false to disable.

-testdoc-sorttestsets (batch mode only)
Whether to sort test sets alphabetically. Default is true, use

-testdoc-sorttestsets=false to disable.

44.2. Command line arguments 931

-testdoc-splitparagraph (batch mode only)
Specifies whether comments are splitted into paragraphs by using empty lines.

Default is true, with -testdoc-splitparagraph=false it is possible to
disable this option.

-testdoc-stylesheet <file> (batch mode only)
Optional XSLT Stylesheet for the second step of the transformation.

-testdoc-teststeps (batch mode only)
Whether to list test steps in the testdoc documentation. Default is true, use
-testdoc-teststeps=false to disable.

-testdoc-xml <directory> (batch mode only)
With this argument QF-Test creates XML testdoc documentation. If no directory

is given, it is created from the basename of the suite.

-threads <number> (batch mode only)
Run the same test suite in a number of parallel threads. Typically used for the

purpose of load testing. One license is required per thread, so normally
-runtime(925) should be specified as well. See chapter 33(408) for more information
about load tests.

-timeout <milliseconds> (batch or calldaemon mode only)
Give a timeout value in milliseconds for the test run when executing a test in

batch mode or through the QF-Test daemon. Default is infinite.

-usercfg <file> (interactive mode only)
Set the location of the user configuration file (see section 1.6(11)).

-userdir <directory>
Override the location of the directory holding the user configuration files (see

section 1.6(11)). If -usercfg <file>(929) or -runlogdir <directory>(925) are
also specified they have precedence.

-variable <name>=<value>
To override a system or suite variable definition (see chapter 6(104)) use this

argument to set the variable named <name> to the value <value>. Using this
argument multiple times you can define more than one variable.

-verbose [<level>]
Print progress and status information during a test run to the console. This is in

particular useful when driving a test via -calldaemon, because the actual test
usually runs on a different host where you may not be able to observe it. Note
that on Windows you need to use qftestc.exe (instead of qftest.exe) to
see the output. Specifying a level of verbosity is optional, possible values are all
(print all nodes) and tests (default, only Test set and Test case nodes are printed

44.2. Command line arguments 932

out). Each level can be combined with errors (print error and exception
messages) like tests,errors.

-version
Print version information and exit.

44.2.4 Placeholders in the filename parameter for run log and re-
port

The filename given in any of the command line arguments -runid <ID>(925),
-runlog [<file>](925), -runlogdir <directory>(925),
-report <directory>(922), -report-html <directory>(923),
-report-name <name>(923), -report-xml <directory>(924) or
-report-junit <directory>(923), may contain placeholders of the form %X or +X
(the latter must be used on Windows where ’%’ is a special character) where X may be
any of the characters listed in the table below. QF-Test will fill in the respective value
when creating the run log or report. All time values refer to the time the test was
started.

When executing multiple test suites, be sure to include the base name of the suite in theNote
filename by specifying %b. Otherwise only a single run log or report may be written that
represents only the test run of the last test suite.

44.3. Exit codes for QF-Test 933

Character Replacement
% Literal ’%’ character.
+ Literal ’+’ character.
i The current runid as specified with -runid <ID>(925).
p The directory of the test suite relative to -sourcedir <directory>(926). Expands to

the absolute directory in case -sourcedir <directory> is unspecified and is empty
if -sourcedir <directory> is specified but the test suite is not located below it.

P The absolute directory of the test suite. May only be given at the beginning.
b The basename of the test suite, exclusive directory and .qft extension.
r The return value (or ”exit code”) of the test run (-runlog only).
w The number of warnings in the test run (-runlog only).
e The number of errors in the test run (-runlog only).
x The number of exceptions in the test run (-runlog only).
y The current year (2 digits).
Y The current year (4 digits).
M The current month (2 digits).
d The current day (2 digits).
h The current hour (2 digits).
m The current minute (2 digits).
s The current second (2 digits).

Table 44.2: Placeholders in filename parameters

So if, for example, you want to save the run log in a subdirectory of your test suite
directory called logs and want to include a timestamp and the exit code, use

-runlog %p/logs/%b-%y%M%d-%h%m%s-%r.qrl

It is possible to use %b, %p and %P for collective parameters like runid or report. ThisNote
makes sense only when processing a single test suite. When processing multiple test
suites, the name of the first test suite is used.

44.3 Exit codes for QF-Test

When run in interactive mode, the exit code of QF-Test is not very useful. It is either
negative if QF-Test fails to start or 0.

In batch mode however the exit code expresses the result of the test run. Negative
values represent fatal errors that prevent the test from being executed, while positive
values stand for errors during the test run. Note that many systems only support exit
codes between 0 and 255, so every exit code may have to be calculated modulo 256,
i.e. -1=255, -2=254 and so on.

44.3. Exit codes for QF-Test 934

The following exit codes are currently defined:

Value Meaning
0 Everything OK
1 Warnings occurred during the test run
2 Errors occurred during the test run
3 Exceptions occurred during the test run

-1 Unexpected Exception
-2 Bad command line arguments
-3 Missing or invalid license
-4 Errors while setting up the RMI connection
-5 Errors while loading the test suite
-6 The test suite doesn’t contain any tests

-12 The process was terminated from outside via the -shutdown <ID>(926) batch command

Table 44.3: Exit codes for QF-Test

Besides, there are special exit codes when running QF-Test with the -calldaemon
argument:

Value Meaning
-7 Daemon could not be found
-8 Failed to get or create a TestRunDaemon
-9 Failed to get or create a run context

-10 The test could not be started
-11 The test has not ended within the given timeout

Table 44.4: calldaemon exit codes for QF-Test

Chapter 45

GUI engines

Swing, JavaFX, SWT can be combined together in a single application not only by using
top-level windows of different technologies but also by embedding components of one
technology into windows of another. QF-Test supports testing such kinds of applications.

Also web pages can be integrated into Java applications by use of embedded browsers,4.0+
e.g. JavaFX’s WebView component of JxBrowser. QF-Test provides support for a num-
ber of such hybrid combinations.

To that end, the concept of a GUI engine was introduced. One GUI engine is responsible
for handling recording and replay for one GUI toolkit thread. Normal applications have
only one such thread. As explained above, combinations of Swing, JavaFX and SWT
are possible that have one thread each and will thus require two GUI engines to operate
in parallel. In theory it is also possible to have multiple GUI engines of the same kind,
e.g. by creating multiple instances of the SWT Display class.

The first GUI engine created for an SUT is called the default engine. It is used in allNote
cases where no GUI engine is explicitly specified, most notably SUT script(673) nodes with
an empty GUI engine(675) attribute.

Each QF-Test GUI engine is identified by a token for the GUI toolkit and a number.
awt0, fx0 and swt0 are the primary GUI engine for AWT/Swing, JavaFX and SWT.
Unless you have a very special application you will never need to concern yourself with
the number of the engine, as there will never be an engine called awt1, fx1 or swt1
and the alias awt,fx or swt is sufficient. When recording, QF-Test always uses the
latter.
If your application uses only the default engine, engine names can be left empty. Alter-Note
natively the token default can be used to explicitly address the default engine.

Typically engine identifiers are automatically set correctly during replay. Only when
inserted by hand they need to be considered. In a test suite, engine identifiers are
now stored in the following places.

GUI engines 936

• Wait for client to connect(709) nodes. Only required if your application combines
AWT/Swing, JavaFX and/or SWT. By specifying the engine attribute you can wait
for the respective GUI engine to become initialized.

• Window(858) nodes. The engine of a Window node marks the window and all its child
nodes as being either AWT/Swing, JavaFX or SWT. Embedded components of the
other kind will be moved to a node for a pseudo window.

• SUT script(673) nodes. An SUT script is executed on the event dispatch thread of the
SUT, so for combined AWT/Swing, JavaFX and/or SWT applications the engine is
required to specify whether the script should be run on the AWT/Swing, JavaFX
or the SWT thread. Thus, an SUT script node can only retrieve and interact with
components of one kind.

• File selection(750) nodes. For Swing applications, the File selection node is rarely used
because the Swing JFileChooser is implemented in Java and can be fully con-
trolled by QF-Test. The SWT FileDialog on the other hand is similar to the AWT
FileChooser. Both are implemented natively and QF-Test has no control over
the individual controls. Also the JavaFX FileChooser needs special handling.
Thus file selection must be replayed using the File selection node. Because this
node is not explicitly associated with a Component or Window node, the engine has
to be specified within the node.

Chapter 46

Running an application from QF-Test

The Setup sequence creation(29) is the recommended tool to set up your SUT for testing.Note
It results in an advanced setup sequence already prepared for later requirements.

This chapter contains some details in case you want to create a setup sequence your-
self.

46.1 Various methods to start the SUT

With the Quickstart Wizard QF-Test offers a utility to guide you through the steps of
creating a start sequence for your SUT. Please refer to chapter 3(28) for more information
about the Quickstart Wizard.

Nevertheless we also want to describe how to create a start sequence for your appli-
cation manually. There are basically two ways to start a Java application as an SUT
from QF-Test. The first one is based on the standard java ... command line with its
two variants for either starting a class or a jar file. The alternative is running a script or
executable file which will then start the Java program. Indirect methods like launching
the SUT through ant also fall into this category, as do Java WebStart.

The following examples show some typical setups. To get more detailed information
about the required attributes, please follow the respective links to the reference manual.
The tutorial also includes a number of examples.

Independent of how the SUT is started, the respective node should typically be fol-
lowed immediately by a Wait for client to connect(709) node with an identical Client attribute.
Again, see the reference manual for further details.

46.1. Various methods to start the SUT 938

46.1.1 A standalone script or executable file

If your application is started through a script or a binary executable, create a
Start SUT client(681) as follows:

Figure 46.1: Starting the SUT from a script or executable

• Create a Start SUT client(681) node.

• Assign a name to the client in the Client(682) attribute.

• Set the Executable(682) to the script or executable that starts your application. If the
program is not located in a directory on the PATH, the full path is required.

• Set the Directory(682) attribute to the working directory for your application.

• One thing to watch out for in scripts is redirection of the standard output and error
streams (e.g. >myapp.log) which you may want to remove so that the output
of the SUT reaches QF-Test and is captured in the run log. Similarly, the start
command in Windows batch files causes the SUT to detach and keeps the output
away from QF-Test.

46.1. Various methods to start the SUT 939

46.1.2 An application launched through Java WebStart

Using the new connection mechanism, an application launched through Java WebStart
can be started directly from QF-Test without the need to modify any JNLP files (so do
not use Extras→Create WebStart SUT client starter...). Instead create a
Start SUT client(681) node as follows:

Figure 46.2: Starting the SUT through Java WebStart

• Create a Start SUT client(681) node.

• Assign a name to the client in the Client(682) attribute.

• Set the Executable(682) attribute to the Java WebStart executable which is typically
called javaws and located somewhere inside the JDK or JRE. You’ll probably
have to specify the full path.

• For Java WebStart the Directory(682) attribute typically is of no consequence except
that Java WebStart is looking in that directory for a file named .javaws which can
contain settings like debug levels.

46.1. Various methods to start the SUT 940

• Create an entry in the Executable parameters(683) for the executable to specify the
URL for the application’s JNLP descriptor.

46.1.3 An application started with java -jar <archive>

If your application is normally launched through a command of the form java -jar
<archive>, create a Start Java SUT client(677) node as follows:

Figure 46.3: Starting the SUT from a jar archive

• Create a Start Java SUT client(677) node.

46.1. Various methods to start the SUT 941

• Assign a name to the client in the Client(678) attribute.

• If necessary, change the Executable(678) attribute. Its default value
${qftest:java} is the java executable that QF-Test was started with.

• Set the Directory(679) attribute to the working directory for your application.

• Create two entries in the Executable parameters(679) table for the executable. Set the
first to -jar and the second to the name of the archive. Unless the archive is
located in the Directory(679) selected above, its full path is required.

46.1.4 An application started with java -classpath
<classpath> <class>

If your application is normally launched through a command of the form java
-classpath <classpath> <class>, create a Start Java SUT client(677) node as
follows:

46.1. Various methods to start the SUT 942

Figure 46.4: Starting the SUT via the main class

• Create a Start Java SUT client(677) node.

• Assign a name to the client in the Client(678) attribute.

• If necessary, change the Executable(678) attribute. Its default value
${qftest:java} is the java executable that QF-Test was started with.

• Set the Directory(679) attribute to the working directory for your application.

• Set the Class name(679) attribute to the fully qualified name of the application’s starter
class (the class with the main() method), just like for java.

46.1. Various methods to start the SUT 943

• Create two entries in the Executable parameters(679) table for the executable. Set the
first to -classpath and the second to the list of jar files and directories that
constitute the classpath. The full path is required for jar archives not located in
the Directory(679) selected above. This argument can get very long and hard to edit
directly in the table. See section 2.2.5(17) about how to pop up a dialog for more
convenient editing.

46.1.5 A web application in a browser
Web

Like Swing, JavaFX or SWT clients, a web-based SUT - i.e. a browser - is started as
a separate process from within QF-Test. In order to gain access to the internals of
the browser and the web page shown with its Document Object Model (DOM), QF-Test
embeds a standard browser like Chrome in a special wrapper application. The tech-
nology for embedding and accessing those standard browsers enables efficient access
to the DOM beyond the browsers’ standard interfaces and a unified interface that hides
browser differences and enables QF-Test - and thus you - to focus on test automation
with a single set of tests for all supported browsers on multiple platforms.

A Start web engine(689) node can be used to launch a browser.

46.1. Various methods to start the SUT 944

Figure 46.5: Launch the browser process

Browser windows can be opened via a Open browser window node in an already running
process.

46.1. Various methods to start the SUT 945

Figure 46.6: Open the web site in the browser

When setting up the startup sequence with the Setup sequence creation(29) or definingNote
your own Directory of browser installation(691) attribute, try pointing QF-Test to a current
Firefox installation. On Linux, the standard browser for your distribution may be installed
in various places.

46.1.6 Opening a PDF Document

QF-Test allows to verify PDF documents. Therefore, a client is started as separate4.2+
process within QF-Test. In order to gain access to the internals of the PDF document
and its components QF-Test analyzes the document in its own viewer.

46.1. Various methods to start the SUT 946

Figure 46.7: Opening a PDF Document

A Start PDF client(693) node can be used to launch the viewer and to open the PDF docu-
ment.

More information can be found in chapter 18(264).

Chapter 47

JRE and SWT instrumentation

47.1 JRE deinstrumentation
Swing

JRE instrumentation has been obsolete for a long time now and can even cause prob-Note
lems. The following section remains only to provide background information and to show
how to remove an existing JRE instrumentation without reinstalling the JRE.

To remove instrumentation of a JRE you need write permission for some of its directo-Note
ries, so you may have to work with administrator privileges to perform this step.

When instrumenting the JRE QF-Test made use of the official accessibility interface
which is provided by Java for just this purpose. It can be used by accessibility and
capture replay tools to interact with Java applications without those applications knowing
about it and without requiring any changes to those applications.

To activate this interface, QF-Test created or modified the file
.../lib/accessibility.properties in the JRE installation and added the class
de.qfs.apps.qftest.start.Connector to the property ”assistive_technologies”.
This has the effect that this class will be instantiated whenever the AWT toolkit is
initialized in any Java application that is run with this JRE.

To make sure that this class can always be found, the file qfconnect.jar which con-
tains the Connector class, was placed in the Java extensions directory .../lib/ext.

To deinstrument the JRE, first remove the entry for
.../lib/accessibility.properties from the ”assistive_technologies” property
in .../lib/accessibility.properties so that the Connector class will no
longer be used. Next delete the file qfconnect.jar from the .../lib/ext
directory of the JRE which is possible only when no Java program is currently being
run with this JRE.

47.2. SWT instrumentation 948

47.2 SWT instrumentation
SWT

Some special setup is required for testing SWT-based applications with QF-Test/swt.
Because SWT was not written with testability in mind, applications need to be run with
a few slightly modified SWT classes in which we have added the necessary hooks for
event filtering and component tracking to enable testing. The changes are transparent
so that the behavior of an application is not changed, regardless of whether it is run
inside or outside of QF-Test.

If the SUT is run with the QF-Test agent and the option Connect without SWT4.5+
instrumentation(535) enabled, the required classes are exchanged by the agent during
startup of the SUT. This works for all SWT versions on Windows and for SWT 4.8 and
higher on Linux. Older versions on Linux still need to be instrumented as described
below. It is generally a good idea to include a call to the SWT instrumentation
procedure into your startup sequence with the parameter forceInstrumentation
set to false. That way QF-Test can determine dynamically based on options settings
and SWT version, whether instrumentation is required or the agent can do its job.

If you use QF-Test’s Quickstart Wizard to create the setup sequence for your SUT (see
chapter 3(28)), it will take care of SWT instrumentation as well. For those with an aversion
to wizard dialogs, the manual way is described next.

The standard library qfs.qft, which is part of the QF-Test distribution and described in
detail in the tutorial, contains a Procedure(627) with which to perform the SWT instrumen-
tation. It is named setup and located in the Package(635) qfs.swt.instrument. Insert
a Procedure call(630) node before the start node for your SUT in your setup sequence.
Set its Procedure name(631) attribute to qfs.qft#qfs.swt.instrument.setup and in
the Variable definitions(632) set the parameter sutdir to the installation directory of your
application. The plugin parameter can be left empty except when you are testing an
Eclipse/RCP application that does not follow the standard plugin directory layout. In that
case you can specify the plugin file to instrument directly via the plugin parameter.
That’s all. In case you want to know what goes on behind the scenes, all manual steps
are described further on in this section.

47.2.1 Preparation for manual SWT instrumentation

Supported architectures for SWT testing are 64 bit Windows and 64 bit
Linux with Gtk. The instrumentation files are provided in directories called
.../qftest-9.0.4/swt/$ARCH/$VERSION where $ARCH is either win32-64 or
linux-gtk-64 and $VERSION is one of the supported SWT versions.

First you need to determine whether your application is a standalone SWT application
or is based on eclipse. To do so, simply take a look at the directory structure of your
application. If you find a directory called plugins containing a file called

47.2. SWT instrumentation 949

org.eclipse.swt.win32.win32.x86_X.Y.Z.jar (on Windows) or
org.eclipse.swt.gtk.linux.x86_X.Y.Z.jar (on Linux), with X.Y.Z
representing a version number like 3.2.0, your application is based on eclipse. For a
standalone SWT application you should find a file called swt.jar, typically inside a
directory called lib.

47.2.2 Manual SWT instrumentation for eclipse based applications

Simply replace the SWT plugin jar with one instrumented by
QF-Test. To create the instrumented plugin you must run the Procedure
qfs.qft#qfs.swt.instrument.setup described above once with your original
plugin (or a copy thereof) specified in the plugin parameter. QF-Test will create a
backup copy of the original jar named _org.eclipse.swt....jar.orig. Next
copy the instrumented plugin to the plugin directory of your application.

Finally, start your application once from the command line with the -clean command
line argument to have it rebuild its plugin cache, e.g.

eclipse -clean

Your application’s binary name may be different from eclipse, but all Eclipse-based
applications should support the -clean argument.

47.2.3 Manual instrumentation for standalone SWT applications

For standalone SWT applications, replace the swt.jar file with the one provided with
QF-Test. You may want to create a backup of the original first.

If you are launching the client application by means of a Start Java SUT client(677)Note
node, you can set the classpath to point to the corresponding
.../qftest-9.0.4/swt/$ARCH/$VERSION/swt.jar archive and leave your
original file untouched.

Chapter 48

Technical information about
components

48.1 Weighting of recognition features for recorded
components

When searching for a component, QF-Test calculates the probability with which each
component in the SUT corresponds to the searched component. The component with
the highest probability is then used, as long as that this probability is above a freely
configurable threshold. First, the probabilities of the windows in the SUT are examined.
Then, the search is continued in the window with sufficiently high probability.

The same procedure is followed level by level, i.e. for each direct and indirect parent
node of the searched Component(869) node, but from top to bottom. At each level, the
components matching the attribute Class name(871) are determined and their probability is
calculated. Invisible components are not considered.

At each level, the probability of a component is calculated in several stages:

• Every calculation starts with a value of 99 percent, which is first reduced by de-
viations from geometry specifications. This serves as the base probability for the
next stages.

• The following three stages can either result in a ”match”, ”no match”, or be skipped.
If no value is specified for a stage, it is skipped; the probability remains unchanged.
Each of the three steps has a freely configurable bonus in case of a match or a
penalty in case of a deviation. A bonus in effect increases the probability score to
more than its value, a penalty reduces it to below its value.

• First, the structure of the Components(869) is checked, (not of Windows(858), which do
not have this information). All components of the currently evaluated container

48.1. Weighting of recognition features for recorded components 951

component whose class matches the given Class name(871) or a derived class are
collected in a list (including invisible components). For a match, the amount of
previously identified components with the matching class as well as the index of
the component in this list must match.

• Then, the Feature(871) and possible Extra features(871) are checked. If the test of an
Extra feature with status ”must match” fails, the component is discarded.

• Finally, the Name(871) of the component is checked. If a Name(871) exists, this is the
deciding check since bonus and penalty have the highest values here.

For dialogs, there is another step that checks the modality of the dialog. Normally, a
dialog is either modal or non-modal, so a mismatch would prevent detection. However,
one and the same dialog could be presented modally or non-modally depending on
context. If your SUT contains such a dialog, you must set ”Modal penalty” to a value
above the minimum probability.

If the calculated probability does not reach a minimum value, the component is dis-
carded. The component with the highest probability is used. If there is a discrepancy
in the component’s structure, feature, or name, a message is written to the log, as this
may indicate that it is not the correct component after all. Most of the time, however,
this just indicates that the SUT has changed slightly. The component should then be
updated before the changes accumulate and the component is no longer recognized.

Even though the search for the name already dominates this process, you can increase
its importance even more by setting the options Name override mode (replay)(509) and
Name override mode (record)(484) to ”Override everything”. Then QF-Test will simplify
the search for a component if it has a name. Instead of, as explained above, working
through all parent containers from the outside in, they are skipped and the window is
directly searched for a component matching the name and class. This increases the
independence from the GUI structure; The component will even be recognized if a new
hierarchy level between window and component is introduced or removed. This method
requires that, if a name is given, it is unique at least among the visible components of
the same class in one window.

If such uniqueness is not given, ”Hierarchical resolution” is the next best setting for
the two options. It requires that two components with the same name have at least
differently named parent containers. This setting preserves most of the benefits and
flexibility of names. However, it will fail recognition if a named component is moved from
its parent container.

48.2. Generating the component QF-Test ID 952

48.2 Generating the component QF-Test ID

QF-Test uses the following algorithm designed for the best possible assignability of GUI
objects when creating QF-Test IDs(870):

1. The Name(871) attribute of a Component has a value: The value is used for the QF-Test
ID.

2. No Name, but a Feature(871) is available: This value is used for the QF-Test ID and
prefixed with the value of the Class name(871) in lowercase letters.

3. No Name or Feature(871) is available, but an Extra features(871) named qfs:label is:
This value is used for the QF-Test ID and prefixed with the value of the Class name(871)

in lowercase letters.

4. Neither name nor description is available: The class name in lowercase letters is
used.

If the QF-Test ID derived this way is not unique, a running number is attached.

Finally a prefix can be added to the QF-Test ID. This depends on the following options:

• Prepend QF-Test ID of window parent to component QF-Test ID(486)

• Prepend parent QF-Test ID to component QF-Test ID(487)

You can find these settings in the options menu in section Recording→Components .

Open the options menu via Edit→Options

Find examples in How to judge robust component recognition(50).

Since the QF-Test ID attribute only serves to link the test nodes to recorded components,Note
it can be nice to change it afterwards for better readability. If you choose a value that is
already in use, QF-Test will output a warning. If you have already recorded events refer-
ring to this component, QF-Test will offer to automatically adjust their QF-Test component
ID attribute. This automatic feature does not work for references including variables in
the QF-Test component ID attribute.

48.3 SmartIDs - general syntax

The various SmartID features can be combined with each other. The following is the
general syntax for combining SmartID features. Square brackets mark optional ele-
ments, while uppercase text signifies a placeholder:

48.4. SmartIDs - special characters 953

#[%][noscope:][ENGINE:][CLASS:][VALUE][<INDEX>]

A SmartID consists of the following parts in the following order:

1. # always indicates the beginning of a SmartID.

2. % (optional) can mark VALUE as a regular expression (see Regular
expressions(955)).

3. noscope: (optional) can be used to indicate that the SmartID also applies outside
of the current Scope(80).

4. ENGINE: (optional) specifies the UI engine to which the SmartID applies to. This
is only needed if QF-Test is connected to multiple applications using different UI
technologies at the same time. Valid values are: awt:, fx:, swt:, web:, and
win:, whereby letter casing does not matter.

5. CLASS: (optional) specifies the generic class or class of the
component (see chapter 61(1242)), for example Label:,
CheckBox:ComboBoxListItemCheckBox: or CheckBox\:MyCheckBox:.

6. VALUE (optional if CLASS is given) specifies the value the component must match,
e.g. a label or name or the value of another criterium specified by MATCH.

7. <INDEX> (optional) specifies a numerical index, starting at 0.

Examples:

• #Button:OK

• #TextField:Postal code<1>

• #TextField:name=address<2>

• #Postal code<1>

• #noscope:SWT:Label:Postal code<1>

48.4 SmartIDs - special characters

The special characters :, @, & and % have special meanings in SmartIDs. ”:” terminates
a component class or UI engine. A % at the start of a SmartID signals the use of a
regular expression (see section 49.3(955)). The other characters mark the beginning of
a sub-item, like a table cell. If these characters should appear in a SmartID with their
literal meaning, they must be escaped by prefixing them with \.

48.5. Android - list of trivial component identifiers 954

Example: A dialog title containing an email address is to be used as SmartID. The @
inside must be escaped like this: #abc\@qftest.com.

A % at the beginning of a SmartID, directly after the #, can not be escaped. In this case
it is better to place a prefix or the class between # and %. Now, % can be escaped with
a \.
Example: A button has the label %. As SmartID, you can use #Button:\% or
#Label=\%.

A ”:” character that is part of a built-in generic class (see chapter 61(1242)), like
Panel:TitledPanel, does not need to be escaped.

48.5 Android - list of trivial component identifiers

The following component identifiers are not transferred to the ’Name’ attribute by default.
This can be controlled via a NameResolver (see section 54.1.7(1082)).

• button

• canvas

• checkbox

• choice

• container

• content

• dialog

• dock

• drawer

• filedlg

• frame

• label

• list

• menu

• menubar

48.5. Android - list of trivial component identifiers 955

• menuitem

• pager

• panel

• popup

• row

• scrollbar

• scrollpane

• tabs

• textfield

• toolbar

• title

• text

• win

Chapter 49

Technical details about miscellaneous
issues

49.1 Drag&Drop

From the beginning Drag&Drop has been hard to implement in Java. JDK 1.1 had no
Drag&Drop support at all and the first steps taken with JDK 1.2 were far from satisfying.
In JDK 1.3 Drag&Drop has matured, but there are still problems with stability. That
Drag&Drop is so hard to get right is partly due to the fundamental difference in the
way Drag&Drop is implemented by the underlying systems. Another reason is the goal
to support Drag&Drop between Java and the underlying system and not just between
Java applications.

As a result Drag&Drop for Java is implemented ”native”, meaning at the level of the
operating system, so the events involved can be neither interpreted, nor generated by
QF-Test. Hence Drag&Drop cannot be replayed directly.

Even so QF-Test has support for Drag&Drop, at least for JDK 1.3 and above. Direct
recording of Drag&Drop is supported with JDK 1.4 and above. Replay of Drag&Drop
is achieved through the special Mouse events(726) DRAG_FROM and DROP_TO as well as
the optional DRAG_OVER. To replay these events, QF-Test makes use of the AWT Robot
that was added to Java with version 1.3. The AWT Robot makes it possible to generate
”hard” events at system level. These ”hard” events actually move the mouse cursor
across the screen and can trigger a Drag&Drop operation.

Using Drag&Drop together with the
�� ��Shift and or

�� ��Control key is also supported. To
simulate a Drag&Drop with the

�� ��Control key pressed, change the Modifiers(728) attributes
of the DRAG_FROM, DRAG_OVER and DROP_TO events to include the Control modifier by
adding 2 to the current value. It is even possible to simulate the

�� ��Shift or
�� ��Control key

being pressed or released during the drag operation by changing the Modifiers of only
some of the events.

49.2. Timing 957

As mentioned above, Drag&Drop used to be a bit unstable on some systems. In some
cases with older JDKs the use of the AWT Robot to simulate Drag&Drop could crash the
SUT or even the whole system. Nowadays the situation is much better. The introduction
of mouse movement interpolation helped improve the reliability of Drag&Drop replay a
lot. Please see section 41.3.5(513) for details.

On Windows simulating Drag&Drop may conflict with some mouse drivers. In case ofNote
problems reduce the speed of the mouse cursor to 50% in the mouse settings of the
control panel.

49.2 Timing

Besides component recognition, timing is an inherently difficult problem in automatic
testing. No two runs of a Java program are identical when it comes to timing. Too much
depends on things like system load or memory usage. This can lead to a situation where
a target component for an event is not available, because the VM is still busy popping
up the dialog window that contains it.

To avoid needless failures of tests, QF-Test combines several tactics:

• Events are synchronized with the AWT event queue, meaning that after each event
sent to the SUT, QF-Test waits until the events generated as side effects have been
processed, before it sends another event.

• In some cases, especially with asynchronous updates, this doesn’t suffice, so
whenever a component is not available, QF-Test waits for a certain amount of time
to give it a chance to appear. This delay can be customized through the option
Wait for non-existent component (ms)(517).

• An additional timeout defined by the option Wait for non-existent item (ms)(517) ap-
plies when looking for sub-items of a component, e.g. a tree node.

• These default timeouts should be kept rather short, a few seconds at most, so in
addition you can set individual timeouts and delays wherever applicable.

49.3 Regular expressions

The regular expressions that you can use in the search and replace dialogs and in
places like the Feature(871) attributes, the Primary index(876) of an Item(875) node or in
checks(753) all use standard Java regexp syntax.

Before QF-Test version 3.1 the default was the GNU regexp package. After that it was8.0+

49.3. Regular expressions 958

available as an option. In QF-Test 8.0 the GNU Regexp package was removed from
QF-Test.

Detailed regexp documentation with links to further information and
even a whole book about regular expressions are provided in the
Java documentation for the class java.util.regex.Pattern at
http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html. It’s also
worth to have a look at the Wikipedia article about regular expressions.
Following is a short summary of the basics:

• A ’.’ stands for any one character except line breaks. With the new Java regexps
you can start your regexp with the embedded flag ’(?s)’ to treat multi-line text like
a single line so ’.’ will match everything.

• Character in between ’[’ and ’]’ match any one of these characters.

• A ’?’ says the preceding element is optional, i.e. it may appear 0 or 1 times.

• ’+’ means at least one of the preceding element.

• ’*’ means 0 or more of the preceding element.

• A group is created with ’(’ and ’)’. A ’?’, ’+’ or ’*’ after the closing brace refers
to the whole group. All groups in a regexp are numbered in the order of their
opening brace. The first group has the number 1, 0 stands for the whole regexp.
For search and replace, $n in the replacement string expands to the part of the
original value matched by the nth group. Example: To change the extension of file
names starting with /tmp/ from .foo to .bar, search for (/tmp/.*)\.foo and
replace with $1.bar.

• A ’|’ separates alternatives in a group.

• ’\’ quotes to suppress the special meaning of the following character or introduces
special characters, e.g. ’\n’ for LineFeed (a line break), ’\r’ for CarriageReturn (not
needed for QF-Test, see section 49.4(957)) or ’\t’ for Tab.

Examples:

• .* describes a sequence of arbitrary characters, which is optional.

• .+ describes a sequence of arbitrary characters, but there must be at least one
character, i.e. some mandatory characters.

• [0-9] describes one arbitrary cipher.

• [0-9]+ describes a sequence of arbitrary ciphers, but there must be at least one
cipher.

49.4. Line breaks under Linux and Windows 959

• [0-9]{1,3} describes a sequence of arbitrary ciphers, but there must be at least
one cipher and at maximum three ciphers.

• To match any text that contains the word ’tree’ use ’.*tree.*’.

• To match arbitrary text possibly including line breaks: ’(?s).*’

• To replace ’tree’ in arbitrary text with ’node’ use ’(.*)tree(.*)’ to search and
$1node$2 to replace. In the replace dialog simply replace tree with node and
disable the ”Match whole string” check box to achieve the same effect.

• To search for ’name’ or ’names’: ’names?’

• To search for ’tree’ or ’node’: ’(tree|node)’

• An arbitrary word consisting of letters and numbers: [0-9a-zA-Z]+

• ...

QF-Test allows you to use the context menu item Escape text for regular expressions
on all attributes which allow regular expressions in order to escape special characters
of regular expressions correctly with ’\’. When it is not possible to use that
functionality, for example with variables, you can use the special syntax
${quoteregexp:$(myVariable)} to excape special characaters in the variable
value, see Special groups(114).

49.4 Line breaks under Linux and Windows

The difference in the treatment of line breaks between Linux and Windows is a well-
known problem. While Linux uses a single LineFeed character (’\n’, hex 0x0A) as
line separator, Windows uses the combination CarriageReturn/LineFeed (’\r\n’, hex
0x0D0A). Java automatically converts text as needed which generally works well.

However, the XML standard specifies that an XML parser has to convert line breaks of
any type into LineFeed only, regardless of the system under which it is running. This
could lead to trouble, for example when checking a multi line text field. QF-Test works
around the problem by converting all text strings read from the SUT to the Linux version
with LineFeed only. This has the added benefit that tests created on one system will run
unchanged on the other.

49.5. Quoting and escaping special characters 960

49.5 Quoting and escaping special characters

A common problem for most complex systems is the treatment of characters with a
special meaning. A typical example are blanks in filenames. To specify such filenames
on the command line, they need to be protected either by using double quotes or by
escaping the blanks with a backslash character (’\’).
Since QF-Test makes use of special characters in various contexts while reading arbi-
trary strings from the SUT that may contain any character, some kind of quoting mech-
anism is unavoidable. That QF-Test runs on various operating systems and makes use
of regular expressions(955) which have their own set of special characters doesn’t make
things any easier. However, QF-Test attempts to keep things as simple as possible by
restricting quoting to the places where it can’t be avoided and by quoting all strings read
from the SUT during recording correctly.

The most prominent special character for QF-Test is the ’$’ sign used for variable ex-
pansion. Variable syntax is applicable in almost all attributes. If you need a literal ’$’
character in an attribute value you have to double it.

Example: To verify with a Check text(754) node that a text field contains the string ”4 US$”,
set the Text(756) attribute to ”4 US$$”.

Other special characters are used only in a few places and must be quoted only there.
These are the ’#’ character used for Procedure(627) and Component(869) access across suites
and the characters ’@’, ’&’ and ’%’ for the special syntax for sub-item access(84). Since
these are used as separators they cannot be escaped by doubling them, so QF-Test
follows the convention to use the backslash ’\’ as escape character which turns the
backslash itself into another special character. To avoid quoting-hell with Windows file-
names, QF-Test only uses quoting where the above characters are used and even there
a single backslash that is not followed by a special character is interpreted literally.

To be precise, you have to escape the characters ’#’ and ’\’ in the Procedure name(631)

attribute of a Procedure call(630) and the characters ’#’, ’\’, ’@’, ’&’ and ’%’ in the at-
tributes QF-Test component ID(727) of events and checks as well as the Primary index(876)

and Secondary index(876) of an Item(875). Remember that the backslash is also used as the
escape character for regular expressions(955), so to get a literal ’\’ into a regexp for a
sub-item, you first need to escape it for the regexp itself, i.e. ”\\”, then escape these for
QF-Test leading to ”\\\\”.
There is one more special case that requires a special character and corresponding
quoting. This is the ’/’ character used as separator for tree path sub-items of a JTree
component. Thus the ’/’ must be quoted if and only if you need a literal / in a sub-item
of a JTree component. Sub-items of other components don’t require special handling.

49.6. Include file resolution 961

49.6 Include file resolution

This is a section you should hopefully never need to read. It explains in detail how
implicit Procedure and Component references are resolved during test replay. If you need
to read it, your test suite include hierarchy probably is too complicated and you should
consider simplifying your includes.

There are basically two scenarios in which QF-Test must implicitly resolve a Procedure
or Component reference to another suite when the requested Procedure or Component
cannot be found in the current (or explicitly referenced) suite:

• The current suite includes other suites (by defining them in the Include files(556) at-
tribute of the Test suite(555) root node). In this case, QF-Test searches all included
suites in the given order.

• The current suite (or rather one of its Procedures) was called by another suite. Here
QF-Test searches the calling suite for the requested node.

The whole thing gets complicated, when (possibly indirect) Procedure calls across test
suite boundaries and (possibly indirect, maybe even recursive) includes are combined.
Following are detailed explanations of the search algorithm that will hopefully enable
you to debug and resolve any include-file related problems.

• Whenever execution leaves the current suite to continue with some Procedure or to
retrieve a Component, the other suite becomes the current suite. This process is
complemented by two things: the old suite is pushed onto the so-called call-stack
and the variable bindings of the new current suite are pushed on top of the fallback
bindings stack (see chapter 6(104)), so they override the bindings of the old suite.
In the run log this process is documented by adding a Suite-change node which
holds all of the run log nodes for the execution that takes place outside the old
suite.

• Any search through test suites starts with the current suite, then continues top-
down through the call-stack. So if, for example, A calls B which calls C, then C is
searched first, followed by B and finally A.

• Includes are considered stronger bindings than the call-stack. This means that
during the search through the current suite and the suites on the call-stack, at
each step the included test suites are searched before moving to the next suite on
the call-stack. For example, if A calls B which includes C, A is on the call-stack
and B is the current Suite, then B will be searched first, then C, and lastly A.

• In case of multiple, possibly indirect includes, the search is always conducted
depth-first in the oder in which the include files are listed. This means that if A

49.6. Include file resolution 962

includes B and C, and B includes D, first A is searched, followed by B, then D and
then C.

• If a Procedure is found (possibly indirectly) in an included test suite (as opposed
to the current suite, an explicitly referenced suite or a suite on the call-stack), the
change from the old current suite to the new current suite doesn’t take place in
one step. This has to be illustrated with an example right from the start or we’ll get
totally lost: Let’s say A calls B and that A includes C. B calls a Procedure which is
found in C by way of A. Instead of changing suites directly from B to C, A will first
become the current suite and then C. As a consequence, A gets pushed onto the
call-stack again on top of B and its variable bindings are also pushed again on top
of B’s bindings on the fallback bindings stack. The reasoning behind this is that C,
which is now the current suite, is ”closer to” A, which includes C, than it is to B,
which only happened to be called by A. One could also say that inclusion creates
a kind of union, so that to B, A and C will always appear as a single test suite as
long as B doesn’t call C explicitly.

• That’s it, except for one thing: During a search QF-Test never searches a suite
twice. This would be useless in any case, but it is more than an optimization, since
it prevents trouble with recursive includes if A includes B and B includes A.

If you really have a problem determining how, why or why not a certain Procedure or
Component was retrieved, first take a look at the run log. It shows exactly which suites
were used and which variable expansions took place.

Chapter 50

Scripting (Jython, Groovy and
JavaScript)

This section explains technical details about the Jython integration in QF-Test and
serves as a reference for the whole API exposed by QF-Test for use in Jython, Groovy
and JavaScript scripts. For a more gentle introduction including examples please take
a look at chapter 11(168).

50.1 Module load-path

The load-path for scripting modules is assembled from various sources in the following
order:

• the script directory in the user configuration directory(11)

• the directory qftest/qftest-9.0.4/<scriptlanguage>

In addition, during Server script or SUT script node execution, the directory of the contain-
ing test suite is prepended to the path.

The directory qftest/qftest-9.0.4/<scriptlanguage> contains internal mod-
ules of the specific script language. You should not modify these files, since they may
change in later versions of QF-Test.

The script directory in the user configuration directory(11) is the place to put your own
shared modules. These will be left untouched during an update of QF-Test. You can
locate the rescpective script directory via Help under ”System info” as
”dir.<scriptlanguage>”.

Modules that are specific to a test suite can also be placed in the same directory as the
test suite. The file extension for all modules must be .py.

50.2. The plugin directory 964

In Jython you can add additional directories to the load-path by defining the
python.path system property.

50.2 The plugin directory

The script languages can also be used to access Java classes and methods beyond the
scope of QF-Test by simply importing such classes, e.g.

from java.util import Date
from java.text import SimpleDateFormat
print SimpleDateFormat("yyyy-MM-dd").format(Date())

Example 50.1: Accessing Java classes from Jython

The classes available for import are those in the Java class path, i.e. all classes of
the standard Java API and QF-Test’s own classes. Note that QF-Test ignores the
CLASSPATH environment variable, but you may define QFTEST_CLASSPATH with the
same value if necessary (e.g. to start a client application). For the SUT things also
depend on the ClassLoader concept in use. WebStart and Eclipse/RCP in particular
make it difficult to import classes directly from the SUT.

Additionally, there are plugin directories into which you can simply drop a jar file to
make it available to scripts. QF-Test searches for a directory called plugin. You can
locate the currently used plugin directory via Help under ”System info” as ”dir.plugin”.
The location of the plugin directory can be overridden with the command line argument
-plugindir <directory>(922).

Jar files in the main plugin directory are available to both Server script and SUT script
nodes. To make a jar available solely to Server scripts or solely to SUT scripts, drop it in
the respective subdirectory called qftest or sut instead.

For a practical introduction to QF-Test plugins, check out our blog post Introduction toNote
QF-Test Plugin Development.

50.3 Initialization (Jython)

During QF-Test and SUT startup an embedded Jython interpreter is created. For
QF-Test, the module named qftest is imported, for the SUT the module named
qfclient. Both are based on qfcommon which contains shared code. These
modules are required to provide the run context interface and to set up the global
namespace.

50.4. Namespace environment for script execution (Jython) 965

Next the load-path sys.path is searched for your personal initialization files. For QF-
Test initialization, the file called qfserver.py is loaded, the file called qfsut.py is
used for the SUT. In both cases execfile is used to execute the contents of these files
directly in the global namespace instead of loading them as modules. This is much more
convenient for an initialization file because everything defined and all modules imported
will be directly available to Server scripts and SUT scripts. Note that at initialization time
no run context is available and no test suite-specific directory is added to sys.path.

50.4 Namespace environment for script execution
(Jython)

The environments in which Server scripts or SUT scripts are executed are defined by the
global and local namespaces in effect during execution. Namespaces in Jython are
dictionaries which serve as containers for global and local variable bindings.

The global namespace is shared between all scripts run in the same Jython interpreter.
Initially it will contain the classes TestException and UserException, the module
qftest or qfclient for QF-Test or the SUT respectively, and everything defined in
or imported by qfserver.py or qfsut.py. When assigning a value to a variable
declared to be global with the global statement, that variable is added to the global
namespace and available to scripts run consecutively. Additionally, QF-Test ensures
that all modules imported during script execution are globally available.

The local namespace is unique for each script and its lifetime is limited to the script’s
execution. Upon invocation the local namespace contains rc, the interface to QF-Test’s
run context, and true and false bound to 1 and 0 respectively for better integration
with QF-Test.

Accessing or setting global variables in a different Jython interpreter is enabled through
the methods fromServer, fromSUT, toServer and toSUT.

50.5 Run context API

The run context object rc is an interface to the execution state of the currently running
test in QF-Test. Providing this wrapper instead of directly exposing QF-Test’s Java API
leaves us free to change the implementation of QF-Test without affecting the interface
for scripts.

Following is a list of the methods of the run context object rc in alphabetical order. The
syntax used is a bit of a mixture of Java and Python. Python doesn’t support static
typing, but the parameters are passed on to Java, so they must be of the correct type to

50.5. Run context API 966

avoid triggering exceptions. If a parameter is followed by an ’=’ character and a value,
that value is the default and the parameter is optional.

Please note that the Groovy syntax for keyword parameters is different from Jython andNote
requires a ’:’ instead of ’=’. The tricky bit is that, for example, rc.logMessage(”bla”,
report=true) is perfectly legal Groovy code yet doesn’t have the desired effect. The
’=’ here is an assignment resulting in the value true, which is simply passed as the
second parameter, thus the above is equal to rc.logMessage(”bla”, true) and
the true is passed to dontcompactify instead of report. The correct Groovy version
is rc.logMessage(”bla”, report:true).

void addDaemonLog(byte[] data, String name=None, String
comment=None, String externalizename=None)

Add a run log retrieved from a DaemonRunContext to the current run log.
Parameters
data The byte array retrieved via DaemonRunCon-

text.getRunLog().
name An optional name for the daemon log node. If unspecified

the ID of the Daemon is used.
comment An optional comment for the daemon log node.
externalizename An optional name to externalize the daemon log and save

it as a partial log of a split run log.

void addResetListener(ResetListener listener)

Server only. Register a ResetListener within the current run context.
Parameters
listener The Listener that should be added. The

listener should implement the interface
de.qfs.apps.qftest.extensions.qftest.ResetListener.

void addTestRunListener(TestRunListener listener)
Register a TestRunListener with the current run context. In interactive mode and
batch mode there is a single, shared run context, so the listener will remain in effect
until it gets removed via removeTestRunListener or clearTestRunListeners.
In daemon mode, each DaemonRunContext has its own set of listeners. See section
54.6(1140) for details about the TestRunListener API.
Parameters
listener The listener to register.

50.5. Run context API 967

String callProcedure(String name, Map parameters=None)
Call a Procedure(627) in a test suite.
As a convenience, this method can also be called from an SUT script. Care should be
taken however, because the script is executed inside the AWT event dispatch thread, so
weird side-effects are possible, though QF-Test does its best to avoid these. If possible,
call Procedures from a Server script instead.
Parameters
name The fully qualified name of the Procedure.
parameters The parameters for the Procedure. This should be a dic-

tionary. Its keys and values can be arbitrary values. They
are converted to strings for the call.

Returns The value returned from the Procedure through an optional
Return(633) node.

int callTest(String name, Map parameters=None)

Server only. Call a Test case(558) or Test set(566) in a test suite or an entire test suite.
Parameters
name The fully qualified name of the Test case or Test set.
parameters The parameters for the Test case or Test set. This should be

a dictionary. Its keys and values can be arbitrary values.
They are converted to strings for the call.

Returns The final state of the execution. Either rc.OK,
rc.WARNING, rc.ERROR, rc.EXCEPTION, rc.SKIPPED
or rc.NOT_IMPLEMENTED.

int callTestAsProcedure(String name, Map parameters=None)
Server only. Call a Test case(558) or Test set(566) in a test suite or an entire test suite but treat
it as a procedure call so that an uncaught exception terminates the entire call instead of
just the currently executing Test case.
Parameters
name The fully qualified name of the Test case or Test set.
parameters The parameters for the Test case or Test set. This should be

a dictionary. Its keys and values can be arbitrary values.
They are converted to strings for the call.

Returns The final state of the execution. Either rc.OK,
rc.WARNING, rc.ERROR, rc.EXCEPTION, rc.SKIPPED
or rc.NOT_IMPLEMENTED.

50.5. Run context API 968

Boolean check(boolean condition, String message, int
level=rc.ERROR, boolean report=true, boolean nowrap=false)

Check or ”assert” that a condition is true and log a message according to the result.
Parameters
condition The condition to evaluate.
message The message to log. It will be preceded by ”Check OK: ”

or ”Check failed: ” depending on the result. For the old-
style XML or HTML report the message will be treated like
a Check node if it starts with an ’!’ character.

level The error level in case of failure. The following constants
are defined in the run context:

• rc.OK

• rc.WARNING

• rc.ERROR

• rc.EXCEPTION

If the level is rc.EXCEPTION, a UserException(904) will
be thrown if the check fails.

report If true, the check will appear in the report. Only applicable
if level <= rc.WARNING.

nowrap If true, lines of the message will not be wrapped in the
report. Use for potentially long messages.

Returns The result of the check.

50.5. Run context API 969

Boolean checkEqual(Object actual, Object expected, String
message, int level=rc.ERROR, boolean report=true, boolean
nowrap=false)
Check or ”assert” that an object matches a given value and log a message according to
the result. Comparison is done using the == operator.
Parameters
actual The actual value.
expected The expected value.
message The message to log. It will be preceded by ”Check OK:

” or ”Check failed: ” depending on the result. In case of
failure, the expected and actual values will also be logged.

level The error level in case of failure. The following constants
are defined in the run context:

• rc.OK

• rc.WARNING

• rc.ERROR

• rc.EXCEPTION

If the level is rc.EXCEPTION, a UserException(904) will
be thrown if the check fails.

report If true, the check will appear in the report. Only applicable
if level <= rc.WARNING.

nowrap If true, lines of the message will not be wrapped in the
report. Use for potentially long messages.

Returns The result of the check.

50.5. Run context API 970

Boolean checkImage(ImageRep actual, ImageRep expected, String
message, int level=rc.ERROR, boolean report=true, boolean
nowrap=false)
Check or ”assert” two given ImageRep (see section 54.9.1(1149)) objects for equality and
log a message according to the result. Comparison is done using the equals method
of the ImageComparator (see section 54.9.2(1152)) of the expected object.
Parameters
actual The actual value ImageRep object.
expected The expected ImageRep object.
message The message to log. It will be preceded by ”Check OK:

” or ”Check failed: ” depending on the result. In case of
failure, the expected and actual values will also be logged.
For the old-style XML or HTML report the message will be
treated like a Check node if it starts with an ’!’ character.

level The error level in case of failure. The following constants
are defined in the run context:

• rc.OK

• rc.WARNING

• rc.ERROR

• rc.EXCEPTION

If the level is rc.EXCEPTION, a UserException(904) will
be thrown if the check fails.

report If true, the check will appear in the report. Only applicable
if level <= rc.WARNING.

nowrap If true, lines of the message will not be wrapped in the
report. Use for potentially long messages.

Returns The result of the check.

50.5. Run context API 971

Object[] checkImageAdvanced(ImageRep actual, ImageRep expected,
String message, String algorithm, int level=rc.ERROR, boolean
report=true, boolean nowrap=false)
Check or ”assert” two given ImageRep (see section 54.9.1(1149)) objects for equality and
log a message according to the result. Comparison is done using the specified algo-
rithm.
Parameters
actual The actual value ImageRep object.
expected The expected ImageRep object.
message The message to log. It will be preceded by ”Check OK:

” or ”Check failed: ” depending on the result. In case of
failure, the expected and actual values will also be logged.
For the old-style XML or HTML report the message will be
treated like a Check node if it starts with an ’!’ character.

algorithm The algorithm to use for the comparison as described in
chapter 59(1223).

level The error level in case of failure. The following constants
are defined in the run context:

• rc.OK

• rc.WARNING

• rc.ERROR

• rc.EXCEPTION

If the level is rc.EXCEPTION, a UserException(904) will
be thrown if the check fails.

report If true, the check will appear in the report. Only applicable
if level <= rc.WARNING.

nowrap If true, lines of the message will not be wrapped in the
report. Use for potentially long messages.

Returns An array with following content:
The result of the check as Boolean.
The result of the check as probability.
The transformed image of the expected image as
ImageRep, depending on the algorithm.
The transformed image of the actual image as ImageRep,
depending on the algorithm.
Further information where appropriate.

50.5. Run context API 972

void clearGlobals()

Server only. Undefine all global variables.

void clearProperties(String group)

Server only. Delete a given set of loaded properties or resources.
Parameters
group The group name of the properties or resources.

void clearTestRunListeners()

Remove all TestRunListeners from the current run context.
String expand(String text)
Expand a string using standard QF-Test variable expansion for $(...) or ${...:...}
syntax.
Remember to double the ’$’ signs to avoid expansion before the script is executed (see
section 49.5(958)).
Parameters
text The string to expand.
Returns The expanded string.

Object fromServer(String name)
SUT only. Retrieve the value of a global variable in the respective interpreter of QF-Test.
For example, you can use it in a Groovy SUT script to fetch the value of a global variable
from the Groovy interpreter of QF-Test. If the variable is undefined, a KeyError is
raised.
Parameters
name The name of the variable.
Returns The value of the variable.

Object fromSUT(String client, String name)
Server only. Retrieve the value of a global variable in the Jython or Groovy interpreter
of the SUT. For example, you can use it in a Groovy Server script to fetch the value of
a global variable from the Groovy interpreter; of the SUT. If the variable is undefined, a
KeyError is raised.
Parameters
client The name of the SUT client.
name The name of the variable.
Returns The value of the variable.

50.5. Run context API 973

Boolean getBool(String varname)
Look up the value of a QF-Test variable, similar to $(varname), and treat it as a
boolean in any case.
Parameters
varname The name of the variable.
Returns The value of the variable.

Boolean getBool(String group, String name)
Look up the value of a QF-Test resource or property, similar to ${group:name}, and
treat it as a boolean in any case.
Parameters
group The name of the group.
name The name of the resource or property.
Returns The value of the resource or property.

Exception getCaughtException()
Server only. If the script is run inside a Catch(661) node, the exception that was caught is
returned. In all other cases, None is returned.
Returns The caught exception.

Component getComponent(String id, int timeout=0, boolean
hidden=false)
SUT only. Find a component or a component’s sub-item using QF-Test’s component
recognition mechanism.
Parameters
id The QF-Test ID(870) of the Component(869) node that repre-

sents the component in the test suite.
timeout This parameter is ignored and always 0 for SUT scripts

that are running on the event dispatch thread of the re-
spective GUI engine because it is not possible to free this
thread in a safe way in order to wait for the respective
component.

hidden If true, find invisible components as well. Useful for menu
items.

Returns The actual Java component. For sub-items, a pair of the
form (component, index) is returned, where the type
of index depends on the type of the item. For tree nodes
it is a javax.swing.tree.TreePath object, for table-
cells a pair of the form (row, column) and an integer
for all other kinds of items.
Column indexes returned are always given in table coor-
dinates, not in model coordinates.

50.5. Run context API 974

List getConnectedClients()

Get the names of the currently connected SUT clients.
Returns A list with the names of the currently connected SUT

clients, an empty list in case there are none.

Map getGlobalObjects()
Get the global variables bound in the current context.
When working with the objects returned please be aware the properties and methods of
the objects may differ slightly when using a different script language than the one used
to create the objects.
Returns The global variables of the current context.

Properties getGlobals()
Get the global variables bound in the current context together with their values as
Strings.
Returns The global variables of the current context with their val-

ues as Strings.

Map getGroupObjects(String group)
Get a set of loaded properties or resources.
When working with the objects returned please be aware the properties and methods of
the objects may differ slightly when using a different script language than the one used
to create the objects.
Parameters
group The group name of the properties or resources.
Returns The variables bound for the given group or null if no such

group exists.

Integer getInt(String varname)
Look up the value of a QF-Test variable, similar to $(varname), and treat it as an
integer in any case.
Parameters
varname The name of the variable.
Returns The value of the variable.

Integer getInt(String group, String name)
Look up the value of a QF-Test resource or property, similar to ${group:name}, and
treat it as an integer in any case.
Parameters
group The name of the group.
name The name of the resource or property.
Returns The value of the resource or property.

50.5. Run context API 975

Object getJson(String varname, boolean expand=true)
Returns an Object by interpreting the value of a QF-Test variable, similar to
$(varname), as JSON serialization.
Parameters
varname The name of the variable.
expand Whether to expand the value of the variable recur-

sively. For more information please refer to The expand
parameter(987).

Returns The object by deserializing the variable value.

Object getJson(String group, String name, boolean expand=true)
Returns an Object by interpreting the value of a QF-Test resource or property, similar to
${group:name}, as JSON serialization.
Parameters
varname The name of the variable.
expand Whether to expand the value of the variable recur-

sively. For more information please refer to The expand
parameter(987).

Returns The object by deserializing the variable value.

Object getLastComponent()
SUT only. Get the last component that was addressed by QF-Test for replaying some
event, check or miscellaneous operation. Calls to rc.getComponent() have no im-
pact.
Returns The last component addressed by QF-Test.

Exception getLastException()
Server only. Get the last exception (caught or uncaught) that was thrown during the
test run. In most cases getCaughtException is probably more useful.
Returns The most recent exception that was thrown.

Object getLastItem()
SUT only. Get the last item that was addressed by QF-Test for replaying some event,
check or miscellaneous operation. Calls to rc.getComponent() have no impact.
Returns The last item addressed by QF-Test.

50.5. Run context API 976

Map getLocalObjects(nonEmpty=false)
Get the innermost local bindings of the context, or, within a procedure, the parameters
of the procedure call when no local variables (to the procedure) have been set before.
Then it can be used with nonEmpty=true to get the parameters of the procedure call
and implement something similar to keyword arguments in Jython or Groovy.
In an interactive test run, when in debugging mode, the variables are showing in the bot-
tom (right) panel of the QF-Test window in the table ”Variable definitions”. The innermost
local bindings will be found on the first row of the table in case of nonEmpty=false and
with nonEmpty=true on the first one where the number of definition is greater zero or
when it is a procedure call.
When working with the objects returned please be aware the properties and methods of
the objects may differ slightly when using a different script language than the one used
to create the objects.
Parameters
nonEmpty True to get the first non-empty set of bindings, false to get

the innermost bindings even when empty.
Returns The innermost local variable bindings of the current con-

text.

Properties getLocals(nonEmpty=false)
Get the innermost local bindings of the context, or, within a procedure, the parameters
of the procedure call when no local variables (to the procedure) have been set before.
Then it can be used with nonEmpty=true to get the parameters of the procedure call.
Similiar to getLocalObjects, but with the values as String.
In an interactive test run, when in debugging mode, the variables are showing in the bot-
tom (right) panel of the QF-Test window in the table ”Variable definitions”. The innermost
local bindings will be found on the first row of the table in case of nonEmpty=false and
with nonEmpty=true on the first one where the number of definition is greater zero or
when it is a procedure call.
Parameters
nonEmpty True to get the first non-empty set of bindings, false to get

the innermost bindings even when empty.
Returns The innermost local variable bindings of the current con-

text as Strings.

Number getNum(String varname)
Look up the value of a QF-Test variable, similar to $(varname), and treat it as a num-
ber, i.e. as int or float for Jython and as Integer or BigDecimal for Groovy.
Parameters
varname The name of the variable.
Returns The value of the variable.

50.5. Run context API 977

Number getNum(String group, String name)
Look up the value of a QF-Test resource or property, similar to ${group:name}, and
treat it as a number, i.e. as int or float for Jython and as Integer or BigDecimal for
Groovy.
Parameters
group The name of the group.
name The name of the resource or property.
Returns The value of the resource or property.

Object getObj(String varname, boolean expand=true)
Look up the value of a QF-Test variable, similar to $(varname), and return the object
stored in the variable.
When working with the objects returned please be aware the properties and methods of
the objects may differ slightly when using a different script language than the one used
to create the objects.
Parameters
varname The name of the variable.
expand Whether to expand the value of the variable recur-

sively. For more information please refer to The expand
parameter(987).

Returns The object value of the variable.

Object getObj(String group, String name, boolean expand=true)
Look up the value of a QF-Test resource or property, similar to ${group:name}, and
return the object stored in the property.
When working with the objects returned please be aware the properties and methods of
the objects may differ slightly when using a different script language than the one used
to create the objects.
Parameters
group The name of the group.
name The name of the resource or property.
expand Whether to expand the value of the variable recur-

sively. For more information please refer to The expand
parameter(987).

Returns The object value of the resource or property.

50.5. Run context API 978

Object getOption(String name)
Get an option value at run time. This method is provided more for the sake of com-
pleteness, you will probably not need it. For the obvious use case of restoring the
value of an option to its previous value after a change with setOption you should use
unsetOption instead because values set at script level hide values set interactively
in the options dialog. For temporary changes to an option best use pushOption /
popOption.
Parameters
name The name of the option, a constant from the Options

class which is automatically imported in Jython and
Groovy scripts. The names of the options that can be read
in this way are documented in chapter 41(450).

Returns The current value of the option.

Object getOverrideElement(String id)

SUT only. Get the overridden target GUI element for the given ID.
Parameters
id The QF-Test ID or SmartID previously used to override the

GUI element.
Returns The GUI element previously registered for the given ID.

None/null if no GUI element was registered or the element
is no longer valid.

Pattern getPattern(String varname, boolean expand=true)
Look up the value of a QF-Test variable and treat it as a regular expres-
sion. The difference to rc.getStr and rc.getInt is that they will re-
turn a string, respectively an integer value, whereas rc.getPattern
will return a Java pattern object. Sample for comparing a string value
with a given regular expression: rc.check(rc.getPattern(”myRegExp”)
.matcher(rc.getStr(”myString”)).matches(), ”sample check”)
Parameters
varname The name of the variable.
expand Whether to expand the value of the variable recur-

sively. For more information please refer to The expand
parameter(987).

Returns A Java pattern object with the value of the variable as reg-
ular expression.

50.5. Run context API 979

Pattern getPattern(String group, String name, boolean
expand=true)
Look up the value of a QF-Test resource or property and treat it as a regular
expression. The difference to rc.getStr and rc.getInt is that they will re-
turn a string, respectively an integer value, whereas rc.getPattern will re-
turn a Java pattern object. Sample for comparing a string value with a given
regular expression: rc.check(rc.getPattern(”groupname”, ”myRegExp”)
.matcher(rc.getStr(”myString”)).matches(), ”sample check”)
Parameters
group The name of the group.
name The name of the resource or property.
expand Whether to expand the value of the variable recur-

sively. For more information please refer to The expand
parameter(987).

Returns A Java Pattern-Object with the value of the resource or
property as regular expression.

Properties getProperties(String group)

Get a set of loaded properties or resources together with their values as Strings.
Parameters
group The group name of the properties or resources.
Returns The variables bound for the given group together with their

values as Strings or null if no such group exists.

String getPropertyGroupNames()
List all available property group names defined by the user. Names are returned in
alphabetic order.
Returns A string listing all the names of all user defined property

groups. Names are sorted alphabetically and separated
by newlines.

String getStr(String varname, boolean expand=true)
Look up the value of a QF-Test variable and treat it as a string. In Jython scripts, it has
the advantage that it will avoid problems with ’\u’ sequences that Jython tries to interpret
as Unicode constants and fail if the syntax is not correct (see also Jython strings and
character encodings(182)).
Parameters
varname The name of the variable.
expand Whether to expand the value of the variable recur-

sively. For more information please refer to The expand
parameter(987).

Returns The value of the variable as String.

50.5. Run context API 980

String getStr(String group, String name, boolean expand=true)
Look up the value of a QF-Test resource or property and treat it as a string. In Jython
scripts, it has the advantage that it will avoid problems with ’\u’ sequences that Jython
tries to interpret as Unicode constants and fail if the syntax is not correct (see also
Jython strings and character encodings(182))
Parameters
group The name of the group.
name The name of the resource or property.
expand Whether to expand the value of the variable recur-

sively. For more information please refer to The expand
parameter(987).

Returns The value of the resource or property as String.

String id(String id)
Return the QF-Test ID of a specified component. This method should be used to take
care that this QF-Test component ID becomes updated when moving or changing the
QF-Test ID of the referenced component.
Parameters
id The QF-Test component ID.
Returns The QF-Test component ID.

boolean isOptionSet(String name)

Test whether an option has been set at script level.
Parameters
name The name of the option, a constant from the Options

class which is automatically imported in Jython and
Groovy scripts. The names of the options that can be read
in this way are documented in chapter 41(450).

Returns True if the option has been set, false otherwise.

boolean isResetListenerRegistered(ResetListener listener)

Server only. Checks if a ResetListener is registered.
Parameters
listener The ResetListener to check, if it is registered.
Returns True if the ResetListener has been registered, otherwise

False.

50.5. Run context API 981

void logDiagnostics(String client)
Server only. Adds event information stored in the SUT for possible error diagnosis to
the run log.
Parameters
client The name of the SUT client from which to get the informa-

tion.

void logError(String msg, boolean nowrap=false)

Add a user-defined error message to the run log.
Parameters
msg The message to log.
nowrap If true, lines of the message will not be wrapped in the

report. Use for potentially long messages.

void logImage(ImageRep image, String title=None, boolean
dontcompactify=false, boolean report=false)

Add an ImageRep (see section 54.9.1(1149)) object to the run log.
Parameters
image The ImageRep object to log.
title An optional title for the image.
dontcompactify If true, the message will never be removed from a compact

run log.
report True to log the image in the report (implies dontcompact-

ify).

void logMessage(String msg, boolean dontcompactify=false,
boolean report=false, boolean nowrap=false)

Add a plain message to the run log.
Parameters
msg The message to log.
dontcompactify If true, the message will never be removed from a compact

run log.
report If true, the message will appear in the report.
nowrap If true, lines of the message will not be wrapped in the

report. Use for potentially long messages.

50.5. Run context API 982

void logWarning(String msg, boolean report=true, boolean
nowrap=false)

Add a user-defined warning message to the run log.
Parameters
msg The message to log.
report If true (the default), the warning will be listed in the report.

Set this to false to exclude this specific warning from the
report.

nowrap If true, lines of the message will not be wrapped in the
report. Use for potentially long messages.

void overrideElement(String id, Component com)
SUT only. Override the target GUI element for component recognition for an element
with the given ID. When that QF-Test ID or SmartID is referenced, QF-Test ignores all
associated information and directly returns the given element.
Invalidated components are unregistered automatically.
Parameters
id The QF-Test ID or SmartID of the GUI element to override.
com The GUI element to return as the resolved target.

None/null to revert to the default mechanism.

void popOption(String name)

Negates a preceding call to pushOption.
Parameters
name The name of the option to unset, a constant from the

Options class which is automatically imported in Jython
and Groovy scripts. The constants for options that can be
set in this way are documented in chapter 41(450).

50.5. Run context API 983

void pushOption(String name, object value)
Set an option value at runtime, similar to setOption. In contast to the latter, the pre-
ceding value is saved for each nested call and can be restored via popOption. The
pushOption and popOption calls, which are best placed into a Try(658) / Finally(665) com-
bination, are ideal for temporarily changing an option value without negating a preceding
setOption call.
Parameters
name The name of the option, a constant from the Options

class which is automatically imported in Jython and
Groovy scripts. The names of the options that can be set
in this way are documented in chapter 41(450).

value The value to set, typically a boolean, a number or
a constant from the Options class for options edited
via a drop-down list. For hotkey options like the
hotkey for pausing test run (”Don’t Panic” key) this
value should be a string like ”F12” or ”Shift-F6”. Sup-
ported modifiers are ”Shift”, ”Control” or ”Ctrl”, ”Alt” and
”Meta” and combinations thereof. Key specifiers are
prepended with ”VK_” and then looked up in the class
java.awt.event.KeyEvent. Case is irrelevant for
both, so ”shift-alt-enter” will work as well.

void removeResetListener(ResetListener listener)

Server only. Remove a ResetListener.
Parameters
listener The ResetListener to remove.

void removeTestRunListener(TestRunListener listener)

Remove a TestRunListener from the current run context.
Parameters
listener The listener to remove.

void resetDependencies(String namespace=None)

Completely reset the dependency stack without executing any cleanup.
Parameters
namespace An optional namespace to reset the dependencies for.

50.5. Run context API 984

void resolveDependency(String dependency, String
namespace=None, Map parameters=None)

Resolve a Dependency(589).
Parameters
dependency The fully qualified name of the Dependency to resolve.
namespace An optional namespace to resolve the Dependency in.
parameters The parameters for the Dependency. This should be a dic-

tionary. Its keys and values can be arbitrary values. They
are converted to strings for the call.

void returnValue(object value)

Returns from the current procedure returning the given value.
Parameters
value An arbitrary value for the variable. When returning a value

from a SUT script, the object will be serialized. If this rep-
resentation needs more than 25 MB of RAM, the String
value of the object will be transmitted instead.

void rollbackAllDependencies()
Unroll the dependency stacks in all namespaces. This is done in reverse order of their
initialization, except for the one in the general name space, which will always be unrolled
last.
void rollbackDependencies(String namespace=None)

Unroll the dependency stack.
Parameters
namespace An optional namespace to unroll the dependencies in.

void setGlobal(String name, object value)

Define a global QF-Test variable.
Parameters
name The name of the variable.
value An arbitrary value for the variable. A value of None unsets

the variable. When accessing the variable from a SUT
script, the object will be serialized. If this representation
needs more than 25 MB of RAM, the String value of the
object will be transmitted instead.

50.5. Run context API 985

void setGlobalJson(String name, Object value)

Define a global QF-Test variable by serializing the given value to a JSON string.
Parameters
name The name of the variable.
value An arbitrary value for the variable. It is automatically

stringified into a JSON string. A value of None unsets
the variable.

void setGroupObject(String group, String name, Object value)

Set the value of an object (resource or property) in a group.
Parameters
group The name of the group. A new group is created automati-

cally if necessary.
name The name of the object, e.g the resource or property.
value An arbitrary value for the object (also named ”property”).

A value of None unsets the object.
This method also works for the special groups ’env’ and
’system’. This way, environment variables or system prop-
erties can be defined. Values in other special groups (like
’qftest’) can usually not be overridden. In that case, a
ReadOnlyPropertyException(899) is thrown.
Alias of setProperty.

void setLocal(String name, Object value)

Define a local QF-Test variable.
Parameters
name The name of the variable.
value An arbitrary value for the variable. A value of None unsets

the variable. When accessing the variable from a SUT
script, the object will be serialized. If this representation
needs more than 25 MB of RAM, the String value of the
object will be transmitted instead.

void setLocalJson(String name, Object value)

Define a local QF-Test variable by serializing the given value to a JSON string.
Parameters
name The name of the variable.
value An arbitrary value for the variable. It is automatically

stringified into a JSON string. A value of None unsets
the variable.

50.5. Run context API 986

void setOption(String name, object value)
Set an option value at run time. Any value thus set overrides the value read from the sys-
tem configuration file or set via the option dialog, but is never shown in the option dialog
or saved to a configuration file. The default value can be restored via unsetOption.
The value of a possibly preceding call to setOption gets overwritten. In case that
value should be restored, pushOption / popOption must be used instead.
Parameters
name The name of the option, a constant from the Options

class which is automatically imported in Jython and
Groovy scripts. The names of the options that can be set
in this way are documented in chapter 41(450).

value The value to set, typically a boolean, a number or
a constant from the Options class for options edited
via a drop-down list. For hotkey options like the
hotkey for pausing test run (”Don’t Panic” key) this
value should be a string like ”F12” or ”Shift-F6”. Sup-
ported modifiers are ”Shift”, ”Control” or ”Ctrl”, ”Alt” and
”Meta” and combinations thereof. Key specifiers are
prepended with ”VK_” and then looked up in the class
java.awt.event.KeyEvent. Case is irrelevant for
both, so ”shift-alt-enter” will work as well.

void setProperty(String group, String name, object value)

Set the value of a resource or property in a group.
Parameters
group The name of the group. A new group is created automati-

cally if necessary.
name The name of the resource or property.
value An arbitrary value for the property. A value of None unsets

the property.
This method also works for the special groups ’sys-
tem’ and ’env’ and can be used as a means to set
environment variables and system properties. Values
in other special groups like ’qftest’ mostly cannot be
set or changed that way, trying to do so triggers a
ReadOnlyPropertyException(899).

void skipTestCase()

Stop the execution of the current test case and mark it as skipped.

void skipTestSet()

Stop the execution of the current test set and mark it as skipped.

50.5. Run context API 987

void stopTest()

Terminate the current test run.
void stopTestCase(boolean expectedFail=false)

Stop the execution of the current test case.
Parameters
expectedFail If true, mark possible errors in this test case as expected

failures.

void stopTestSet()

Stop the execution of the current test set.

void syncThreads(String name, int timeout, int count=-1,
boolean throw=true, int remote=0)
Server only. Synchronize a number of parallel threads for load testing. The current
thread is blocked until all threads have reached this synchronization point or the timeout
is exceeded. In the latter case, a TestException(896) is thrown or an error logged.
Parameters
name An identifier for the synchronization point.
timeout The maximum time to wait in milliseconds.
count The number of threads to wait for. Default value -1 means

all threads in the current QF-Test instance.
throw Whether to throw an exception (default) or just log an error

if the timeout is exceeded without all threads reaching the
synchronization point.

remote The number of QF-Test instances - potentially running on
different machines - to synchronize. Default 0 means don’t
do remote synchronization.

50.5. Run context API 988

void toServer(...)
SUT only. Set some global variables in the respective interpreter of QF-Test. For
example, you can use it from a Groovy SUT script to set global variables in in the Groovy
interpreter of QF-Test.
Each argument can be any of:

A string
This is treated as the name of a global variable in the local interpreter. The

variable by the same name in QF-Test’s interpreter is set to its value.

A dictionary with string keys
For each key in the dictionary, a global variable by that name is set to the corre-

sponding value from the dictionary.

A keyword argument in the form name=value
The global variable named name is set to value.

void toSUT(String client, ...)
Server only. Set some global variables in the respective interpreter of the SUT. For
example, you can use it from a Groovy Server script to set global variables in in the SUT
Groovy interpreter.
Except for client, each argument can be any of:

A string
This is treated as the name of a global variable in the local interpreter. The

variable by the same name in SUT’s interpreter is set to its value.

A dictionary with string keys
For each key in the dictionary, a global variable by that name is set to the corre-

sponding value from the dictionary.

A keyword argument in the form name=value
The global variable named name is set to value.

Parameters
client The name of the SUT client.

void unsetOption(String name)
Restore an option value by removing a possible override from a previous call to
setOption.
Parameters
name The name of the option to unset, a constant from the

Options class which is automatically imported in Jython
and Groovy scripts. The constants for options that can be
set in this way are documented in chapter 41(450).

50.5. Run context API 989

RunContext withDefault(Object defaultResult)
Creates a new run context object, for which reading access on a non-existing variable
or preoprty/resource in a group does not trigger a UnboundVariableException(899)

or MissingPropertyException(899). Instead, the defined default result value is re-
turned. All other methods and properties of the rc object behave as unmodified.
Parameters
defaultResult The object which will be returned if a variable has no

value.
Returns A new run context (rc) objekt, which has the given default

value set for variable access.

50.5.1 The expand parameter

The methods getStr, getObj, getInt, getNum, getBool, getPattern and
getJson support the optional parameter expand. This parameter controls, whether to
expand the value of the variable recursively, which means whether to treat substrings of
the String value of the variable value which happen to have the QF-Test variable syntax
$(somecharacters) as a variable to be expanded or as simple text. If the parameter is
omitted or null, the replacement is performed (recursively) if and only if the variable
value is a String. To avoid probems, some strings, e.g. the return value of a Fetch text(786)

step, the client output from the special group ${qftest:client.output.<name>}
or the result of the standard procedure qfs.utils.readTextFromFile, are also
not automatically expanded, but only if the expand parameter is explicitely set to true.

Note that if you want to set this parameter, you must use Python keyword syntax to
avoid conflicts e.g. with getStr(String group, String name), i.e.
rc.getStr(”var”, expand=0) instead of rc.getStr(”var”, 0) - otherwise
the property 0 would be taken from the group var .

Sample
Given the QF-Test variables and values

Variable reference value
$(simplevar) foo
$(nestedvar) A value: $(simplevar)
${group:var} A value: $(simplevar)

Table 50.1: QF-Test variables for the expand parameter sample below

the parameter expand has the following effect:

50.6. The qf module 990

print rc.getStr("nestedvar", expand=True) # "A value: foo"
print rc.getStr("nestedvar", expand=False) # "A value: $(simplevar)"
print rc.getStr("group", "var", True) # "A value: foo"
print rc.getStr("group", "var", False) # "A value: $(simplevar)"

Example 50.2: Usage of the expand parameter (Jython script)

50.6 The qf module

In some cases there is no run context available, especially when implementing some
of the extension interfaces described in the following sections. The module qf enables
logging in those cases and also provides some generally useful methods that can be
used without depending on a run context. Following is a list of the methods of the qf
module in alphabetical order. Unless mentioned otherwise, methods are available in
Groovy and Jython and for both Server script and SUT script nodes.

Please note that the Groovy syntax for keyword parameters is different from Jython andNote
requires a ’:’ instead of ’=’. The tricky bit is that, for example, qf.logMessage(”bla”,
report=true) is perfectly legal Groovy code yet doesn’t have the desired effect. The
’=’ here is an assignment resulting in the value true, which is simply passed as the
second parameter, thus the above is equal to qf.logMessage(”bla”, true) and
the true is passed to dontcompactify instead of report. The correct Groovy version
is qf.logMessage(”bla”, report:true).

Pattern asPattern(String regexp)
This method interprets the input as regular expression and returns the corresponding
Java Pattern object. Valid input values are defined in the Java API of the Pattern object.
Parameters
regexp The regular expression
Returns A Pattern object, which can be used for string compar-

isons.

String getClassName(Object objectOrClass)
Get the fully qualified name of the Class of a Java object, or of a Java class itself. Mostly
useful for Jython where getting the name of a class can become a real hassle.
Parameters
objectOrClass The Java object or class to get the class name for.
Returns The class name or None in case something non-Java is

passed in.

50.6. The qf module 991

Object getProperty(Object object, String name)

Get a property for an object that was previously set via setProperty.
Parameters
object The object to get the property for.
name The name of the property.
Returns The property value.

boolean isInstance(Object object, String className)
This is a simple alternative to instanceof in Groovy and isinstance() in Jython
that deliberately compares class and instance names only so conflicts with differing
class loaders are avoided.
Parameters
object The object to check.
className The name of the class or interface to test for.
Returns True if the object is an instance of the given class or im-

plements the given interface.

void logError(String msg, boolean nowrap=false)
Add a user-defined error message to the run log. If a run context is available it is used
and logging takes effect immediately. Otherwise the message is buffered and logged at
the next opportunity.
Parameters
msg The message to log.
nowrap If true, lines of the message will not be wrapped in the

report. Use for potentially long messages. This parameter
has no effect if the message needs to be buffered.

void logMessage(String msg, boolean dontcompactify=false,
boolean report=false, boolean nowrap=false)
Add a plain message to the run log. If a run context is available it is used and logging
takes effect immediately. Otherwise the message is buffered and logged at the next
opportunity.
Parameters
msg The message to log.
dontcompactify If true, the message will never be removed from a compact

run log.
report If true, the message will appear in the report.
nowrap If true, lines of the message will not be wrapped in the

report. Use for potentially long messages. This parameter
has no effect if the message needs to be buffered.

50.6. The qf module 992

void logWarning(String msg, boolean report=true, boolean
nowrap=false)
Add a user-defined warning message to the run log. If a run context is available it is used
and logging takes effect immediately. Otherwise the message is buffered and logged at
the next opportunity.
Parameters
msg The message to log.
report If true (the default), the warning will be listed in the report.

Set this to false to exclude this specific warning from the
report.

nowrap If true, lines of the message will not be wrapped in the
report. Use for potentially long messages. This parameter
has no effect if the message needs to be buffered.

void print(Object object, ...)
Prints a string or the string representation of an object to the terminal. If more than one
object is specified there representations are joint with a space character. In contrast to
a simple print statement, the text is not transferred using the standard output stream.
Parameters
object The object, which should be printed.

void println(Object object)
Prints a string or the string representation of an object to the terminal, and starts a new
line. If more than one object is specified there representations are joint with a space
character. In contrast to a simple println statement, the text is not transferred using
the standard output stream.
Parameters
object The object, which should be printed.

void setProperty(Object object, String name, Object value)
Set an arbitrary property for an object. For Swing, SWT or web components the
value is stored in the respective user data via putClientProperty, setData or
setProperty respectively. For everything else a WeakHashMap is used. Either way
the property will not prevent garbage collection of the object.
Parameters
object The object to set the property for.
name The name of the property.
value The value to set. Null to remove the property.

50.7. Image API 993

String toString(Object object, String nullValue)
Get the string representation of an object. Mostly useful for Jython but sometimes also
useful for Groovy thanks to the default conversion of null to the empty string.
Parameters
object The object to get the string representation for.
nullValue The value to return if object is None, the empty string by

default.
Returns Jython 8-bit or Unicode strings are returned unchanged,

Java objects are turned into a string via toString. In
Jython, everything else is converted into an 8-bit Jython
string.

50.7 Image API
3.0+

The Image API provides classes and interfaces to take screenshots, to save or load
images or for own image comparisons. The image API is designed so that the different
methods in general do not throw any exception. Instead, the different methods are
logging warnings.

50.7.1 The ImageWrapper class

For taking screenshots you can use the Jython class ImageWrapper, located in the
module imagewrapper.py, which comes with the QF-Test installation.

Here is a short sample Jython script demonstrating the usage of the Image API:

from imagewrapper import ImageWrapper
#create ImageWrapper instance
iw = ImageWrapper(rc)
#take screenshot of the whole screen
currentScreenshot = iw.grabScreenshot()
#save screenshot to a file
iw.savePng("/tmp/screenshot.png", currentScreenshot)

Example 50.3: Image API in Jython

And the same in Groovy:

50.7. Image API 994

import de.qfs.ImageWrapper
def iw = new ImageWrapper(rc)
def currentScreenshot = iw.grabScreenshot()
iw.savePng("/tmp/screenshot.png", currentScreenshot)

Example 50.4: Image API in Groovy

Following is a list of the methods of the ImageWrapper class in alphabetical order. The
syntax used is a bit of a mixture of Java and Python. Python doesn’t support static
typing, but the parameters are passed on to Java, so they must be of the correct type to
avoid triggering exceptions. If a parameter is followed by an ’=’ character and a value,
that value is the default and the parameter is optional.

ImageWrapper ImageWrapper(RunContext rc)

Constructor method of the ImageWrapper class.
Parameters
rc The current run context of QF-Test.

int getMonitorCount()

Return the number of monitors.
Returns The total number of monitors.

ImageRep grabImage(Object com, int x=None, int y=None, int
width=None, int height=None)
Take screenshot of a given component. If you use the parameters x, y, width and height,
you can take a screenshot of a specific region of the component.
Parameters
com The QF-Test ID of the component to take a screenshot

from.
x The X coordinate of the left upper corner of the region to

take the screenshot.
y The Y coordinate of the left upper corner of the region to

take the screenshot.
width The width of the region to take the screenshot.
height The height of the region to take the screenshot.
Returns An ImageRep object containing the actual screenshot.

50.7. Image API 995

ImageRep grabScreenshot(int x=None, int y=None, int width=None,
int height=None)
Take screenshot of the whole screen. If you use the parameters x, y, width and height,
you can take a screenshot of a specific region of the screen.
Parameters
x The X coordinate of the left upper corner of the region to

take the screenshot.
y The Y coordinate of the left upper corner of the region to

take the screenshot.
width The width of the region to take the screenshot.
height The height of the region to take the screenshot.
Returns An ImageRep object containing the actual screenshot.

ImageRep[] grabScreenshots(int monitor=None)
Take screenshots of all available screens. This procedure might be useful, if you work
with more than one screen.
If you want to take a screenshot of one specific screen, you can also use this procedure.
Parameters
monitor Index of the monitor to take the screenshot from. The first

monitor has 0, the second 1 and so on.
Returns An array of ImageRep objects of all screenshots or the

specific ImageRep object, if the monitor parameter has
been used.

ImageRep loadPng(String filename)
Load an image from a given file return an ImageRep object containing this image. The
file has to contain the image in PNG format.
Parameters
filename The path to the file, where the image is stored.
Returns An ImageRep object containing loaded image.

void savePng(String filename, ImageRep image)

Save the given ImageRep object to a file. The file will be in PNG format.
Parameters
filename The path to the file, where the image should be stored to.
image The ImageRep object to store.

50.8. The JSON module 996

50.8 The JSON module

The JSON module, which is available in all script without dedicated import, parses a
JSON string into a data structure of Maps, Lists and primitive types like Integer, Double,
Boolean and String. Serializing is done via the stringify() method. Note: In order
to read structured JSON data from a QF-Test variable use the rc.getJson() call.

Object parse(Object text, Object reviver=None)
The static method parses a JSON string, constructing the object value or object de-
scribed by the string.
If called from Javascript, the original Javascript version of JSON.parse() is used.
If a reviver is specified, the value computed by parsing is transformed before being
returned. Specifically, the computed value and all its properties (in a depth-first fashion,
beginning with the most nested properties and proceeding to the original value itself)
are individually run through the reviver.

• The reviver is called with two arguments: key and value, representing the property
name as a String (even for lists) and the property value.

• If the reviver function throws a NoSuchElementException, the property
is deleted from the object (or replaced by null in a list), if it throws an
UnsupportedOperationException, the value is unchanged. Otherwise, the
property is redefined to be the return value.

• If the reviver only transforms some values and not others, be certain to return all
untransformed values as-is or throw an UnsupportedOperationException.
Otherwise, they will be deleted from the resulting object.

Similar to the replacer parameter of JSON.stringify(), for List and Map, the reviver
will be last called on the root value with an empty string as the key and the root object
as the value.
For other valid JSON values, reviver works similarly and is called once with an empty
string as the key and the value itself as the value.
If you return another value from reviver, that value will completely replace the originally
parsed value. This even applies to the root value.
Parameters
text The String or InputStream to parse as JSON.
reviver (Optional) If a function or Groovy Closure, this prescribes

how each value originally produced by parsing is trans-
formed before being returned. Non-callable values are ig-
nored.

Returns The Map, List, String, Number, Boolean, or
null value corresponding to the given JSON text.

50.8. The JSON module 997

Object stringify(Object value, Object replacer=None, Object
spacer=None)
The static method converts an Object into a JSON string.
If called from Javascript, the original Javascript version of JSON.parse is used.
The replacer parameter can be either a function or an array.

• As an array, its elements indicate the names of the properties in the object that
should be included in the resulting JSON string. Only string and number values
are taken into account.

• As a function, it takes two parameters: the key and the value being stringified.

The replacer function is called for the initial object being stringified as well, in which case
the key is an empty string (””). It is then called for each property on the object or array
being stringified. The current property value will be replaced with the replacer’s return
value for stringification. This means:

• If you return a number, string, boolean, or null, that value is directly serialized and
used as the property’s value.

• If you throw a NoSuchElementException, the property is not included in the
output.

• If you return any other object, the object is recursively stringified, calling the re-
placer function on each property.

Note: When parsing JSON generated with replacer functions, you would likely want to
use the reviver parameter to perform the reverse operation.
Typically, array elements’ index would never shift (even when the element is an invalid
value like a function, it will become null instead of omitted). Using the replacer function
allows you to control the order of the array elements by returning a different array.
Parameters
value The value to convert into a JSON string.
replacer (Optional) A function that alters the behavior of the stringi-

fication process, or an array of strings and numbers that
specifies properties of value to be included in the output.
If replacer is anything other than a function or an array,
all string-keyed properties of the object are included in the
resulting JSON string.

50.9. Natural Language Assertions 998

space (Optional) A string or number that’s used to insert white
space (including indentation, line break characters, etc.)
into the output JSON string for readability purposes.

• If this is a number, it indicates the number of space
characters to be used as indentation, clamped to 10
(that is, any number greater than 10 is treated as if it
were 10). Values less than 1 indicate that no space
should be used.

• If this is a string, the string (or the first 10 characters
of the string, if it’s longer than that) is inserted before
every nested object or array.

• If space is anything other than a string or number -
for example, is null or not provided - no white space
is used.

Returns A JSON string representing the given value, or null.

50.9 Natural Language Assertions

Inspired by Chai.js we have implemented our own assertion API for scripting. It can be
used from Groovy, JavaScript and Jython scripts.

50.9.1 Motivation

The idea is to make the checks implemented in the scripts in QF-Test more readable
and closer to the human language. Verifying and validating data when working in the
Server or SUT Scripts is usually done via rc.check() or the Java keyword assert.
They are fine when working with basic data types like strings. However, it can become
tedious when you have to check complex data types like structured objects, e.g. created
from a JSON string. This is where the QF-Test assertions API makes live a lot easier.

Here are two Groovy script examples where you can see the difference between the
natural language assertions and the traditional rc.check() and assert().

50.9. Natural Language Assertions 999

def foo = 'bar'
def beverages = [tea: ['chai', 'matcha', 'oolong']]
expect(foo).to.be.a('String')
foo.should.be.equal('bar')
expect(foo).to.have.lengthOf(3)
expect(beverages).to.have.property('tea').with.lengthOf(3)

Example 50.5: Groovy script with natural language assertions

def foo = 'bar'
def beverages = [tea: ['chai', 'matcha', 'oolong']]
rc.check(foo instanceof String,"")
rc.checkEqual(foo,'bar',"")
rc.checkEqual(foo.length(),3,"")
assert(beverages.tea!=null)
assert(beverages.tea.size()==3)

Example 50.6: Assertions with QF-Test check method and Java assert

50.9.2 API documentation

The QF-Test assertions API has the interfaces Assert and expect. In Groovy scripts,
also a direct chaining with should is available. expect and assert support language
chains, the Assert syntax is more traditional.

The result of an assertion can be either be written to the run log as failed or successful
check, or optionally as an exception. Additionally, the result of the last assertion can be
retrieved as a boolean value, which can be assigned to a variable. For details please
see Result handling(1001).

The API documentation is provided in doc/javadoc/qfaa.zip. The documentation
lists all the methods available for Assert. They can also be used with expect and
should (in Groovy), where they are part of the language chains. Since the
QF-Test assertions API is very similar to Chai.js, many of the examples on
https://www.chaijs.com/api/ will also work with QF-Test. For methods available in
Chai.js but not yet implemented for QF-Test please refer to section 50.9.2(1000).

When working with Assert you can use autocompletion and display the documentation
of the available methods by typing Assert. and then pressing

�� ��Ctrl-Space .

For Regular expressions(955) use the module java.util.regex.Pattern.

For an introduction to extending the assertion API with your own assertions, check outNote
our blog post Extending the QF-Test Assertion API – A practical introduction.

50.9. Natural Language Assertions 1000

Language chains

The biggest advantage comes via the language chains. They can be used with
expect() and should(). The following chainable getters are available: .to .be
.been .is .that .which .and .has .have .with .at .of .same .but
.does .still .also

def testObj = [
"name": "test",
"sub": [
"name": 'test sub'
],
"numbers": [1, 2, 3, 4],
"hasNumbers" : true
];
expect(testObj).to.be.an('Object').and.is.ok
expect(testObj).to.have.property('sub').that.is.an('Object').and.is.ok
expect(testObj.sub).to.have.property('name')

.that.is.a('String').and.to.equal('test sub')
expect(testObj).to.have.property('numbers')

.that.deep.equals([1, 2, 3, 4])
expect(testObj).to.have.property('hasNumbers', true)

Example 50.7: Language chains with expect

50.9. Natural Language Assertions 1001

rc.setLocal("jsonData", """
{

"Actors": [
{

"name": "Tom Cruise",
"age": 56,
"Born At": "Syracuse, NY",
"Birthdate": "July 3, 1962",
"photo": "https://jsonformatter.org/img/tom-cruise.jpg",
"wife": null,
"weight": 67.5,
"hasChildren": true,
"hasGreyHair": false,
"children": [

"Suri",
"Isabella Jane",
"Connor"

]
},
{

"name": "Robert Downey Jr.",
"age": 53,
"Born At": "New York City, NY",
"Birthdate": "April 4, 1965",
"photo": "https://jsonformatter.org/img/Robert-Downey-Jr.jpg",
"wife": "Susan Downey",
"weight": 77.1,
"hasChildren": true,
"hasGreyHair": false,
"children": [

"Indio Falconer",
"Avri Roel",
"Exton Elias"

]
}

]
}""")
def data = rc.getJson("jsonData")
data.Actors.should.be.a("ArrayList")
expect(data.Actors[0]).to.be.a("LinkedHashMap")
Assert.instanceOf(data.Actors[0], "LinkedHashMap", "Bla")
data.Actors[0].name.should.be.a("String")
data.Actors[0].age.should.be.a("Long")
data.Actors[0].weight.should.be.a("Double")
data.Actors[0].hasChildren.should.be.a("Boolean")
rc.setGlobalJson("gData",data)

Example 50.8: Language chains with should

For the documentation of the chainable getters please refer to:

50.9. Natural Language Assertions 1002

https://www.chaijs.com/api/bdd.

Differences between the QF-Test assertions API and Chai.js

Due to the Java implementation, some syntax in QF-Test differs from Chai.js.

• As assert is a reserved word in Java and Groovy, the QF-Test Assert is spelled
differently, which means the first letter is a capital ”A”. The same applies to the
assertions TRUE, FALSE, and NULL, which have to be written all-caps.

• All methods with strict* prefix use == for comparison, otherwise Java’s Object
equal() is used. For a list of all strict* methods type Assert.strict in the
script editor and then press

�� ��Ctrl-Space .

• Assert.test replaces assert:

Assert.test('foo' !== 'bar', 'foo is not bar')
Assert.test({true}, 'Closures can return true')

Example 50.9: Assert.test(...)

Unavailable assertions

Some of the assertions implemented by Chai.JS can not be directly translated from
Javascript to Java, and some assertions are not implemented, yet. Among these are:

Assert

• isAbove(), isAtLeast(), isBelow(), isAtMost()

• isNaN(), isNotNan()

• isUndefined()

• isFinite()

• throws(), doesNotThrow()

• operator()

• closeTo()

Expect/Should

50.9. Natural Language Assertions 1003

• .to.be.above(), .to.be.least(), .to.be.below(),
.to.be.most()

• .to.be.NaN, .not.to.be.NaN

• .to.be.undefined

• .to.be.finite

• .to.throw(), .to.not.throw()

• .to.be.closeTo()

50.9.3 Result handling

Result handling with Assert, expect(), should() (System)

Server (automatically forwarded to SUT) script name:
OPT_PLAY_HANDLE_ASSERTION
Possible Values: VAL_PLAY_HANDLE_ASSERTION_AS_CHECK,
VAL_PLAY_HANDLE_ASSERTION_WITH_EXCEPTION,
VAL_PLAY_HANDLE_ASSERTION_SILENTLY
The option is used to configure return value and logging.

• “Handle as check” - VAL_PLAY_HANDLE_ASSERTION_AS_CHECK
In case of failure, an error, otherwise a successful check is logged to the run
log

• “As Exception” - VAL_PLAY_HANDLE_ASSERTION_WITH_EXCEPTION
An assertion exception is thrown in case of a failure. Can be caught in scripts
as Throwable and in Try-Catch nodes as ScriptException

• “As return value” - VAL_PLAY_HANDLE_ASSERTION_SILENTLY
The assertion check will be executed, but no error will be logged or exception
will be thrown. Nevertheless, the assertion will be executed and returns a
result value (true or false). When using expect/should, the result can
be accessed with a chained .getResult().

• “Handle automatically” -
VAL_PLAY_HANDLE_ASSERTION_AUTOMATICALLY (Default value)
Same as VAL_PLAY_HANDLE_ASSERTION_AS_CHECK,
except within a Unit test(836) node, where
VAL_PLAY_HANDLE_ASSERTION_WITH_EXCEPTION is used to fulfill the
JUnit contract.

50.10. Exception handling 1004

Use the option at the beginning of the script:

rc.setOption(Options.OPT_PLAY_HANDLE_ASSERTION,
Options.VAL_PLAY_HANDLE_ASSERTION_SILENTLY)
def a = 54
def b = 55
def isEqual = Assert.test(a==b, "")
if (isEqual) {...}

Example 50.10: Silent assertion in a Groovy script

If you used fluent assertions, you have to call .getResult() to query the result:

rc.setOption(Options.OPT_PLAY_HANDLE_ASSERTION,
Options.VAL_PLAY_HANDLE_ASSERTION_SILENTLY)
a = 54
b = 55
isEqual = expect(a).to.equal(b).getResult()
if isEqual:

...

Example 50.11: Silent assertion in a Jython script

50.10 Exception handling

All QF-Test Exceptions(896) are automatically imported inscripts and can be used for
try/except clauses like

try:
com = rc.getComponent("someId")

except ComponentNotFoundException:
...

Example 50.12: Catching a ComponentNotFoundException in Jython

When working with Groovy you use try/catch:

try {
com = rc.getComponent("someId")

} catch (ComponentNotFoundException) {
...

}

Example 50.13: Catching a ComponentNotFoundException in Groovy

50.11. Debugging scripts (Jython) 1005

Only the following exceptions should be raised explicitly from script code (with raise or
throw new respectively):

• UserException(”Some message here...”) should be used to signal ex-
ceptional error conditions.

• BreakException() or raise BreakException(”loopId”) can be used to
break out of a Loop(639) or While(642) node, either without parameters to break out of
the innermost loop or with the QF-Test loop ID parameter to break out of a specific
loop with the respective QF-Test ID.

• ReturnException() or raise ReturnException(”value”) can be used
to return - with or without a value - from a Procedure(627) node, similar to executing a
Return(633) node. To improve readability, preferably call rc.returnValue(...).

50.11 Debugging scripts (Jython)

When working with Jython modules you don’t have to restart QF-Test or the SUT after
you made changes. You can simply use reload(<modulename>) to load the module
anew.

Debugging scripts in an embedded Jython interpreter can be tedious. To simplify this
task, QF-Test offers an active console window for communicating with each interpreter.
For more information please see the last part of section 11.1(169).

Alternatively, a network connection can be established to talk remotely to the Jython
interpreter - in QF-Test as well as within the SUT - and get an interactive
command line. To enable this feature you must use the command line argument
-jythonport <number>(919) to set the port number that the Jython interpreter should
listen on. For the SUT -jythonport=<port> can be defined in the ”Extra”
Executable parameters(679) of the Start Java SUT client(677) or Start SUT client(681) node. You
can then connect to the Jython interpreter, for example with

telnet localhost <port>

Combined with Jython’s ability to access the full Java API, this is not only useful for
debugging scripts but can also be used to debug the SUT itself.

Chapter 51

Web

Web

This chapter addresses topics that are only relevant when testing web applications in a
browser.

51.1 Improving component recognition with a
CustomWebResolver

Video:Video

’CustomWebResolver in QF-Test’
https://www.qftest.com/en/yt/no-rocket-science-special-webinar.html

Blog post: It’s not magic: How the CustomWebResolver makes your web application UINote
testable.

HTML is a very flexible language for describing the content of web pages. But unfortu-
nately there are no real standards with regard to components which should be used to
draw a button, a text field or a table showing data. As a result nearly every framework
implements its own way of drawing such components. This means the HTML structure
(the so-called DOM tree) looks different for every web framework. In order to allow QF-
Test to identify the components as buttons or data tables etc. we need some kind of
dictionary. The dictionary should work as a translator for the properties of the HTML
components to the QF-Test vocabulary.

QF-Test offers a generic component resolver to be configured freely, the
CustomWebResolver, allowing you to adapt the component recognition of QF-Test
without too great an effort to the specific needs of your web page.

Before starting to set up test cases you should check the component recognition and
maybe improve it. We recommend the following approach:

51.1. Improving component recognition with a CustomWebResolver 1007

1. Record GUI objects you want to interact with in the test on different web pages of
the application.

2. Check the recorded QF-Test components

• whether they were mapped to Generic classes(1242),

• if they have sufficient recognition criteria (Name and Feature attributes,
qfs:label in Extra features),

• for the depth of the component hierarchy,

• whether complex components such as tables, lists, trees etc. have been
mapped as such and the sub-items were addressed via index. You will find
detailed information on the standard recording of HTML elements and criteria
for deciding whether it is sufficient in Recognition of web components and
toolkits(210).

3. In case you identified weak points, check the respective GUI objects of different
web pages trying to identify their characteristic attributes to be mapped to generic
QF-Test classes, as well as ’good’ attributes for the Name and Feature of the QF-
Test component. You can use the UI Inspector(97) to analyze the web elements.

4. Configure the component mapping as described in The Install CustomWebResolver
node(1008).

5. In case tests already exist: Update existing Component(869) nodes, see Update
Components(94).

51.1.1 General configuration

The Install CustomWebResolver node(1008) offers the following functionality:

Mapping of HTML objects to functional components
You can map functional GUI objects as buttons, text fiels, data tables etc. to

QF-Test components of a certain generic class. Advantages:
- recording of additional criteria for recognition,
- class specific checks,
- indexing of sub-items during recording,
- recording of generic class types,
- better component recognition via specific generic QF-Test classes vs. common
HTML classes.

The data recorded for a certain object depends on its generic class as described
in Generic classes(1242).

51.1. Improving component recognition with a CustomWebResolver 1008

Reduction of the recorded component hierarchy
You can tell the recording algorith to ignore certain HTML components in the

component’s hierarchy. This reduces the complexity of a recorded web page from
the full HTML structure to a component hierarchy relevant for recognition or
structuring. The videoVideo

’Dealing with the explosion of complexity in web test automation’
https://www.qftest.com/en/yt/web-test-automation-40.html

gives you a good idea of how QF-Test handles a deeply nested DOM structure.

Current recording Simplified recording

Figure 51.1: Reduction of complexity for ”CarConfigurator Web” demo

Using alternative attributes for ids
By default QF-Test uses the HTML attributes id or name to identify a component

and saves them in the Name attribute of the Component node. You can configure
Install CustomWebResolver(842) to use a different HTML attribute as id.

51.1. Improving component recognition with a CustomWebResolver 1009

Specification of further attributes for recognition You
can specify an attribute useful for component recognition, the value of which QF-Test
will save to the Feature attribute of the component.

You can use the following HTML features to identify a GUI object:

• the class attribute,

• any other attribute,

• the HTML tag.

The mapping of the HTML attributes can be subject to certain conditions. QF-Test offers
the following options to set conditions for single mappings. It is possible to combine
them.

• The use of regular expressions.

• Map only if the object is a child component (at a given depth) of another object of
a given class.

• Map only if the object has a certain HTML tag, additonally to the other criteria.

A functional component often may consist of nested layers of elements. Some of the
layers may have attributes useful for component recognition, others not. For recording
and replay it does not matter which layer you map. The main thing is to has attributes for
component recognition. QF-Test will also check nested components for further attributes
and save them with the mapped QF-Test component. Example: CustomWebResolver –
TabPanel and Accordion(1032)

In addition you get functional components such as combo boxes, lists, tables and trees
which have to be implemented in HTML via several objects, named ’complex compo-
nents’ in QF-Test, i.e. a list, where you need to tell QF-Test which HTML object will be
the list container and which HTML objects will be the list items.

The following sections provide a list of mandatory and optional HTML elements which
need to be mapped for a complex component to be recognized as such, each containing
a comprehensive example.

• CustomWebResolver – Combo boxes(1030)

• CustomWebResolver – Lists(1028)

• CustomWebResolver – Tables(1021)

• CustomWebResolver – TabPanel and Accordion(1032)

51.1. Improving component recognition with a CustomWebResolver 1010

• CustomWebResolver – Tree(1023)

In most cases the HTML attribute class is significant for component recognition and
provides information about the functional type of the component, sometimes it is other
attributes. There are also some frameworks where you can only access this informa-
tion through special JavaScript methods. For adapting QF-Test to those frameworks
you need to implement other resolvers in addition to a CustomWebResolver. In this
chapter, the focus is on the first two. For adapting QF-Test to more complicated cases,
please get in touch with our support team.

51.1.2 The Install CustomWebResolver node

The mapping of HTML objects to Generic classes(1242) is usually done via the
Install CustomWebResolver(842) node.

Before QF-Test version 7, this mapping was achieved by a call to the Procedure7.0+
installCustomWebResolver(887) and updateCustomWebResolverProperties
from the qfs.qft standard library. These procedure calls should now be converted to
a Install CustomWebResolver node. Before conversion of the procedure call, the
contained parameters are automatically checked to uncover possible invalid
assignments and to facilitate the switch to the Install CustomWebResolver node. If your
procedure call contains variables, you must provide a run log during conversion which
contains the desired variable values. If your procedure call contains invalid entries as
comments, you may have to remove them before conversion or put them back in the
desired location after conversion.

If you used the Quickstart Wizard from the Extras menu to create the setup sequence
for your web application, as recommended, you will find the Install CustomWebResolver
node in the last Sequence node. You should configure this node as required for your
application.

51.1. Improving component recognition with a CustomWebResolver 1011

Figure 51.2: Installing the CustomWebResolver in the Setup node of the Quickstart Wiz-
ard

Please find general information about component recognition in Recognition of web
components and toolkits(210) as well as in General configuration(1005).

In the following chapters, the syntax used by the Install CustomWebResolver node and the
available configuration categories are explained.

Please note changes in the Install CustomWebResolver node are likely to also changeNote
the recognition criteria for a GUI element. Thus they may deviate from the recognition
criteria of Component(869) nodes already recorded. Therefore, you should update existing
Component nodes as described in Update Components(94). Ideally, the configuration of
the Install CustomWebResolver node should be done before setting up the tests. Nodes
recorded during the configuration phase should be deleted altogether.

Install CustomWebResolver node – Syntax

The Install CustomWebResolver node is configured in a text area using the YAML syntax.
Knowledge of the basic functionality of YAML is necessary, but it will be explained where
necessary below.

On the top level there are the configuration categories (see the following sections).
These are written on their own line and are followed by a colon (dictionary keys). On the
second level, the entries each start on a new line, beginning with a hyphen (list items).
Further levels are indicated via indentation.

To facilitate working with the YAML configuration, various templates can be inserted via
the toolbar above the editor.

51.1. Improving component recognition with a CustomWebResolver 1012

Figure 51.3: CustomWebResolver configuration templates

The menu, which can be opened via the edit button next to the line numbers, is
context-sensitive. It contains any available actions for the respective line of configu-
ration. If you work with this menu, you will always have the full overview of available
actions and automatically achieve the correct syntax.

If you followed Quickstart your application(28) to create the startup sequence and left
the framework selection on the default setting, you will receive a configuration with two
categories and two entries on the second level, plus a few explanatory comments:

51.1. Improving component recognition with a CustomWebResolver 1013

Figure 51.4: CustomWebResolver with a template for genericClasses

In the following configuration, the line after the category genericClasses was se-
lected and then the edit menu to the left of the line numbers was used to insert a
template for a generic class (comments removed for brevity).

Figure 51.5: CustomWebResolver with two generic classes

In the next step, the generic class List was entered, as well as the CSS class
datalist. HTML elements with this CSS class will now be assigned this generic
class during component recognition. This process was repeated for the generic class

51.1. Improving component recognition with a CustomWebResolver 1014

Item:ListItem. It will be assigned to each GUI element with the HTML tag LI.
Normally, only elements with this tag that are inside a List component should be
considered. Therefore, the next step is to use the edit button and choose the entry
”Add ancestor”. As you can see, the syntax for the entry changes: As soon as more
than one characteristic is needed for the mapping, the first mapping is moved to the
next level with the appropriate prefix, and the additional characteristic is added to the
same level.

Figure 51.6: CustomWebResolver with more complex mapping

CustomWebResolver configuration categories

Every CustomWebResolver is based on a globally defined default configuration with a set
of generally applicable rules. You can inspect part of these defaults in the included
library qftest-9.0.4/include/qfs-resolvers.qft in the procedure
qfs.web.cwr.helpers.default.

You can find a complete list of all available configuration categories in QF-Test in the
Install CustomWebResolver node behind the ”New mapping” button.

The following sections briefly introduce the most important configuration categories.
Please keep in mind that all functionality of the different categories can be explored via
the context-sensitive edit button . Not every possible permutation of the syntax is
described here.

Configuration category base

Contains the short name of the base resolver which serves as the foundation of the
configuration:

• autodetect: automatic detection of the framework used. Falls back to custom

51.1. Improving component recognition with a CustomWebResolver 1015

if no supported framework was detected.

• custom: No framework should be used as a basis for the configuration. In this
case, base can also be omitted completely.

• The short name of the framework, for example vaadin:
The mappings shipped with QF-Test in
qftest-9.0.4/include/qfs-resolvers.qft for the respective framework
are used. In your configuration, these can be supplemented with your own
mappings.

You can find the short names of each supported framework in the table table
51.7(1048). If you create a setup sequence with the Quickstart Wizard and choose a
framework, its short name is inserted here.

You can also use the full name of a procedure as a short name. This procedure
should contain you own base resolver for the application under test. It is also
possible to create multiple procedures and orchestrate them freely in one Install
CustomWebResolver node. You can even combine them with a base resolver pre-
defined by QF-Test, but the predefined resolver must usually be at the start of the
list. The configurations will then be applied in the given order.

base:
- vaadin
- myResolvers.Panels
- myResolvers.otherClasses

Example 51.1: List of base resolvers

Configuration category genericClasses

In this category, the recognition criteria are defined, on the basis of which a specific
generic class is assigned to a GUI element. The respective properties of the generic
classes are explained in chapter 61(1242).

Generic classes can receive a type extension. It is used for the mapping of
some HTML elements. For example, Item:ListItem refers to a list item,
Button:ComboBoxButton refers to a button that opens a combo box. Type
extensions are also interesting because you can define you own types. The example in
CustomWebResolver – Tables(1021) uses this technique.

When using a class with a type extension in a SmartID, the colon before any customNote
type extension must be escaped with a backslash, see SmartID syntax for Class name(75).

The given entries are evaluated from top to bottom, and for each HTML element the
topmost matching generic class is used. The only exception to this rule are entries with

51.1. Improving component recognition with a CustomWebResolver 1016

ancestor, parent, interestingparent or sibling which are always evaluated
first.

The tag name and the attributes of an HTML element are the most basic elements of
component recognition. The class attribute has a special role. It contains the CSS
classes that influence the display of the GUI element in the browser and are thus often
characteristic of a particular GUI element class.

Install CustomWebResolver offers ways to create mappings for each of these cases:

CSS class
The CSS class refers to an entry in the attribute class of the GUI element.

Please note that multiple classes can be separated by spaces in the attribute, but
only individual classes are considered here.

Simple mapping: The CSS class is entered on the same line as the generic class.

genericClasses:
- Button: btn

Example 51.2: Simple mapping of a CSS class to a generic class

In the example, only HTML elements with the CSS class btn receive the generic
class Button.

Mapping with multiple criteria: The CSS class is indented in a line below the
generic class and prefixed with css:.

genericClasses:
- Button:

css: btn
tag: DIV

Example 51.3: Mapping CSS class and tag name to a generic class

In the example, only HTML elements with the CSS class btn and the HTML tag
name DIV receive the generic class Button.

It is also possible to specify multiple CSS classes at once. Only one of the given
CSS classes has to match.

genericClasses:
- Button:

css:
- btn
- button

Example 51.4: Mapping multiple CSS classes to a generic class

51.1. Improving component recognition with a CustomWebResolver 1017

HTML tag name
Simple mapping: The tag name is added in angled brackets after the generic

class.

genericClasses:
- TableCell: <TD>

Example 51.5: Simple mapping of a tag name to a generic class

In the example only HTML elements with the tag TD receive the generic class
TableCell.

Mapping with multiple criteria: The tag name is indented in a line below the generic
class and prefixed with tag:.

genericClasses:
- TableCell:

tag: TD
ancestor: TableRow

Example 51.6: Mapping a tag name with an ancestor to a generic class

In the example, only HTML elements with the tag TD receive the generic class
Button if they are inside a GUI element with the class TableRow.

It is also possible to specify multiple HTML tag names at once. Only one of the
given names has to match.

genericClasses:
- Button:

tag:
- CUSTOM-BUTTON
- BUTTON

Example 51.7: Mapping multiple HTML tag names to a generic class

HTML attribute
Simple mapping: The attribute name, an equals sign and the attribute value are

added after the generic class.

genericClasses:
- TableRow: role=datarow

Example 51.8: Simple mapping of an attribute to a generic class

51.1. Improving component recognition with a CustomWebResolver 1018

In the example, only HTML elements with the attribute role and the value
datarow are assigned the generic class TableRow.

Mapping with multiple criteria: Indented below the generic class a line is added for
the attribute name with the prefix attribute: and for the attribute value with the
prefix attributeValue:.

genericClasses:
- TableRow:

attribute: role
attributeValue: datarow

Example 51.9: Mapping an attribute value to a generic class

In the example, only HTML elements with the attribute role and the value
datarow receive the generic class TableRow.

The class attribute can also be used here. However, then the entire value of theNote
attribute must match for the mapping to apply. For example, if two CSS classes
must be present and the others are to be ignored, a regular expression can be
used. This is also an example for an additional level of indentation.

genericClasses:
- TableRow:

attribute: class
attributeValue:

value: (^|.*\s)btn(\s.*|$)
regex: true

Example 51.10: Mapping an attribute value to a generic class

Ancestor/Parent/Sibling
To make a mapping additionally dependent on the existence of a specific

ancestor or sibling element, ancestor, parent, interestingparent or
sibling is used.

Simple mapping: The class of the container is added with one of the type prefixes.

genericClasses:
- TableRow:

tag: TR
ancestor: Table

Example 51.11: Simple ancestor mapping

51.1. Improving component recognition with a CustomWebResolver 1019

In the example, only HTML elements with the HTML tag TR receive the generic
class TableRow if they lie anywhere within an element with the generic class
”Table”.

Mapping with multiple criteria: Indented below one of the type prefixes follow the
attributes level: and className:.

The definitions of the different types are:

• ancestor: arbitrary nesting,

• parent: direct parent element,

• interestingparent: directly inside the QF-Test parent element deter-
mined by node.getInterestingParent(), and

• sibling: shares the same parent with the element.

When using ancestor or sibling, the exact distance of source and target ele-
ment can be set using level:.

genericClasses:
- TableRow:

tag: TR
ancestor:

level: 2
className: Table

Example 51.12: Complex ancestor mapping

In the example, only HTML elements with the HTML tag TR receive the generic
class TableRow which are two levels deep inside an element with the generic
class ”Table”.

If HTML elements with different recognition criteria should receive the same generic
class, two entries for that class need to be added:

genericClasses:
- TableRow:

attribute: role
attributeValue: datarow

- TableRow:
tag: TR
ancestor: Table

Example 51.13: Same generic class for different HTML elements

For sibling, the restriction applies that assignments using a generic class which re-Note

51.1. Improving component recognition with a CustomWebResolver 1020

curse to the element itself cannot be taken into account. In cases where an assignment
does not work, you can specify an HTML tag name as sibling instead of a generic
class. In general, you should use sibling assignments sparingly to avoid performance
problems.

ancestor etc. is also available in some other configuration parameters. Check the editNote

menu for the entry ”Add ancestor” or ”Add sibling”.

Configuration category ignoreTags

A list of class names or tags for which to ignore nodes when creating the parent hierar-
chy of a node. To distinguish tags from class names, tags must be written in uppercase
letters or between angle brackets.

In the following example, all DIV and TBODY nodes not mapped to a generic class and
not interacted with directly will be ignored.

ignoreTags:
- <DIV>
- <TBODY>

Example 51.14: ignoreTags

Configuration category ignoreByAttributes

A list of HTML attributes and values for which to ignore nodes when creating the parent
hierarchy of a node:

ignoreByAttributes:
- id: container

Example 51.15: ignoreByAttributes

Configuration category autoIdPatterns

A list of patterns specifying ids generated automatically by a framework. If the id at-
tribute matches the pattern the value will not be used for the Name attribute of the com-
ponent:

51.1. Improving component recognition with a CustomWebResolver 1021

autoIdPatterns:
- myAutoId
- value: auto.*

regex: true

Example 51.16: autoIdPatterns

Configuration category customIdAttributes

A list of attribute names which can act as id for a component. Keep in mind that you
need to include the attribute ”id” here if you only want to augment the default QF-Test
behavior.

The following example will make the attribute myid be used for ID resolution.

customIdAttributes:
- myid

Example 51.17: customIdAttributes

Configuration category interestingByAttributes

A list of attribute names and values telling QF-Test to create a node in the component
tree for the respective GUI object.

interestingByAttributes:
- id: container
- id: header

Example 51.18: interestingByAttributes

Configuration category attributesToQftFeature

A list of attributes where the values will be used for the Feature attribute of the QF-Test
component.

Configuration category redirectClasses

In this category you can configure for individual generic classes if events should be redi-
rected to elements of that class or if an ancestor element should be recorded instead.

51.1. Improving component recognition with a CustomWebResolver 1022

You can also define multiple rules to achieve different behavior depending on the class
of the parent element.

Entries are evaluated from top to bottom, and only the first matching entry is applied.

Use carefully. When in doubt, contact the QF-Test support team.

Configuration category documentJS

Define JavaScript code to be injected into the web page. Can be used to inject custom
JavaScript functions or run certain code after every page load.

In the following example, pay attention to the syntax for multiline strings in YAML. In-
jected JavaScript code should not contain any empty lines to avoid conflicts with the
YAML syntax.

documentJS: |-
window.hello = function() {

console.log("Hello World");
}
hello();

Example 51.19: documentJS

Configuration category attributesToQftName

A list of attributes which will be used for the Name attribute of components.

Configuration category nonTrivialClasses

A list of CSS classes of HTML-Elements which shouldn’t be ignored by QF-Test. Trivial
nodes are usually I, FONT, BOLD etc. If you want to keep them, you need to activate
them here specifying a proper CSS class.

Use carefully. When in doubt, contact the QF-Test support team.

Configuration category browserHardClickClasses

A list of QF-Test classes whose components should always receive hard or semi-hard
events during playback. For example, the entry Button will play back hard clicks on
buttons. Can also be limited to certain browsers.

51.1. Improving component recognition with a CustomWebResolver 1023

Configuration category treeResolver

This category bundles configuration options which control how QF-Test handles tree
nodes in Tree and TreeTable. Use this category if QF-Test has trouble differentiating
levels of hierarchy in trees, expanding individual tree nodes or reading the correct text
content of tree nodes in your application.

In rare cases when the parameters provided for the category might not be enough
please refer to The TreeIndentationResolver Interface(1104).

Configuration category treetableResolver

This category bundles configuration options which control how QF-Test handles tree
nodes in TreeTable components. You can for example define the index of table
columns in your application a tree can be located, in case QF-Test cannot find it au-
tomatically.

51.1.3 CustomWebResolver – Tables

In order to resolve Table components correctly, it is necessary to map the component
containing all entries, i.e. the table itself as well as the components which represent
the individual rows of a table and the individual table cell entries. Furthermore, the row
containing all headings as well as the specific headings need to be mapped to generic
classes.

Class Required components and sub-items
Table Represents the Table component, contains all

rows and cells.
TableRow Represents a table row.
TableCell Represents a table cell.
TableHeader Represents a row of the table headers.
TableHeaderCell Represents a header cell.

Optional sub-items
CheckBox:TableCellCheckBox (Optional) Represents a CheckBox in table cell.
Icon:TableCellIcon (Optional) Represents an Icon in a table cell.
CheckBox:TableCellHeaderCheckBox (Optional) Represents a CheckBox of a table

header cell.
Icon:TableCellHeaderIcon (Optional) Represents an Icon of a table header

cell.

Table 51.1: Mapping of Tables

51.1. Improving component recognition with a CustomWebResolver 1024

In addition to the following example you will find a detailed instruction for mapping a
table in Mapping of complex components like data tables(1041).

Example:

The following HTML code defines two tables, one as a data table and the other one for
the layout of buttons:

<div role="datatablecontainer">
<table>

<th type="header">
<td class="datacell">Form</td>
<td class="datacell">Color</td>

</th>
<tr>

<td class="datacell">Square</td>
<td>Red</td>

</tr>
<tr>

<td class="datacell">Diamond</td>
<td class="datacell">Blue</td>

</tr>
</table>

</div>
<table>

<tr>
<td>

<div class="button">Save</div>
<div class="button">Cancel</div>

</td>
</tr>

</table>

Example 51.20: HTML Table

The following configuration for the Install CustomWebResolver(842) node only maps the data
table to a QF-Test table component.

51.1. Improving component recognition with a CustomWebResolver 1025

genericClasses:
- Button: button
- TableCell:

css: datacell
ancestor: TableRow

- Panel:myTablePanel: role=datatablecontainer
- TableHeader:

attribute: type
attributeValue: header
tag: th

- Table:
tag: table
ancestor:

type: parent
className: Panel:myTablePanel

- TableHeaderCell:
tag: td
ancestor: TableHeader

- TableRow:
tag: tr
ancestor: Table

ignoreTags:
- <DIV>
-
- <TABLE>

Example 51.21: HTML table

In the mapping of Panel:myTablePanel, the class type myTablePanel was freely
”invented” to distinguish the DIV element containing the data table from other DIVs.
This allows us to use parent: Panel:myTablePanel in the mapping of the table.

The mapping for the column title TableHeader reads as follows: The attribute type
with the value header will be mapped to the generic class TableHeader only if the
HTML tag name is TH.

To make sure the mappings will only affect HTML elements with the tags TR and TD that
are part of a data table we add ancestor: to each.

We do not want to record HTML elements with the HTML tag TABLE that are not
mapped to a QF-Test Table component. Therefore, we add <TABLE> in the category
ignoreTags in addition to the default entries <DIV> and which, in turn, make
sure that unmapped DIV and SPAN elements will not be recorded.

51.1.4 CustomWebResolver – Tree

In order to resolve Tree components correctly, it is necessary to map the component
containing all entries, which is the tree itself, as well as the components which represent

51.1. Improving component recognition with a CustomWebResolver 1026

the individual tree entries. Furthermore, you need to map the toggle button which opens
and closes a tree node.

Class Required components and sub-items
Tree Represents the Tree component, contains all tree

nodes.
TreeNode Represents a tree node.
Expander:TreeNodeExpander Represents the toggling component used to open

and close the tree node.
Optional sub-items

Spacer:TreeNodeSpacer (Optional) Represents the spacing object used to
create the indentation of the tree node.

CheckBox:TreeNodeCheckBox (Optional) Represents a CheckBox of a tree node.
Icon:TreeNodeIcon (Optional) Represents an Icon in a tree node.

Table 51.2: Mapping of trees

If QF-Test does not recognize the level of branches or leaves out-of-the-box or does
not expand nodes correctly, you can configure the Configuration category
treeResolver(1021) of the CustomWebResolver. Alternatively, you can use The
TreeIndentationResolver Interface(1104) to configure the indentation detection.

Example:

The ”CarConfigurator Web” demo
(qftest-9.0.4/demo/carconfigWeb/carconfigWeb_de.qft) contains a tree.
Please open the specials dialog via the menu Options→Specials... , select a model
and click the Button ’Details’.

When you have a look at the CSS classes recorded by QF-Test or analyze the web page
with the UI Inspector(97) you will find the following HTML structure (slightly simplifies and
shortened):

51.1. Improving component recognition with a CustomWebResolver 1027

<table id="DetailsTree" class="tree">
<tbody>

<tr class="treenode even">
<td>Information</td>
<td></td>

</tr>
<tr class="treenode odd>

<td>

Zubehör

</td>

</tr>
<tr class="treenode odd>

<td>

Zentralverriegelung

</td>

</tr>
</tbody>

</table>

Example 51.22: HTML Tree

In the CarConfigurator demo test suite you will find the mapping for the tree in the
Install CustomWebResolver(842) node. It is located in the procedure startStop.start in
the last sequence, Install CustomWebResolver.

51.1. Improving component recognition with a CustomWebResolver 1028

Figure 51.7: CarConfigurator Web

The following CustomWebResolver configuration entries map the tree:

genericClasses:
- Tree: tree
- TreeNode: treenode
- Expander:TreeNodeExpander: treetoggler
- Spacer:TreeNodeSpacer: treenodespacer

Example 51.23: HTML tree

51.1.5 CustomWebResolver – TreeTable

Tree tables are a combination of table and tree. For them, you map TreeTable the
same way you would a normal table. Additionally, you need to map the open/close
buttons of the tree nodes.

QF-Test assumes that the tree components are located in the first table column. You
can adjust this behavior with the Configuration category treetableResolver(1021) of
the Install CustomWebResolver.

If QF-Test does not recognize the level of branches or leaves out-of-the-box or does
not expand nodes correctly, you can configure the Configuration category

51.1. Improving component recognition with a CustomWebResolver 1029

treeResolver(1021) of the CustomWebResolver. Alternatively, you can use The
TreeIndentationResolver Interface(1104) to configure the indentation detection.

Class Required components and sub-items
TreeTable Represents the TreeTable component, contains

all rows and cells.
TableRow Represents a table row and tree node.
TableCell Represents a table cell.
TableHeader Represents a row of the table headers.
TableHeaderCell Represents a header cell.
Expander:TreeNodeExpander Represents the toggling component used to open

and close the tree node.
Optional sub-items

TreeNode (Optional) Represents a tree node, must be lo-
cated inside a TableCell.

Spacer:TreeNodeSpacer (Optional) Represents the spacing object used to
create the indentation of the tree node.

CheckBox:TreeNodeCheckBox (Optional) Represents a CheckBox of a tree node.
Icon:TreeNodeIcon (Optional) Represents an Icon in a tree node.

Table 51.3: Mapping of TreeTables

Example:

A TreeTable could look like this in HTML code:

51.1. Improving component recognition with a CustomWebResolver 1030

<table id="DetailsTreeTable" class="treetable">
<thead>

<tr>
<th>Information</th>
<th>Details</th>

</tr>
</thead>
<tbody>

<tr class="treenode odd>
<td>

Item 1

</td>
<td>Lorem ipsum</td>

</tr>
<tr class="treenode odd>

<td>

Item 1.1

</td>
<td>Dolor sit amet</td>

</tr>
</tbody>

</table>

Example 51.24: HTML TreeTable

The matching configuration of the Install CustomWebResolver node could look
like this:

genericClasses:
- TreeTable: treetable
- TableRow: <TR>
- TableCell: <TD>
- TableHeader: <THEAD>
- TableHeaderCell: <TH>
- Expander:TreeNodeExpander: treetoggler

Example 51.25: TreeTable CWR configuration

51.1.6 CustomWebResolver – Lists

In order to resolve List components correctly, it is necessary to map the component
containing all list entries, i.e. the list itself, as well as the components which represent
the individual list entries.

51.1. Improving component recognition with a CustomWebResolver 1031

Class Required components and sub-items
List Represents the List component, contains all list

entries.
Item:ListItem Represents the individual list entry.

Optional sub-items
CheckBox:ListItemCheckBox (Optional) Represents a checkbox inside the list

entry.
Icon:ListItemIcon (Optional) Represents an icon inside the list entry.

Table 51.4: Mapping of Lists

In the case of combo boxes you can also map the specific ComboBoxList:
List:ComboBoxList and Item:ComboBoxListItem.

Sample:

The following HTML code represents a list:

<ul class="datalist">
<li class="list-item">Entry A
<li class="list-item">Entry B
<li class="list-item">Entry C
<li class="list-item">Entry D
<li class="list-item">Entry E

Example 51.26: HTML list

This HTML code offers the choice whether to map the HTML tags or the CSS classes.
We highly recommend to use the CSS classes, as this will be a lot more precise.
datalist strongly hints that the element refers to a list in the sense of QF-Test. With
list-item we can add ancestor: List to be sure not to map sub-items of other
complex components (e.g. with table cells not shown here, which very well could have
the CSS class list-item)

If we used the HTML tags, this might easily lead to wrong mappings with other compo-
nents. If such a thing should happen, and you find it difficult to know why a mapping
is not working, you can use the procedure qfs.web.cwr.dumpConfiguration to
display the currently configured mappings.

51.1. Improving component recognition with a CustomWebResolver 1032

genericClasses:
- List: datalist
- Item:ListItem:

class: list-item
ancestor: List

Example 51.27: HTML list

51.1.7 CustomWebResolver – Combo boxes

Combo boxes mostly consist of text fields or buttons. If the user clicks that component,
a list of items is shown. The user can then select an item. To resolve a combo box
correctly, you need to map the combo box with the text field and the components for the
list and its items.

HTML SELECT nodes will be mapped to combo boxes automatically. The selection of
the list item will be recorded as a Selection node.

Class Required components and sub-items
ComboBox Container component which contains a text field

and the button.
List:ComboBoxList Represents the List component, contains all list

entries.
Item:ComboBoxListItem Represents the individual list entry.

Optional sub-items
Button:ComboBoxButton (Optional) Represents the button opening the se-

lection list.
TextField:ComboBoxTextField (Optional) Represents the text field receiving text

input and showing the selected item.
CheckBox:ComboBoxListItemCheckBox (Optional) Represents a checkbox inside the list

entry.
Icon:ComboBoxListItemIcon (Optional) Represents an icon inside the list entry.

Table 51.5: Mapping of ComboBoxes

It is sufficient to use the standard mappings for list items for the selection list. See
section 51.1.6(1028).

Sample:

HTML code for a combo box:

51.1. Improving component recognition with a CustomWebResolver 1033

<div class="combobox-wrapper">
<div role="combobox" aria-expanded="true" aria-owns="ex1-listbox"

aria-haspopup="listbox" id="ex1-combobox">
<input type="text" aria-autocomplete="list" aria-controls="ex1-listbox"

id="ex1-input" aria-activedescendant="">
</div>
<ul aria-labelledby="ex1-label" role="listbox" id="ex1-listbox"

class="listbox">
<li class="result" role="option" id="result-item-0">Leek
<li class="result" role="option" id="result-item-1">Lemon

</div>

Example 51.28: HTML combo box

A ComboBox consists of a container element showing the current selection and a list of
the selectable items. In the example the DIV object contains the list plus the ComboBox
itself. Often the list is defined somewhere completely different in the DOM. You can find
it by opening the list and checking the developer tool of the browser. Alternatively, you
can get the CSS classes of the list object and the list entries by recording a click to a
list item and checking the qfs:class entry of the Extra features table of the recorded
components.

genericClasses:
- List:ComboBoxList: listbox
- Item:ComboBoxListItem:

class: result
ancestor: List:ComboBoxList

- ComboBox: role=combobox

Example 51.29: HTML combo box

With this ComboBox we have several options for the mapping. When you have contact
to the developers of the application it is best to ask them which attributes define a certain
component class. If not, you have to decide which attributes best represent a certain
class. You should check this with other GUI elements of the same type. Also, you
should check similar GUI elements for the same attributes. In this case maybe there
is another, hopefully unique, attribute, or you need to make it more specific by adding
ancestor:...

In the example above, role=combobox should be precise enough for the ComboBox
itself, just as role=listbox or alternatively css: listbox for the list. It probably
will not make a big difference which one you choose. If normal lists use the same
attribute you can omit the class type, i.e. you would just map List: listbox and
Item:ListItem:. This does not affect the functionality the combo box within QF-Test.

51.1. Improving component recognition with a CustomWebResolver 1034

However, css: result and role=option, used for the list items, could very
well be used with other elements, too. Therefore, we will add ancestor:
List:ComboBoxList to be sure.

51.1.8 CustomWebResolver – TabPanel and Accordion

In order to resolve tab panels or accordions correctly, it is necessary to map the com-
ponent containing all entries, i.e. the tab panel itself as well as the components which
represent the individual tab panel entries.

Class Required components and sub-items
TabPanel Represents the tab panel component, contains all

tabs.
Item:TabPanelItem Represents an individual tab.

Optional sub-items
Panel:TabPanelContent (Optional) Represents a panel containing the ac-

tual content of a selecting tab.
Closer:TabPanelCloser (Optional) Represents the closer button of one

tab.
CheckBox:TabPanelCheckBox (Optional) Represents the checkbox of one tab.
Icon:TabPanelIcon (Optional) Represents the icon of one tab.

Table 51.6: Mapping of tab panels

In case of accordion components you can map the classes to Accordion,
Item:AccordionItem etc.

Sample:

The following HTML code represents a tab panel. As with many implementations of web
pages there are a lot of additional nodes, irrelevant for the semantics of the tabs. Some
of the nodes have attributes which could be used for the mapping. Therefore, we will
show you below two different ways to configure the Install CustomWebResolver(842) node,
leading to exactly the same result.

51.1. Improving component recognition with a CustomWebResolver 1035

<div role="tab-container">
<div class="tabs">

<div>
<div>

<div class="tab-bar">

<div>

<div type="tab">Tab1</div>

<div type="tab">Tab2</div>

<div type="tab">Tab3</div>

</div>
</div>

<div class="content">

<div role="tab-content" id="Tab1">
<label>The first tab panel</label>

</div>
</div>
<div class="content">

<div role="tab-content" id="Tab2">
<label>The second tab panel</label>

</div>
</div>
<div class="content">

<div role="tab-content" id="Tab3">
<label>The third tab panel</label>

</div>
</div>

</div>
</div>

</div>
</div>

Example 51.30: HTML tab panel

51.1. Improving component recognition with a CustomWebResolver 1036

genericClasses:
- TabPanel: tabs
- Panel:TabPanelContent: content
- Item:TabPanelItem: type=tab
ignoreTags:
- <DIV>
-
-
-

Example 51.31: HTML tab panel variant 1

The second configuration is using a different approach. QF-Test will record the same
component as above.

genericClasses:
- TabPanel: role=tab-container
- Panel:TabPanelContent: role=tab-content
- Item:TabPanelItem:
tag: li
ancestor: TabPanel
ignoreTags:
- <DIV>
-
-

Example 51.32: HTML tab panel variant 2

51.1.9 Example for ”CarConfigurator Web” demo

As this approach is quite difficult to understand just by reading,
we describe a sample implementation using the ”CarConfigurator Web”
demo in this section. You can find the ”CarConfigurator Web” test suite at
qftest-9.0.4/demo/carconfigWeb/carconfigWeb_en.qft.

51.1. Improving component recognition with a CustomWebResolver 1037

Figure 51.8: CarConfigurator Web

As stated in the previous section we need to figure out which attribute provides the
required information. This information will then be used to point to a generic class of
QF-Test.

Simple class mapping

To begin with the example, we resolve the recognition of the ’-5%’ button in the right bot-
tom corner. The figure below shows our goal. On the left we find the current recording
without simplification steps, on the right we see the desired recording.

51.1. Improving component recognition with a CustomWebResolver 1038

Current recording Simplified recording

Figure 51.9: Simplification due to simple class mapping

First you should record a simple text check or a mouse click to that button. Then jump
to the recorded components via Locate component . There you can see that you got
a component of the class DIV and an empty name. The other attributes don’t provide
anything useful. Please note that QF-Test didn’t record the actual text of ’-5%’ in any
attribute. This means QF-Test has no good information for recognizing that component.
There is just the geometry and the structure information. Now let us make this compo-
nent more readable and the component recognition more robust.

51.1. Improving component recognition with a CustomWebResolver 1039

Figure 51.10: Recording of ’-5%’ button in ”CarConfigurator Web” demo

When analyzing the recorded component more in detail we discover that there is an
extra feature class with the value button. Now we can assume that a button in our
project will have that particular attribute. Especially after verifying the assumption for
further buttons.

So, please insert a Install CustomWebResolver(842) node below the Extras node. As we
found out previously the class attribute contains the class information for QF-Test.
Knowing this, we can add Button: button to the category genericClasses.
The expression Button: button signifies that any component with the CSS class
button will be assigned the generic class Button. This will make QF-Test record the
default features for buttons when we re-record the components. Run the
Install CustomWebResolver(842) node and re-record the component. You will get the
following recording:

51.1. Improving component recognition with a CustomWebResolver 1040

Figure 51.11: Recording with genericClasses in ”CarConfigurator Web”

As you can see you got a click on component button-5_. When you jump to the
recorded component you can see the class Button has been assigned the ’-5%’ for
the feature as well and we even got the extra feature qfs:label with that text. This
component will now be treated as button by QF-Test. Of course, you should advise the
development team to assign a dedicated ID to that button as well.

This simple assignment of one value can be sufficient for lots of cases, especially for
buttons, menu items or checkboxes. If your web page doesn’t contain that informa-
tion in the attribute class, but in the attribute role, then you need to add Button:
role=button to the category genericClasses. In some cases the information about
the specific class will not be part of the leaf component, but in a parent component. The
next section shows how to deal with this challenge.

51.1. Improving component recognition with a CustomWebResolver 1041

Advanced class mapping

After the simple case in the previous section we will take a look at a more complex
scenario now. Let’s analyze how the text fields displaying the selected price information
are treated, e.g. the final price text field. Like in the previous section we need to record
some mouse clicks or text checks on those text fields. Then we need to navigate to the
recorded components and analyze them. The figure below shows the current situation
and our goal.

Current recording Simplified recording

Figure 51.12: Simplification due to advanced class mapping

We got some SPAN nodes recorded. Here we have no class attribute, but an id
attribute in the HTML. So, we can conclude that the id is very specific to the particular
field. When you select its parent component, which is a TD node, you will find a class
attribute with the value textfield, which corresponds to the actual component class.
When you select that component, QF-Test also highlights the entire text field on the web
page. So we can assume that a component with the value textfield for the class
attribute represents a text field semantically.

51.1. Improving component recognition with a CustomWebResolver 1042

Figure 51.13: Recording of SPAN text fields

So, now let’s extend the configuration of our Install CustomWebResolver(842) node. We
need to map the textfield value as generic class TextField. Therefore, we extend
the category genericClasses by TextField: textfield.

When you delete the previously recorded component, rerun the
Install CustomWebResolver(842) node, reload the web page and re-record the component,
you will get the following recording:

51.1. Improving component recognition with a CustomWebResolver 1043

Figure 51.14: Recording text fields in ”CarConfigurator Web”

The text fields will be recorded as expected, and we even get rid of one level in the
component hierarchy. In addition, the text fields have QF-Test specific attributes like the
extra feature qfs:label assigned.

The next section show a translation for components which contain data and how to
access that data afterward. Such components represent data tables, trees or lists and
are handled as complex components by QF-Test.

Mapping of complex components like data tables

The previously described approach will work for most standard components as buttons
or checkboxes. But besides those components there are also complex components in
our GUI. Those components represent data, and we would like to address their con-
tent by the sub-item syntax provided by QF-Test. Those components could be tables,

51.1. Improving component recognition with a CustomWebResolver 1044

trees or lists. For those components we need to map the dedicated class as well as the
sub-item class. You will find the details in the following sections: CustomWebResolver
– Combo boxes(1030), CustomWebResolver – Lists(1028), CustomWebResolver – Tables(1021),
CustomWebResolver – TabPanel and Accordion(1032), CustomWebResolver – Tree(1023).

Current recording Simplified recording

Figure 51.15: Simplification for complex components

Our example is the table showing the cars of the ”CarConfigurator Web”. Again, we
need to record some clicks on the shown cars and analyze the recording. The standard
recording looks like this:

51.1. Improving component recognition with a CustomWebResolver 1045

Figure 51.16: Recording of a table in ”CarConfigurator Web”

The click was recorded on a TD component, which is the child of a TR component, which
is part of a TABLE component. The recorded TD component contains an extra feature
class with the value dataCell. The TR component has the value dataRow, and the
TABLE has the value dataTable for that attribute.

When we select the nodes and observe the component highlighting in the SUT we notice
the following:

A TD node represents a cell, a TR node represents a row of a table and a TABLE node
represents an entire table. Exactly those nodes need to be investigated now in order to
create a good mapping to generic classes. QF-Test requires those three classes plus
the header row and a header cell to resolve a table, see CustomWebResolver – Tables(1021)

for details.

Let’s start with the TABLE node. This node has a class attribute with the value
dataTable. This seems to be a clear sign that any dataTable represents a ta-

51.1. Improving component recognition with a CustomWebResolver 1046

ble. So we select the Install CustomWebResolver(842) node again and extend the category
genericClasses by Table: dataTable.

The next step is the row of the table. After selecting the TR node we can see that
there is another class attribute with the value dataRow. This seems to be a clean-cut
case. Now we need to add that value to the Install CustomWebResolver(842) node again
and extend the category genericClasses with TableRow: dataRow.

Next we need to analyze the TD node. Again, we find the class attribute, this time
with the value dataCell. So, let’s add this to our node as before: Add TableCell:
dataCell to genericClasses.

Also, we would like QF-Test to recognize the column headers, so it can use them as
text index for the column when we record a table cell. This time the class attribute
is headerRow for the header row and headerCell for each column header. So we
complete the genericClasses category. It now reads:

genericClasses:
- TableHeader: headerRow
- TableHeaderCell: headerCell
- TableCell: dataCell
- TableRow: dataRow
- Table: dataTable
- TextField: textfield
- Button: button

Example 51.33: Category genericClasses

We will now delete the previously recorded components, run the
Install CustomWebResolver(842) node, re-load the web page and re-record a click again.

As result we get a click with the typical QF-Test item syntax on a component like
VehicleTable@Model&0 (or any other row, depending what you clicked on). In the
recorded components area you will just see the Table object and no child component
anymore as they are now treated by QF-Test as items of a table.

51.1. Improving component recognition with a CustomWebResolver 1047

Figure 51.17: Recording of resolved table item in ”CarConfigurator Web”

After resolving this complex component we can proceed to the next section for the next
steps.

Next steps

As shown in the previous sections our first task for testing web-projects is to figure
out how QF-Test recognizes the components and to create a corresponding dictionary.
This task looks rather difficult at the first glance, but its result will drastically reduce
the maintenance work due to component changes or hierarchy changes in later stages
of your project. This is because QF-Test uses the relevant properties of your HTML
components only, and not any information available.

chapter 61(1242) shows a full list of all generic classes for standard components and com-
plex components like lists or trees. We recommend that you map only those components

51.1. Improving component recognition with a CustomWebResolver 1048

which are really required and not every existing component. It’s rather simple to extend
the mechanism later.

Repeating the steps of the previous example we would now continue to
map other components like menu items or tabs. As the mapping would be
too much for this manual we provided a full sample in the demo test suite
qftest-9.0.4/demo/carconfigWeb/carconfigWeb_en.qft in the procedure
startStop.start in the last sequence, Install CustomWebResolver.

In order to use the created dictionary at every start of your web application you should
move the Install CustomWebResolver(842) node into your Setup node directly after launching
the browser. In case you created the Setup node via the Quickstart Wizard, you will
find the node in the sequence Install CustomWebResolver that can be configured
accordingly.

Final steps

Besides the pure translation of web page specifics into QF-Test classes, it’s also pos-
sible to ignore certain components during recording. This is done via the categories
ignoreTags and ignoreByAttributes. However, you should do this only after you
mapped most of the business components.

Finally, we would like to show the differences in the recording of the component tree as
it was originally and after implementing the CustomWebResolver as in the demo test case
of the demo test suite. The figure below shows the recording without any resolvers on
the left and the simplified tree on the left.

51.2. Special support for various web frameworks 1049

Current recording Simplified recording

Figure 51.18: Simplification of the ”CarConfigurator Web” demo

51.2 Special support for various web frameworks

Modern web applications are generally very interactive and their look and feel is com-
parable to desktop applications. Behind these applications is a whole zoo of web frame-
works that drive them, each with a different focus and unique set of widgets. Such
frameworks pose a problem for QF-Test and in fact any automated testing tool for sev-
eral reasons:

• The actual component hierarchy is created automatically from abstract widgets
like buttons or lists. Often each widget is implemented as a number of DIV nodes.
This leads to very deeply nested hierarchies with very little structure.

• IDs are either not assigned at all or automatically created and thus worse than

51.2. Special support for various web frameworks 1050

useless for regression testing.

• The asynchronous communication with the web server and dynamic creation of
DOM nodes may cause timing-related problems.

There is no panacea to address these problems in a generic way. In most cases QF-
Test can interact with web frameworks out-of-the-box, but component recognition and
performance are not ideal. Optimal testability can only be achieved with special case
handling that exactly fits a given framework and takes advantage of its peculiarities.

The videoVideo

’Dealing with the explosion of complexity in web test automation’
https://www.qftest.com/en/yt/web-test-automation-40.html

gives you a good idea of how QF-Test handles a deeply nested DOM structure.

QF-Test ships with optimized CustomWebResolver configuration for a number of frame-
works:

Framework name Homepage Short name
Angular Material material.angular.io angular

Ext JS sencha.com/products/extjs extjs

Fluent UI React developer.microsoft.com/en-us/fluentui#/ fluentui

Flutter Web flutter.dev/multi-platform/web flutter

Google Web Toolkit (GWT) gwtproject.org gwt

ICEfaces icesoft.org icefaces

jQuery UI jqueryui.com jqueryui

jQuery EasyUI jeasyui.com jeasyui

Kendo UI for jQuery www.telerik.com/kendo-jquery-ui kendoui

Prime Faces primefaces.org primefaces

Qooxdoo qooxdoo.org qooxdoo

Rich Ajax Platform (RAP) eclipse.org/rap rap

RichFaces jboss.org/richfaces richfaces

Smart GWT smartclient.com smartgwt

Vaadin vaadin.com vaadin

W3C ARIA w3.org/WAI/ARIA/apg aria

ZK zkoss.org zk

Table 51.7: Supported web frameworks

The given short name can be used in the Install CustomWebResolver node category base,
see section 51.1.2(1012). QF-Test is even able to automatically detect whether one of those
frameworks is used in your web application and to install the respective resolver. The
short name autodetect activates this mechanism.

51.2. Special support for various web frameworks 1051

51.2.1 Web framework resolver concepts

A web framework resolver is a set of resolvers and other methods implemented specifi-
cally for a given web framework. Most notably QF-Test tries to assign individual classes
matching the high-level widgets to DOM nodes and remove intermediate nodes that are
just an implementation detail. Name, Feature and Extra feature attributes are determined
in a way suitable for the framework and events are simulated on the correct DOM node
in a way that most closely matches user interaction. These measures drastically reduce
the component hierarchy and increase the reliability and performance of component
recognition and replay. Timing and synchronization are also addressed.

As a necessary consequence the components and events recorded for a given web
application vary drastically with and without an active web framework resolver and are
not compatible with each other. Thus, the decision whether to use a web framework
resolver should be made as early as possible, otherwise tests will either need to be
reimplemented after activating the resolver or tests with and without resolver must be
cleanly separated. If a resolver is available for your application you should practically
always use it. The only exception is if the existing test base is already too large, mostly
complete and stable.

Implementing web framework resolvers is an ongoing process. As development of a
web framework continues, the associated CustomWebResolver may also have to be
updated. Therefore, the built-in CustomWebResolvers are marked with a version num-
ber that corresponds to the version number of the framework for which the resolver was
originally designed. As long as there are no incompatible changes, this CustomWebRe-
solver can also be used for newer versions of the framework.

Older CustomWebResolvers in QF-Test still use a versioning scheme that is indepen-
dent of the framework version. These will be updated to the new versioning scheme on
their next update.

Web framework resolvers are activated via the Install CustomWebResolver(842) node where
you can provide the version to use. You can choose to specify only the major version, in
which case QF-Test uses the latest medium.minor version available for this major ver-
sion. This is normally the best option and used in the SUT startup sequences created
with QF-Test’s Quickstart Wizard (see chapter 3(28)). Alternatively you can specify ma-
jor.medium version or even major.medium.minor to use an exact version and thus run
your tests with the resolver version with which they were created.

51.2.2 Setting unique IDs

Any web framework has its custom way of setting unique IDs. Please find details about
the supported ones in the following chapter:

51.2. Special support for various web frameworks 1052

Angular Material

The simplest solution is to set the ’ID’ attribute <div id=”myId”/> for any required
component.

Ext JS

You can set IDs like
var container = Ext.create(’Ext.container.Container’, {
id: ’MyContainerId’,
... });.

As alternative you can also call container.getEl().set({ ’qfs-id’: ’myId’
});. In this case you will need to implement a NameResolver for reading ’qfs-id’ as
name for QF-Test.

GWT

The simplest way is calling the method widget.getElement().setId(”myId”);
for the required widgets.

As an alternative you can also call widget.ensureDebugId(”myId”). But if you
want to use that method you need to modify your xxx.gwt.xml file to enable debug
IDs. Add <inherits name=”com.google.gwt.user.Debug”/> to the file.

It’s also possible to set a custom identifier which can then be used via a NameRe-
solver.For example call setAttribute(”qfs-id”, ”myId”) to set an ’qfs-id’ at-
tribute.

ICEfaces

The simplest solution is to set the ’ID’ attribute <p:inputText id=”myId”/> for
any required component in the xhtml definition.

jQuery UI

The simplest solution is to set the ’ID’ attribute <p:inputText id=”myId”/> for
any required component. Additionally, you can give an existing element an id with:
$(element).attr(”id”,”myId”);

51.2. Special support for various web frameworks 1053

jQuery EasyUI

The simplest solution is to set the ’ID’ attribute <p:inputText id=”myId”/> for
any required component.

Kendo UI for jQuery

You need to set the ’ID’ attribute in your source code or graphical editor.

PrimeFaces

The simplest solution is to set the ’ID’ attribute <p:inputText id=”myId”/> for
any required component in the xhtml definition.

Qooxdoo

There is no default mechanism. You can either apply a custom attribute to the generated
DOM nodes or add a custom attribute to the setData method of the widget. You can
evaluate those attributes in a resolver.

RAP

Starting with RAP version 2.2 a name set via widget.setData(”name”, ”myId”)
is retrieved automatically by QF-Test, just as for SWT. This field can only be used if it is
registered with WidgetUtil.registerDataKeys(”name”); before.

For RAP versions older than 3.0.0 the following technique is also available. It is discour-
aged because it deviates from the SWT standard and requires additional settings for the
webserver:

Call the method widget.setData(WidgetUtil.CUSTOM_WIDGET_ID, ”myId”);
for the required widgets.

After applying IDs to components you need to modify your webserver environment and
specify the following parameter -Dorg.eclipse.rap.rwt.enableUITests=true
before launching the webserver.

Note: The VM argument was renamed in RAP 2.0. For RAP versions older than 2.0 its
name is -Dorg.eclipse.rap.rwt.enableUITests=true.

51.3. Browser connection mode 1054

RichFaces

You need to set the ’ID’ attribute in your source code or graphical editor.

Smart GWT

The simplest solution is to call widget.setID(”id”) for any required component.

Vaadin

The simplest solution is to call widget.setId(”id”) (widget.setDebugId(”id”)
for Vaadin version < 7) for any required component.

You can also set a custom stylesheet class, which you could read with a NameResolver.
Therefore call widget.setStyleName(”qfs-id=myId”).

ZK

QF-Test uses the widget ID, which is also used in the zul files, so you should get
meaningful IDs for most of the objects.

The ZK framework also offers a custom IDGenerator to set such IDs. But implementing
this could be quite exhaustive. In this case it might be a better choice to rely on the
default mechanism of QF-Test.

51.3 Browser connection mode

QF-Test has three different modes to gain access to a browser. This section describes
these modes in details.

Given that the QF-Driver approach using embedding is not maintained anymore by4.1+
some browser vendors or is not supported at all, a new mechanism was implemented
for QF-Test 4.1 to support future browsers and browser versions. This mechanism uses
Selenium WebDriver as a bridge between the browser and QF-Test.

For the browsers based on Chromium there is a more effective alternative to Selenium5.3+
WebDriver - CDP-Driver.

The following table lists browsers and the respective connection mode. QF-Test deter-
mines the correct mode automatically by default. However, you can override the choice
via the attribute Browser connection mode(691) in the Start web engine(689) node

51.3. Browser connection mode 1055

Browser Connection mode Comment
Chrome QF-Driver A current stable Chromium ver-

sion is part of the QF-Test distri-
bution (Windows only)

Chrome CDP-Driver Experimental support for newer
versions also (see Supported
technologies - System under
Test(4))

Chrome WebDriver The ChromeDriver shipped sup-
ports various versions, fur-
ther versions via the automatic
ChromeDriver Download. For
version number see Supported
technologies - System under
Test(4)

Chrome (headless) CDP-Driver
Chrome (headless) WebDriver
Firefox WebDriver Supported by the GeckoDriver

shipped, currently 102esr and
higher

Firefox (headless) WebDriver
Microsoft Edge CDP-Driver see Chrome (CDP-Driver)
Microsoft Edge WebDriver
Microsoft Edge (headless) CDP-Driver
Microsoft Edge (headless) WebDriver
Opera CDP-Driver see Chrome (CDP-Driver)
Opera WebDriver deprecated

Safari WebDriver

Table 51.8: Connection mode for browsers

51.3.1 QF-Driver connection mode

This approach integrates the locally installed browser into a wrapper-window. This ap-
proach is also called embedding. QF-Test natively embeds the browser into its own
window, thus gaining access to its automation-interfaces. By using these interfaces QF-
Test can listen for events from the browser and is also able to inject events into the
browser.

51.3. Browser connection mode 1056

51.3.2 CDP-Driver connection mode
5.3+

Chrome DevTools Protocol is an API that is available for testing and debugging of
browsers based on Chromium (Google Chrome, Microsoft Edge and Opera) and is used
for example in embedded development tools. Since version 5.3 QF-Test uses this in-
terface to connect and communicate with a browser. Unfortunately, Mozilla does not
provide a full implementation of such an interface for Firefox. Such an implementation
does not exist also for Safari.

51.3.3 WebDriver in general

WebDriver is evolving into a W3C-standard for interacting with web browsers.
(http://www.w3.org/TR/webdriver). WebDriver is a remote control interface that enables
introspection and control of browsers, based on a platform and language-neutral wire
protocol.

The various browser vendors have agreed on this quasi-standard, so that the WebDriver
integration is partly implemented directly by the vendors themselves. Partially the inte-
gration is based on plugins, some vendors already include the integration in the default
setup of their browsers.

QF-Test uses the WebDriver interfaces to interact with the browser. Since the WebDriver
approach only partially fits the concepts of QF-Test, its web engine was extended so
that most of QF-Test’s functionality is also available via WebDriver, including the added
benefits like synchronization, abstraction of components etc.

Selenium WebDriver requires Java version 8 or higher.Note

51.3.4 Known limitations of the WebDriver mode

The WebDriver connection mode is under active development. Due to this, some fea-
tures known from QF-Driver connection mode are not yet available, mostly due to re-
strictions of the WebDriver specification.

• No support of file downloads and HTTP authentication.

• It is not possible to record or replay HTTP requests directly.

• wd.getComponent(WebElement) does not work currently on elements in inner
frames.

• Events triggering a page load are sometimes not recorded.

• Event-Synchronization is in some cases delayed.

51.4. Web – Pseudo Attributes 1057

51.4 Web – Pseudo Attributes
Web

The idea of pseudo attributes is to simplify resolvers using JavaScript to retrieve values
from a browser. You can register a pseudo attribute in QF-Test which receives its value
as result of some JavaScript code execution.

In a SUT script you can fetch attribute values of HTML elements via the method
getAttribute() (This is also the way the CustomWebResolver (see section
51.1.2(1008)) evaluates its genericClasses category). Pseudo attributes values are
fetched with the same mechanism, behaving just like normal attributes in the ”eyes” of
QF-Test. Only, they are not defined via the HTML source code or explicitly set via
node.setAttribute(), but execute a piece of JavaScript code.

When you define a pseudo attribute you can mark it as ”cacheable”. In that case the
pseudo attribute will be evaluated the first time referenced and then its value will be
saved until the next complete scan of the page. This improves the overall testing per-
formance. Pseudo attributes should not be cached for values subject to change (e.g.
the status of a check box), because then a change of the value would not be ”visible”
to QF-Test. Uncached pseudo attributes will not save their value, but it will be fetched
(and kept shortly for processing) each time an event will be recorded, like for example
the single events ”moved”, ”pressed”, ”released” and ”clicked” of a mouse click, or for
the identification of a component during replay.

The following example defines a pseudo attribute for all HTML elements with the tag
”ICON” or ”IMAGE” evaluating the value of iconname via JavaScript (Technically speak-
ing, it calls the sample method inspect defined by the framework for the HTML node).

import de.qfs.apps.qftest.client.web.dom.DomNodeAttributes
import de.qfs.apps.qftest.client.web.dom.FunctionalPseudoAttribute
def attr = new FunctionalPseudoAttribute("js_icon",

"try {return _qf_node.inspect('iconname')} catch(e){}", true)
DomNodeAttributes.registerPseudoAttributes("ICON", attr)
DomNodeAttributes.registerPseudoAttributes("IMAGE", attr)

Example 51.34: Groovy SUT script registering a pseudo attribute

The pseudo attribute can then be used in a feature resolver. In comparison to a direct
call of node.callJS() in the script this method takes advantage of the internal caching
mechanisms of QF-Test:

def getFeature(node, feature):
iconname = node.getAttribute("js_icon")
return iconname

resolvers.addResolver("iconFeature", getFeature, "ICON", "IMAGE")

Example 51.35: Using a pseudo attribute in a resolver (Jython SUT script)

51.4. Web – Pseudo Attributes 1058

The following script deregisters the pseudo attribute.

import de.qfs.apps.qftest.client.web.dom.DomNodeAttributes
DomNodeAttributes.unregisterPseudoAttributes("ICON", "js_icon")
DomNodeAttributes.unregisterPseudoAttributes("IMAGE", "js_icon")

Example 51.36: Deregister a pseudo attribute (Groovy SUT script)

A pseudo attribute has to be defined via the following method from the module
de.qfs.apps.qftest.client.web.dom.pseudo attributes:

PseudoAttribute FunctionalPseudoAttribute(String name, String
javaScriptFunction, Boolean cached)

Defines a pseudo attribute.
Parameters
name The name for the pseudo attribute.
javaScriptFunction The JavaScript code to be executed within a function

when referencing the pseudo attribute. Use _qf_node
as the reference for the HTML element. The execution is
equal to a call of DomNode.callJS.

cached true, when you want to cache the value after the first
reference to the pseudo attribute, otherwise false.

Returns A pseudo attribute you can then register.

PseudoAttribute PseudoAttribute(String name, String
javaScriptCode, Boolean cached)

Defines a pseudo attribute.
Parameters
name The name for the pseudo attribute.
javaScriptCode The JavaScript code to be evaluated when referencing

the pseudo attribute. Use _qf_node as the reference for
the HTML element. The execution is equal to a call of
DomNode.evallJS.

cached true, when you want to cache the value after the first
reference to the pseudo attribute, otherwise false.

Returns A pseudo attribute you can then register.

Having defined the pseudo attribute you need to register it via the following method from
module de.qfs.apps.qftest.client.web.dom.DomNodeAttributes:

51.5. Accessing hidden fields on a web page 1059

void registerPseudoAttributes(String tag, PseudoAttribute
pseudoAttribute)

Registers a pseudo attribute for HTML elements with the given tag.
Parameters
tag The tag of the HTML elements to be registered for. When

you want to register the pseudo attribute for HTML ele-
ments with different tags you need to do it for each one in
turn. When you want to register it for all HTML elements,
use the tag ”<QF_ALL>”.

pseudoAttribute The pseudo attribute previously defined.

void unregisterPseudoAttributes(String tag, String name)
Deregisters the pseudo attribute for HTML elements with the given tag. You do not need
to deregister a pseudo attribute. When stopping QF-Test it will be done automatically.
Parameters
tag The tag of the HTML elements for which to deregister the

pseudo attribute.
name The name of the pseudo attribute.

51.5 Accessing hidden fields on a web page
Web

Hidden fields are not captured by default and therefore not stored under the
Windows and components(881) node.

In case you frequently need to access hidden fields you can deactivate the Take visibility
of DOM nodes into account(530) option.

Another way to get hidden fields recorded is the following:

• Activate the record components(40) mode.

• Navigate the mouse cursor to the parent item containing the hidden field (most
likely a FORM element).

• Press right mouse button and select Component and children from the popup
menu.

• Deactivate the record components(40) mode.

• A search(19) within Windows and components(881) for e.g. ’HIDDEN’ should get you to
your destination component quickly.

51.6. WebDriver with Safari 1060

To access a hidden field’s attributes (e.g. the ’value’ attribute) you can create a simple
SUT script(673) as shown below. Details on scripting in general, the used methods and
parameters can be found in Scripting(168), Run context API(963) and Pseudo DOM API(1171)

respectively.

node = rc.getComponent('id of the hidden component', hidden=1)
node.getAttribute('value')

Example 51.37: Accessing the value attribute of a hidden field

51.6 WebDriver with Safari

To run tests with Safari, macOS and Safari 12 or newer are required. In addition, a setup
has to be performed to oactivate the browser automation: Open the Safari Preferences
and select ”Show Develop menu in menu bar”. In this menu, activate the ”Allow Remote
Automation” option. After that, open a Terminal window and execute once the command
/usr/bin/safaridriver -p 0 to authorize the driver.

Due to special security restrictions imposed by the Apple SafariDriver, the interactionNote
between QF-Test and Safari is limited in the following ways:

• Tests can only be replayed but not recorded

• No hard events are possible

• Only one browser instance is allowed

Chapter 52

Controlling native Windows
applications via the UIAuto module -
without the QF-Test win engine

The win engine is described in a separate chapter Testing native WindowsNote
applications(215).

Generally you should use the win engine of QF-Test for testing and controlling native
Windows applications. This requires a respective license. In case you do not have a
license for the win engine of QF-Test and you require just a little test or need to do some
simple controlling of a Windows application, e.g. during testing of process flow across
Java, Web and Windows applications, you can use the library described in the current
chapter.

The module allows control of native Windows GUI elements via Microsoft’s UI Automa-
tion interface. It can trigger actions and check certain values. The interface is described
on https://en.wikipedia.org/wiki/Microsoft_UI_Automation.

Procedures in the standard library(165) qfs.qft wrap the methods of the module most
frequently required.

It is not possible to record actions or checks directly (capturing). The parameters iden-
tifying a GUI object need to be determined and then be passed to the respective proce-
dure.

Actions are replayed via ’hard’ system events mainly. This results in a different replay
behavior than you are used to with QF-Test for Java or web applications.

Despite these restrictions the module can be very helpful for simple testing and control-
ling tasks on native Windows applications.

52.1. Proceeding 1062

52.1 Proceeding

The Microsoft UI Automation is an Accessibility and Test Framework allowing programs
to control the GUI elements of native Windows applications. With QF-Test you can use
the framework in script nodes via the Jython module uiauto (alternatively
de.qfs.UIAuto for Groovy, uiauto for Javascript).

QF-Test provides a package in the standard library with procedures for the most com-
monly needed interactions with GUI elements for direct and easy use of the API for test
development. This chapter describes the standard library package.

You will find the procedures relevant for control of native Windows elements in the pack-
age qfs.autowin. You can see several procedures marked as deprecated. They have
been replaced by normal nodes of the win engine of QF-Test, and the procedures in
the qfs.autowin package will not be further maintained. However, you can continue
using them as they are. If you encounter problems, for example with scaled windows
applications, it is advised to switch to the win engine.

52.1. Proceeding 1063

Figure 52.1: UI Automation procedures in the standard library

When developing tests for native windows applications you generally need to perform
the following steps:

• Start the application

• Determine the identifying parameters for the GUI elements

• Set up the tests calling the respective procedures specifying the GUI elements via
the identifiers.

52.1. Proceeding 1064

52.1.1 Starting the application

The application to be tested may but does not necessarily have to be started via QF-
Test.

When starting the application via QF-Test the client process started is listed in the QF-
Test menu Clients and can also be stopped via QF-Test.

Please use the procedure qfs.autowin.checkForExistence to check whether the
application was started.

You will find an example for the start of an application in section 52.2.1(1066).

52.1.2 Listing the GUI elements of a window

Before you can set up a test you need to get an overview of the
GUI elements of the application. You may either use the procedure
qfs.autowin.helpers.dumpComponents to print the GUI elements to the QF-Test
terminal or qfs.autowin.helpers.dumpComponentsToFile to write them to a
file.

The procedure qfs.autowin.helpers.DumpDesktopWindows allows you to list the
titles of all open windows of the desktop.

qfs.autowin.helpers.dumpComponents prints the name (Name), the class
(ClassName), the compontent type (ControlType) and the Id (AutomationId) of the GUI
elements, provided they were implemented for the respective GUI element.

All the GUI elements visible on the Windows desktop are organized in a tree structure
with the desktop as the root element. When calling the dump procedure you need to
specify the window for which to list the GUI elements. Nesting of the components is
represented via indentation.

The procedure dumpComponents() prints its output to the QF-Test terminal displayedNote
in the botton part of the QF-Test window. The output is not displayed in the terminal or
consoles which can be opened separately (client terminal and scripting consoles).

Please find an example in section 52.2.2(1067).

52.1.3 Information on single GUI elements

The procedure qfs.autowin.helpers.dumpComponent allows you to print further
information for single GUI elements, including a list of the methods available for the
element as well as attribute values.

52.1. Proceeding 1065

52.1.4 Identifiers for GUI elements

All procedures of the standard library package preforming actions on native Windows
applications need to determine the respective GUI element as the first step
and then perform the action in a second step. You find the procedures in
the package qfs.autowin.component. Because all procedures use
qfs.autowin.component.getControl to identify the GUI element, the
parameters of this helper procedure are valid for all the procedures performing an
action on a GUI element.

The following parameters (and combinations) are valid (in the order of evaluation):

• AutomationId

• ControlType and name

• ControlType and index

• ClassName and name

• ClassName and index

• Name

AutomationId
The AutomationId is a unique identifier for the GUI element within a window. It

has to be set explicitly during application development, which unfortunately does
not always happen.

Name
The name usually corresponds to the text displayed. Names do not have to be

unique and you may have to specify the ControlType or the ClassName of the
GUI element additionally. Names will be evaluated as regular expressions. For
more information about regular expressions please see Regular expressions(955).

ControlType
The ControlType is a value from a predefined list of component types, e.g.

Button, CheckBox, ComboBox, DataGrid, Edit, List, Tab, Text. The procedure
qfs.autowin.helpers.dumpComponent shows the name and the numeric
value of the respective ControlType. In order to identify a GUI element via its
ControlType you usually need to specify its name or its index (relative to the GUI
elements in the window of that ControlType), too, except there is just the one GUI
element of that ControlType in the window.

52.1. Proceeding 1066

ClassName
ClassNames are framework specific. Additionally to the ClassName you may

specify the name or the index (relative to the GUI elements in the window of that
ClassName) of the GUI element.

52.1.5 Actions on GUI elements

You will find procedures in the package qfs.autowin.component of the standard
library for the most common actions. You are free to enhance the package. We recom-
mend to use a separate test suite for the enhancement and not to change the qfs.qft
since we continuously update the standard library and ship a new version with every
QF-Test release.

Mouse click
Procedure: qfs.autowin.component.click

The procedure tries to replay a click event to the GUI element. In case this is not
implemented the procedure replays a hard mouse click to the position of the GUI
element.

Wait for component
Procedure: qfs.autowin.component.waitForComponent

The procedure waits for the given component and returns control to the calling
node as soon as it finds the component. The given timeout (in milliseconds) is the
maximum time to wait. It throws an exception if the component is not found within
the given time.

Wait for window
Procedure: qfs.autowin.checkForExistence

The procedure waits for the given window and returns control to the calling node
as soon as it finds the window. The given timeout (in milliseconds) is the
maximum time to wait. The parameter ’errorLevel’ specifies whether to log a
message, warning, error or an exception in case the the window is not found
within the given time.

Text input
Procedure: qfs.autowin.component.setText

The procedure uses the method setText() of the IUIAutomationElement interface
to enter a text to the given component. In case the setText() method has not been
implemented for the component please use setValue().

52.1. Proceeding 1067

Keyboard events
The Package qfs.autowin.keyevents provides procedures for

replaying the keyboard events ENTER, TAB and DELETE. The procedure
qfs.autowin.keyevents.sendKey lets you replay any key like a single letter,
a digit, a function key, etc, also combined with the modifiers SHIFT, CTRL and
ALT. The event is replayed to the component with the focus in the given window.

Fetch text
Procedure: qfs.autowin.component.getText

The text of a GUI element cannot be accessed directly. The name of a GUI
elements usually corresponds to the text displayed. Some elements have a value
corresponding to the text, independently of the name.The procedure getText()
first tries to determine the value of the element and, in case this fails or the value
is an empty string, returns the name of the element.

The procedures getName() and getValue() are provided additionally.

Fetch geometry
Procedure: qfs.autowin.component.getGeometry

Check text
Procedure: qfs.autowin.component.checkText

The procedure fetches the text of the GUI elements via the procedure getText()
and compares the value returned with the given text.

The procedures checkName() and checkValue() are provided additionally.

Check geometry
Procedure: qfs.autowin.component.checkGeometry

The procedure fetches the geometry data via getGeometry() and compares them
to the given values.

Image check
Procedure: qfs.autowin.component.checkImage

The procedure relies on a file with a reference image. The file needs to have a
png format. The procedure determines the screen coordinates of the element via

52.2. Example 1068

qfs.autowin.component.getGeometry. The actual comparison is done via
the procedure getPositionOfImage() of the qfs.autoscreen package of the
standard library.

Select an item in a menu
Procedure: qfs.autowin.menu.selectItem

Especially when single-stepping through the test when debugging it is useful to
have a procedure which clicks to a menu and its menu item which can be
executed in one step. Thus the application will not loose the focus between steps
which might cause the menu to close.

52.2 Example

Please find the sample test suites in the subdirectories demo/carconfigWpf and
demo/carconfigForms of the QF-Test installation directory.

52.2.1 Starting the application

The sample test suites use the dependency SUT_started in the package
qfs.autowin.dependencies of the standard library to start the demo application.

The node

• Execute shell command

actually starts the demo. The

• Procedure call: qfs.autowin.checkForExistence

waits for the demo application to appear before passing on control to the test case itself.

The demo test suite makes use of the dependency functionality which enables you to
manage the set up and clean up requirements of your tests very efficiently. In short, in
a test case the dependency functionality runs the setup node before passing control to
the test case, thus making sure that the requirements implemented in the setup node
are met before running the test case. At the end of the test case, the cleanup node is
not executed by default. Only in the next test case it may be executed if required by
the dependency of that test case, either because it calls a different dependency or the

52.2. Example 1069

characteristic variables of the dependency have changed. For more information about
dependencies please refer to the tutorial or the manual, chapter Dependency nodes(145).

For general information on the start of a native windows application please refer to
section 52.1.1(1062).

52.2.2 GUI element information

The next step after starting the SUT is to get an overview of the
GUI elements of the application. In this example we will use the procedure
qfs.autowin.helpers.dumpComponents. The output will be written to the
QF-Test terminal.

In the following we will have a look at the output of dumpComponents() for some of the
GUI elements of the WPF demo application.

Figure 52.2: The WPF demo application

Window (1)
Name: CarConfiguratorNet WPF
ClassName: Window
ControlType: Window (#50032)
This shows a typical set of identifiers for the window itself. You can address it via
its name, which seems to be unique.

52.2. Example 1070

Menu (2)
Name: Help
ClassName: MenuItem
ControlType: MenuItem (#50011)
AutomationId: mHelp

This GUI element has an AutomationId. Use this to identify the GUI element un-
ambiguously. Of course, you may also use its name ’Help’ or the ControlType (or
ClassName) ’MenuItem’ along with the index ’4’.

Table cell (3)
Name: Rolo
ClassName: DataGridCell
ControlType: Custom (#50025)

The table cell can either be addressed by its name or by the ControlType along with
the name. If you want to address the table cell via an index it would make sense
to use the ClassName and not the ControlType as the same ControlType ’Custom’
is used for non table cells as well. An AutomationId has not been implemented.

Input field (4)
ClassName: TextBox
ControlType: Edit (#50004)
AutomationId: textBoxDiscountPrice

The input field can be addressed via the AutomationId or the ControlType or Class-
Name along with the index 0.

Text display field (5)
Name: $ 12,300.00
ClassName: Text
ControlType: Text (#50020)
AutomationId: labelCalculatedPriceOutput

Use the AutomationId to identify the GUI element as the name varies according to
the text displayed.

Please find general information in section 52.1.2(1062).

Chapter 53

Controlling and testing native MacOS
applications

At the moment QF-Test primarily supports functional testing of Java and Web applica-
tions. We are working on a comparable module for testing native MacOS applications
with equivalent processes and features. The module described in this chapter provides
a temporary solution when simple control of native MacOS applications is required dur-
ing testing of process flow across Java, Web and MacOS applications.

The module allows control of native MacOS GUI elements via the MacOS Accessibility
interface. It can trigger actions and check certain values. Further information about this
interface can be found in the corresponding documentation.

Procedures in the standard library(165) qfs.qft wrap the methods of the module most
frequently required.

It is not possible to record actions or checks directly (capturing). The parameters iden-
tifying a GUI object need to be determined and then be passed to the respective proce-
dure.

Actions are replayed via ’hard’ system events mainly. This results in a different replay
behavior than you are used to with QF-Test for Java or web applications.

Despite these restrictions the module can be very helpful for simple testing and control-
ling tasks on native MacOS applications.

53.1 Proceeding

The MacOS Accessibility Interface is allowing programs to control the GUI elements of
native MacOS applications. With QF-Test you can use the framework in script nodes via
the Jython module automac (alternatively de.qfs.automac for Groovy, automac for

53.1. Proceeding 1072

Javascript).

QF-Test provides a package in the standard library with procedures for the most com-
monly needed interactions with GUI elements for direct and easy use of the API for test
development. This chapter describes the standard library package.

You will find the procedures relevant for control of native MacOS elements in the pack-
age qfs.automac.

When developing tests for native MacOS applications you generally need to perform the
following steps:

• Start the application

• Determine the identifying parameters for the GUI elements

• Set up the tests calling the respective procedures specifying the GUI elements via
the identifiers.

53.1.1 Starting the application

The application to be tested may but does not necessarily have to be started via QF-
Test. In any case you need to establish a ”connection” to the application via the proce-
dure qfs.automac.app.connect. It stores a handle to the accessibility interface of
the application in a QF-Test Jython variable. It has the following parameters for search-
ing, respectively starting, the application.

You can specify bundleId to identify the application via the unique bundle id, e.g.
com.apple.Calculator. In case the application is already running QF-Test just stores the
handle, otherwise it starts the application as well.

You can specify bundleFile to identify the application via the bundle file where the
application is stored, e.g. /Applications/Calculator.app. In case the application is already
running QF-Test just stores the handle, otherwise it starts the application as well. In that
case a QF-Test process will also appear in the list of the QF-Test clients menu Clients
By stopping that process the application will also be terminated.

You can specify title to identify the application via the window title. The application
has to be started beforehand, e.g. via the node Execute shell command.

You can specify processId to identify the application via the process identification
number (PID). The application has to be started beforehand, e.g. via the node Execute
shell command.

The procedure qfs.automac.helpers.DumpDesktopWindows lists title, PID, bun-
dle id and bundle file of all running applications in the terminal.

53.1. Proceeding 1073

53.1.2 Listing the GUI elements of a window

Before you can set up a test you need to get an overview of the
GUI elements of the application. You may either use the procedure
qfs.automac.helpers.dumpComponents to print the GUI elements to the QF-Test
terminal or qfs.automac.helpers.dumpComponentsToFile to write them to a
file.

qfs.automac.helpers.dumpComponents prints label, title, role, subrole, type and
identifier of the GUI elements, provided the attribute was implemented for the respective
GUI element.

All the GUI elements visible on the desktop are organized in a tree structure with the
desktop as the root element. The nesting of the components is represented via inden-
tation. The procedure lists the components of the application specified in the procedure
call or of the one already connected.

The procedure dumpComponents() prints its output to the QF-Test terminal displayedNote
in the botton part of the QF-Test window. The output is not displayed in the terminal or
consoles which can be opened separately (client terminal and scripting consoles).

53.1.3 Information on single GUI elements

The procedure qfs.automac.helpers.dumpComponent allows you to print further
information for single GUI elements, including a list of the methods available for the
element as well as attribute values.

53.1.4 Identifiers for GUI elements

All procedures of the standard library package performing actions on native MacOS
applications need to determine the respective GUI element as the first step
and then perform the action in a second step. You find the procedures in
the package qfs.automac.component. Because all procedures use
qfs.automac.component.getControl to identify the GUI element, the
parameters of this helper procedure are valid for all the procedures performing an
action on a GUI element.

Valid parameters:

• label

• title

• identifier

53.1. Proceeding 1074

• role

• roleType

• subrole

• index

If you specify more than one parameter the procedure looks for the GUI element for
which all values match.

identifier
Specify identifier for the unique identifier of the GUI element within the

window. It has to be set explicitly during application development, which
unfortunately does not always happen.

label
The label usually corresponds to the text displayed. It does not have to be

unique and you may have to specify other parameters additionally. In case you
use the Accessibility Inspector for the analysis of the GUI elements the attribute is
called either Label or AXDescription.

title
The title usually corresponds to the text displayed. It does not have to be unique

and you may have to specify other parameters additionally.

role
The role is a value from a predefined list of component types, e.g. AXButton.

roleType
roleType specifies the type of the GUI element. In case you use the

Accessibility Inspector for the analysis of the GUI elements the attribute is called
either Type or AXRoleDescription.

subrole
subrole is an additional specification to role.

index
When there are more than one GUI element matching the given parameters the

index specifies the one to pick. index starts at 0.

53.1.5 Actions on GUI elements

You will find procedures in the package qfs.automac.component of the standard
library for the most common actions. You are free to enhance the package. We recom-
mend to use a separate test suite for the enhancement and not to change the qfs.qft

53.1. Proceeding 1075

since we continuously update the standard library and ship a new version with every
QF-Test release.

Mouse click
Procedure: qfs.automac.component.click

The procedure waits for the given component and the replays a click event to the
GUI element.

Wait for component
Procedure: qfs.automac.component.waitForComponent

The procedure waits for the given component and returns control to the calling
node as soon as it finds the component. The given timeout (in milliseconds) is the
maximum time to wait. It throws an exception if the component is not found within
the given time.

Text input
Procedure: qfs.automac.component.setValue

The procedure waits for the given component and then enters the value. It uses
the method setValue() of the Accessibility interface.

Keyboard events
Procedure: qfs.automac.sendKey

The procedure lets you replay any key like a single letter, a digit, a function key,
etc, also combined with the modifiers SHIFT, CTRL and ALT. The event is
replayed to the component with the focus in application.

Fetch text
Procedure: qfs.automac.component.getValue

The procedure waits for the given component and then fetches the value via the
method getValue().

Fetch geometry
Procedure: qfs.automac.component.getGeometry

The procedure fetches and returns the x and y screen coordinates of the upper
left corner of the component as well as the width and height. They are returned
as comma-separated text.

Check text
Procedure: qfs.automac.component.checkValue

53.1. Proceeding 1076

The procedure fetches the text of the GUI elements via the procedure getValue()
and compares the value returned with the given text.

Check geometry
Procedure: qfs.automac.component.checkGeometry

The procedure fetches the geometry data via getGeometry() and compares them
to the given values.

Image check
Procedure: qfs.automac.component.checkImage

The procedure relies on a file with a reference image. The file needs to have a
png format. The procedure determines the screen coordinates of the element via
qfs.automac.component.getGeometry. The actual comparison is done via
the procedure getPositionOfImage() of the qfs.autoscreen package of the
standard library.

Select an item in a menu
Procedure: qfs.automac.menu.selectItem

Especially when single-stepping through the test when debugging it is useful to
have a procedure which clicks to a menu and its menu item which can be
executed in one step. Thus the application will not loose the focus between steps
which might cause the menu to close.

Chapter 54

Extension APIs

QF-Test provides some extension APIs that let you extend its functionality. The inter-
faces can conveniently be implemented in Jython, Groovy or or Java. In the latter case,
the compiled classes should be put in a jar file and placed in the plugin directory (see
section 50.2(962)) so Jython or Groovy can be used to glue things together.

54.1 The resolvers module

This extension API lets you install hooks that can modify the way QF-Test recognizes
and records components and items. This is a very powerful feature that gives you fine-
grained control over the QF-Test component management.

Video:Video

’Resolvers in QF-Test’
https://www.qftest.com/en/yt/resolvers-46.html

54.1.1 Usage

When registering resolvers it is important to specify the correct GUI engine(675) attributeNote
in the SUT script(673). If the wrong engine is specified, the resolver simply will not work.
If no engine is specified the resolver applies to all engines which can cause confusion
and break replay in engines for which the resolver was not intended.

We will start with a short description of how QF-Test does component recognition to
give you an idea where resolvers come into play. It consists roughly of four steps:

1. Get the component object from the GUI.

54.1. The resolvers module 1078

2. Extract the data for each component: e.g. component class, id, coordinates, com-
ponent text.

3. Analyze the relationship between components: e.g. structure information (index),
find the label belonging to the component qfs:label* variants(66).

4. Recoding: Create a Component node and save the retrieved data in the details of
the node.
Replay: Compare the retrieved data with the details of the node that is the target
of the replay action.

QF-Test uses resolvers for steps 2 and 3. Via the API you can overwrite resolver meth-
ods and thus manipulate component recognition.

A resolver is the only way to influence component recognition during recording. During
replay you also have other options (e.g. a script or a regular expression in the details of
the Component node) to get at component data.

For web applications QF-Test offers a specialized interface providing most of theWeb
functionality of the resolvers described below, which is a lot easier to handle. See
Improving component recognition with a CustomWebResolver(1004). The
Install CustomWebResolver(842) node has been optimized for web elements thus providing
a better performance than resolvers of this section. The use of below resolvers for web
components should be limited to very special cases.

A list of available resolvers:

• NameResolver section 54.1.7(1082)

• GenericClassNameResolver section 54.1.8(1085)

• ClassNameResolver section 54.1.9(1085)

• FeatureResolver section 54.1.10(1086)

• ExtraFeatureResolver section 54.1.11(1087)

• ItemNameResolver section 54.1.12(1093)

• ItemValueResolver section 54.1.13(1094)

• TreeTableResolver section 54.1.14(1095)

• InterestingParentResolver section 54.1.15(1097)

• TooltipResolver section 54.1.16(1098)

• IdResolver section 54.1.17(1098)

54.1. The resolvers module 1079

• EnabledResolver section 54.1.18(1099)

• VisibilityResolver section 54.1.19(1100)

• MainTextResolver section 54.1.20(1101)

• WholeTextResolver section 54.1.21(1102)

• BusyPaneResolver section 54.1.22(1102)

• GlassPaneResolver section 54.1.23(1103)

• TreeIndentationResolver section 54.1.24(1104)

• EventSynchronizer section 54.1.25(1105)

• BusyApplicationDetector section 54.1.26(1105)

• ExtraFeatureMatcher section 54.1.27(1106)

54.1.2 Implementation

The following two steps are required to implement a resolver:

1. Implementation of the resolver interface.

2. Registration of the interface for the desired component class(es).

In most cases the interface consists of only one method. A typical example would be
(Jython-Skript):

def getName(menuItem, name):
if not name:

return menuItem.getLabel()
resolvers.addResolver("menuItems", getName, "MenuItem")

Example 54.1: Simple NameResolver (Jython) for MenuItems

The first three lines are the method of the resolver interface. The name of the method
defines the resolver type. Each resolver type manipulates a certain value in the Compo-
nent node data. In our case the method is getName thus defining a name resolver. The
fourth line calls the function addResolver of the resolvers module and registers the
resolver.

Most resolver methods only have two parameters: the first is the component for which
component recognition is done at that moment. The second is the value or object to

54.1. The resolvers module 1080

be handled by the method. With a NameResolver it is the name determined by the
QF-Test standard NameResolver. With a feature resolver the feature determined by
QF-Test and so on. You will find a detailed description of the resolvers interfaces in
chapters section 54.1.7(1082) to section 54.1.26(1105).

Each resolver needs to be given a name at registration time. The name has to be
unique. It will be used when the resolver needs to be updated or uninstalled explicitly
via resolvers.removeResolver(”resolver name”) (see section
54.1.4(1081)). The names of all registered resolvers can be listed via the function
resolvers.listNames() (see section 54.1.5(1082)).

After changing the contents of a resolver script it needs to be executed again in order to
register the updated resolver. As long as the name of the resolver remains unchanged
there is no need to first deregister the old version first.

All resolver types can be registered either for single components, specific classes or
Generic classes(56). Resolvers registered for a single component are only called when
exactly that component is being handled. Resolvers registered for a certain class are
called for all components of this type and derived classes.

A resolver may be registered for one or several components and/or classes. If no param-
eter is specified the resolver will be called for components of all classes. For example, a
NameResolver or a FeatureResolver registered globally will be called for each and
every name or feature. This is similar to but more efficient than registering them on the
java.lang.Object class in the case of Java applications.

You may set up resolvers for various tasks and register them at run time. In order to
install a resolver permanently, put the SUT script node for the resolver directly after the
Wait for client to connect(709) node in the start sequence of the SUT.

If multiple resolvers are registered globally or registered on the same object or class,
the resolver added last will be called first. The first resolver returning a non-null value
determines the outcome.

Since a resolver will be called for each instance of the component, respectively class,
displayed in the GUI you should implement time-saving algorithms for the resolvers. For
example, in a Jython script the execution of string[0:3] == ”abc” is faster than
string.startswith(”abc”).

All exceptions thrown inside a name resolver will be caught and handled by the
ResolverRegistry. However, instead of dumping a stack trace, the registry will only
print a short message like ”Exception inside NameResolver” because some resolvers
may be called very often, and a buggy resolver printing a stack trace for every error
would flood the net and the client terminal. Therefore name resolvers should include
their own error handling. This can still generate a lot of output in some cases, but the
output will be more useful than a Java stack trace.

The resolvers module is always automatically available in all SUT script nodes.

54.1. The resolvers module 1081

Most examples in the manual are implemented as Jython scripts. In section 54.1.7(1082)

you will find examples for Groovy SUT script nodes.

54.1.3 addResolver

The generic function addResolver has a central role in the resolvers module. Given
the name of the defined method and its parameters it identifies the respective object and
its specific function for registering the resolver.

void addResolver(String resolverName, Method method, Object
target=None, ...)
Register the resolver determined by the given method for the given target(s). If an-
other resolver was previously registered under the given name, deregister that first.
Parameters
name The name under which to register the resolver.
method The method implementing the resolver method.

The name of the method defines the type of
the registered resolver, i.e. for Groovy this has
to be a MethodClosure. Valid names are e.g.:
getName, getClassName, getGenericClassName,
getFeature, getExtraFeatures, getItemName,
getItemValue, getItemNameByIndex, getTree
and getTreeColumn, isInterestingParent,
getTooltip, getId, isEnabled, isVisible,
getMainText, matchExtraFeature, isBusy,
isGlassPaneFor, sync and applicationIsBusy.

target One or more optional targets to register the resolver for.
Each can be any of the following:

• An individual component

• The fully qualified name of a class

If no target is given a global resolver for all components is
registered.

54.1. The resolvers module 1082

void addResolver(String resolverName, Object object, Object
target=None, ...)
Register the resolver determined by the given method(s) of the object for the given
targets. If another resolver was previously registered under the given name, deregister
that first.
Parameters
name The name under which to register the resolver.
object An object or a class providing one or more resolver meth-

ods. Depending on the method names the respective re-
solver is registered. For valid method names see the de-
scription of addResolver above.

target One or more optional targets to register the resolver for.
Each can be any of the following:

• An individual component

• The fully qualified name of a class

If no target is given a global resolver for all components is
registered.

History

Resolvers have quite a history in QF-Test. Up to QF-Test version 4.1 you had to call a
function specific to each resolver interface in order to register a certain resolver type.
You may continue to use those functions. However, they are no longer described in the
manual. The flexible addResolver function replaces the following functions, among
others, of the resolvers module:

• addNameResolver2(String name, Method method, Object
target=None, ...)

• addClassNameResolver(String name, Method method, Object
target=None, ...)

• addGenericClassNameResolver(String name, Method method,
Object target=None, ...)

• addFeatureResolver2(String name, Method method, Object
target=None, ...)

• addExtraFeatureResolver(String name, Method method, Object
target=None, ...)

54.1. The resolvers module 1083

• addItemNameResolver2(String name, Method method, Object
target=None, ...)

• addItemValueResolver2(String name, Method method, Object
target=None, ...)

• addTreeTableResolver(String name, Method getTable, Method
getColumn=None, Object target=None)

• addTooltipResolver(String name, Method method, Object
target=None, ...)

• addIdResolver(String name, Method method, Object
target=None,...)

54.1.4 removeResolver

The function removeResolver may be used to deregister resolvers installed via the
resolvers module.

Often, resolvers are registered directly after the start of the application and remain ac-
tive during the full time of test execution. In some cases, however, resolvers are re-
quired only for handling a certain component and then need be to removed, either due
to performance issues or because the effect of the resolver is not desirable for other
components.

There are two functions for deregistration. The first, removeResolver deregisters a
single resolver, the second, removeAll, removes all resolvers registered by the user.

void removeAll()
Deregister all resolvers registered via the resolvers module from all targets they were
registered for.
void removeResolver(String name)

Deregister a resolver from all the targets it was registered for.
Parameters
name The name the resolver was registered under.

The example first removes a resolver registered under the name ”menuItems”, then
deregister all resolvers registered via the resolvers module.

resolvers.removeResolver("menuItems")
resolvers.removeAll()

Example 54.2: SUT script deregistering a resolver

54.1. The resolvers module 1084

54.1.5 listNames

Return a list of resolver names registered via the resolvers module.

List<String> listNames()

List the registered resolvers.

The example checks whether a certain resolver has been registered. If not, an error
message is written to the run log.

if (! resolvers.listNames().contains("specialNames")) {
rc.logError("Special names resolver not registered!")

}

Example 54.3: Groovy SUT script searching for a certain resolver registered via the
resolvers module

54.1.6 Accessing ’Best label’

When you want to access the Best label(68) from within a resolver, you can use the
method rc.engine.helper.getBestLabel().

String getBestLabel(Component node)

Returns the Best label(68).
Parameters
node The component for with to fetch the best label.
Returns The best label for the component.

The example shows a name resolver transferring the best label to the Name attribute.

_h = rc.engine.helper
def getName(node, name):

label = _h.getBestLabel(node)
return label

resolvers.addResolver("labelAsName", getName, "TextField", "TextArea")

Example 54.4: NameResolver using the best label

54.1.7 The NameResolver Interface
3.1+

The NameResolver works on the Name attribute value of a Component node.

54.1. The resolvers module 1085

After QF-Test determined the name of a GUI element the registered NameResolvers
get a chance to override or suppress this name. The first resolver that returns a non-null
value determines the outcome. If no resolvers are registered or all of them return null
the original name is used.

A NameResolver can change (or provide) the name of a GUI element as set with
setName() for AWT/Swing, setId() or the fx:id attribute for JavaFX,
setData(name, ...) for SWT or via the ’ID’ attribute of a DOM node for web
applications. It can be very useful when setting names in the source code is not an
option, like for third-party code or when child components of complex components are
not readily accessible. For example, QF-Test provides a name resolver for the Java
Swing JFileChooser dialog, which you can read more about in the Tutorial chapter
’The Standard Library’.

In some cases it may be desirable to suppress an element’s name, for example for
names which are not unique or which - even worse - vary depending on the situation.
To do so, getName should return the empty string.

Technologies: AWT/Swing, JavaFX, SWT, Windows, Android, iOS. For web applications
please use Install CustomWebResolver(842) node as described in Improving component
recognition with a CustomWebResolver(1004). It was optimized for web elements and
is more performant. Just in case the functionality provided there is insufficient make use
of the NameResolver.

A NameResolver needs to implement the following method:

String getName(Object element, String name)

Determine the name of a GUI element.
Parameters
element The element to determine the name for.
name The original name QF-Test would use without a resolver.
Returns The name to use or null if the element is not handled by

the resolver. Returning an empty string suppresses the
original name.

The first example is a NameResolver returning the text of the menu item as name for
components of the generic class MenuItems for which the QF-Test standard resolver
could not determine a name.

def getName(menuItem, name):
if not name:

return menuItem.getLabel()
resolvers.addResolver("menuItems", getName, "MenuItem")

Example 54.5: Jython name resolver for MenuItems

54.1. The resolvers module 1086

Give it a try. Copy the example above into a SUT script(673) node and execute it. If your
application is based on SWT instead of Swing, replace getLabel() with getText().
Then record some menu actions into a new, empty test suite. You’ll find that all recorded
menu item components without name will now have names set according to their labels.
If setName is not used in your application and the labels of menu items are more or less
static while the structure of the items often changes, this can be a very useful feature.

The second example is a name resolver assigning a defined name (’Serial number’) to
a component which would otherwise have a partially dynamic name (e.g. ’Serial no:
100347’). It is registered for a specific Java Swing class.

def getName(menuItem, name):
if name and name[0:10] == "Serial no:":

return "Serial number"
resolvers.addResolver("lfdNr", getName, "javax.swing.JMenuItem")

Example 54.6: Jython NameResolver for a specific class

The following Groovy example returns the text of the menu item as the name for a
component the QF-Test standard resolver did not find a name for.

def getName(def menuItem, def name) {
if (name == null) {

return menuItem.getLabel()
}

}
resolvers.addResolver("menuItems", this.&getName, "MenuItem")
// You could also code it shorter:
// resolvers.addResolver("menuItems", this, "MenuItem")
// since every Groovy script represents an object
// and addResolver(...) for objects registers
// all methods of the object as a resolver if possible.

Example 54.7: Groovy resolver for MenuItems

A resolver can be registered for multiple component classes at once:

def getName(com, name):
return com.getText()

resolvers.addResolver("labels", getName, "Label", "Button")

Example 54.8: Register a Resolver for multiple classes

54.1. The resolvers module 1087

54.1.8 The GenericClassNameResolver Interface
4.0+

A GenericClassNameResolver can assign generic classes (chapter 61(1242)) to arbi-
trary components. It can be used to make recorded components more readable and to
register additional resolvers for the newly created classes.

Technologies: all

You should only use this resolver with a web application if theWeb
Install CustomWebResolver(842) node is insufficient.

After QF-Test determined the generic class name of a GUI element the registered
GenericClassNameResolvers get a chance to override this generic class name.
The first resolver that returns a non-null value determines the outcome. If no resolvers
are registered or all of them return null the original generic class name is used.

For performance reasons classes are cached so the resolver will only be called once at
the most for each element. If you change your resolver you need to re-load or to close
and re-open the area which shows the component.

If a generic class name was already assigned to an element via a CustomWebResolver,Web
no GenericClassNameResolvers will be called for that element.

A GenericClassNameResolver needs to implement the following method:

String getGenericClassName(Object element, String name)

Determine the name of the generic class of a GUI element.
Parameters
element The element to determine the generic class name for.
name The original generic class name QF-Test would use with-

out a resolver. May be null.
Returns The generic class name to use or null if the element is not

handled by this resolver. An empty string to suppress the
generic class determined by QF-Test.

54.1.9 The ClassNameResolver Interface
3.1+

The ClassNameResolver can control the class QF-Test records for a component.
It can be used to make recorded components more readable and to register addi-
tional resolvers for the newly created classes. However, we generally recommend the
use of Generic classes(1242) instead. To register generic classes you should use the
GenericClassNameResolver (section 54.1.8(1085)).

Technologies: all

You should only use this resolver with a web application if theWeb

54.1. The resolvers module 1088

Install CustomWebResolver(842) node is insufficient.

A ClassNameResolver needs to implement the following method:

String getClassName(Object element, String name)

Determine the name of the class of a GUI element.
Parameters
element The element to determine the class name for.
name The original class name QF-Test would use without a re-

solver.
Returns The class name to use or null if the element is not handled

by this resolver.

After QF-Test determined the class name of a GUI element the registered
ClassNameResolvers get a chance to override this class name. The first resolver
that returns a non-null value determines the outcome. If no resolvers are registered or
all of them return null the original class name is used. The resolver is free to return any
arbitrary class name. Those names will be treated as normal classes in QF-Test
internal methods.

For performance reasons classes are cached so the resolver will only be called once at
the most for each element. If you change your resolver you need to re-load or to close
and re-open the area which shows the component.

54.1.10 The FeatureResolver Interface
3.1+

A FeatureResolver can provide a feature for a GUI element.

After QF-Test determined the feature of a GUI element the registered
FeatureResolvers get a chance to override or suppress this feature. The first
resolver that returns a non-null value determines the outcome. If no resolvers are
registered or all of them return null the original feature is used.

To suppress an element’s feature getFeature should return the empty string.

Technologies: AWT/Swing, JavaFX, SWT, Windows, Android, iOS. For web applications
please use the Install CustomWebResolver(842) node as described in Improving component
recognition with a CustomWebResolver(1004). It was optimized for web elements and is
more performant. Just in case the functionality provided there is insufficient make use
of the FeatureResolver.

A FeatureResolver needs to implement the following method:

54.1. The resolvers module 1089

String getFeature(Object element, String feature)

Determine the feature of a GUI element.
Parameters
element The element to determine the feature for.
feature The original feature QF-Test would use without a resolver.
Returns The feature to use or null if the element is not handled by

this resolver. Returning an empty string suppresses the
original feature.

The following example implements a feature resolver returning the title of the panel
border as feature for Java/Swing panels.

def getFeature(com, feature):
try:

title = com.getBorder().getInsideBorder().getTitle()
if title != None:

return title
except:

pass
resolvers.addResolver("paneltitle", getFeature, "Panel")

Example 54.9: A FeatureResoler for Java/Swing Panels

54.1.11 The ExtraFeatureResolver Interface

An ExtraFeatureResolver can add, change or delete an Extra feature in the Extra
features table for a GUI element. For this purpose the interface provides a number of
methods.

Instances of the class de.qfs.apps.qftest.shared.data.ExtraFeature repre-
sent one Extra feature for a GUI element, comprising its name and value along with infor-
mation about whether the feature is expected to match, whether it is a regular expres-
sion and whether the match should be negated. For possible states the class defines the
constants STATE_IGNORE, STATE_SHOULD_MATCH and STATE_MUST_MATCH.

After QF-Test determined the Extra features for a GUI element, the registered
ExtraFeatureResolvers get a chance to override these features. In contrast to
other resolvers, QF-Test does not stop when the first resolver returns a non-null value.
Instead it passes its result as input to the next resolver which makes it possible to
register several ExtraFeatureResolvers that handle different Extra features. If no
resolvers are registered or all of them return null, QF-Test will proceed to use the
original set.

54.1. The resolvers module 1090

Of course, in order to be able to implement the getExtraFeatures method properly,
you need to know the details for the API of the classes involved, namely ExtraFeature
and ExtraFeatureSet described below - after the examples.

Technologies: AWT/Swing, JavaFX, SWT, Windows, Android, iOS. For web applica-
tions please use the Install CustomWebResolver(842) described in Improving component
recognition with a CustomWebResolver(1004). It was optimized for web elements and is
more performant. Only if the functionality provided there is insufficient should you use
the ExtraFeatureResolver.

To ensure consistency when capturing and replaying qfs:label* Extra feature variants
as well as mapping them to and from SmartID, some constraints should be maintained.
They do not apply to the legacy qfs:label Extra features, which stands on its own.

When handling qfs:label* variants in an ExtraFeatureResolver you have to
make sure that the whole set of the variants remains consistent. This means

• There should be at most one qfs:label* variant with ”Should match”, the rest
should be ”Ignore”.

• qfs:labelBest should either be the ”Should match” variant or it should have the
same value as the ”Should match” variant.

QF-Test itself maintains those constraints when determining associated labels. To make
it easier for ExtraFeatureResolvers to do so as well, the ExtraFeatureSet class
manages those constraints when called from an ExtraFeatureResolver:

• If the value of qfs:labelBest is changed and it has the state ”Ignore”, the value
of the ”Should match” variant is automatically changed as well.

• If the value of the ”Should match” variant is changed, the value of
qfs:labelBest is automatically changed as well.

• If a qfs:label* variant is set to ”Should match” all others are changed to ignore
and qfs:labelBest is updated accordingly.

If there are qfs:label* variants with the status ”Must match” or with a regular expres-Note
sion constraint handling is immediately deactivated.

A ExtraFeatureResolver needs to implement the following method:

54.1. The resolvers module 1091

ExtraFeatureSet getExtraFeatures(Object element,
ExtraFeatureSet features)

Determine extra features for a GUI element.
Parameters
element The element to determine the extra features for.
features The extra features determined by QF-Test itself, an empty

set in case there are none. These can be modified in place
or ignored and a different ExtraFeatureSet returned.

Returns The original features modified in place or a different set,
null if the element is not handled by this resolver. To sup-
press all the element’s original extra features return an
empty ExtraFeatureSet.

The first example implements an ExtraFeatureResolver adding the title
of a Java/Swing dialog as an Extra feature with the status ”must match”
(STATE_MUST_MATCH). This comes in handy when component recognition depends
on the correct title of the dialog.

def getExtraFeatures(node, features):
try:

title = node.getTitle()
features.add(resolvers.STATE_MUST_MATCH,"dialog.title", title)
return features

except:
pass

resolvers.addResolver("dialog title", getExtraFeatures,"Dialog")

Example 54.10: ExtraFeatureResolver adding an Extra feature for Java/Swing di-
alogs

The following example shows how to change an existing Extra feature. The example han-
dles qfs:labelBest, which triggers special treatment of the qfs:label* variants as
described above: if they adhere to the constraints, QF-Test will update the respective
qfs:label* variants so that the whole set will remain consistent.

def getExtraFeatures(node, features):
label = features.get("qfs:labelBest")
if label and label.getValue() == "unwanted":

label.setValue("wanted")
return features

resolvers.addResolver("change label", getExtraFeatures)

Example 54.11: ExtraFeatureResolver changing an existing Extra feature

54.1. The resolvers module 1092

The next example shows how to change the state of the qfs:label* variant with the
state ’should match’ to ’ignore’:

def getExtraFeatures(node, features) {
def labelFeature = features.getShouldMatchLabel()
if (labelFeature) {

labelFeature.setState(resolvers.STATE_IGNORE)
return features

}
}
resolvers.addResolver("get label example", this)

Example 54.12: An ExtraFeatureResolver (Groovy) changing the state of the Ex-
tra feature

Thanks to the constraints described above, a simple ExtraFeatureResolver that
was formerly written as

def getExtraFeatures(node, features):
label = features.get("qfs:label")
if label and label.getValue() == "unwanted":

label.setValue("wanted")
return features

resolvers.addResolver("change label", getExtraFeatures)

Example 54.13: ExtraFeatureResolver changing an existing Extra feature

can simply be updated to example ExtraFeatureResolver changing an existing
Extra feature (1089) above.

In the following you will find the description of the APIs of the classes ExtraFeature
and ExtraFeatureSet.

ExtraFeature ExtraFeature(String name, String value)

Create a new ExtraFeature with the default state STATE_IGNORE.
Parameters
name The name of the ExtraFeature.
value The value of the ExtraFeature.

54.1. The resolvers module 1093

ExtraFeature ExtraFeature(int state, String name, String value)

Create a new ExtraFeature with a given state.
Parameters
state The state of the ExtraFeature. Values allowed

are STATE_IGNORE, STATE_SHOULD_MATCH,
STATE_MUST_MATCH.

name The name of the ExtraFeature.
value The value of the ExtraFeature.

String getName()

Get the name of the ExtraFeature.
Returns The name of the ExtraFeature.

boolean getNegate()

Get the negate state of the ExtraFeature.
Returns The negate state of the ExtraFeature.

boolean getRegexp()

Get the regexp state of the ExtraFeature.
Returns Whether the ExtraFeature’s value is a regular expression.

int getState()

Get the state of the ExtraFeature.
Returns The state of the ExtraFeature.

String getValue()

Get the value of the ExtraFeature.
Returns The value of the ExtraFeature.

void setName(String name)

Set the name of the ExtraFeature.
Parameters
name The name to set.

void setNegate(boolean negate)

Set the negate state of the ExtraFeature.
Parameters
negate The negate state to set.

void setRegexp(boolean regexp)

Set the regexp state of the ExtraFeature.
Parameters
regexp The regexp state to set.

54.1. The resolvers module 1094

void setState(int state)

Set the state of the ExtraFeature.
Parameters
state The state to set.

void setValue(String value)

Set the value of the ExtraFeature.
Parameters
value The value to set.

The class de.qfs.apps.qftest.shared.data.ExtraFeatureSet collects
ExtraFeatures into set:

ExtraFeatureSet ExtraFeatureSet()

Create a new, empty ExtraFeatureSet.

void add(ExtraFeature extraFeature)

Add an ExtraFeature to the set, potentially replacing a feature with the same name.
Parameters
extraFeature The ExtraFeature to add.

void add(String name, String value)
Add a new extra feature to the set with the state STATE_IGNORE, potentially replacing
a feature with the same name.
Parameters
name The name of the ExtraFeature.
value The value of the ExtraFeature.

void add(int state, String name, String value)
Add a new extra feature with the given state to the set, potentially replacing a feature
with the same name.
Parameters
state The state of the ExtraFeature. Val-

ues allowed are resolvers.STATE_IGNORE,
resolvers.STATE_SHOULD_MATCH, re-
solvers.STATE_MUST_MATCH.

name The name of the ExtraFeature.
value The value of the ExtraFeature.

54.1. The resolvers module 1095

ExtraFeature get(String name)

Get an ExtraFeature from the set.
Parameters
name The name of the ExtraFeature to get.
Returns The ExtraFeature or null if no feature by that name is

stored in the set.

ExtraFeature getShouldMatchLabel()
Get the qfs:label* ExtraFeature variant with the state ”Should match” from the set.
In case there are more than one, the first one will be returned.
Returns The ExtraFeature or null if there is no qfs:label* Ex-

traFeature variant with the state ”Should match”.

ExtraFeature remove(String name)

Remove an extraFeature from the set.
Parameters
name The name of the ExtraFeature to remove.
Returns The ExtraFeature that was removed or null if no feature by

that name was stored in the set.

ExtraFeature[] toArray()

Get all ExtraFeatures in the set.
Returns An array of the contained ExtraFeatures, sorted by name.

54.1.12 The ItemNameResolver Interface
3.1+

An ItemNameResolver can change (or provide) the textual representation of the index
for addressing a sub-item of a complex component.

After QF-Test determined the name for an item’s index the registered
ItemNameResolvers get a chance to override. The first resolver that returns a
non-null value determines the outcome. If no resolvers are registered or all of them
return null the original name is used.

Technologies: AWT/Swing, JavaFX, SWT, Windows, Android, iOS. For web applications
please use the Install CustomWebResolver(842) node described in Improving component
recognition with a CustomWebResolver(1004). It was optimized for web elements and is
more performant. Only if the functionality provided there is insufficient should you use
the ItemNameResolver.

An ItemNameResolver needs to implement the following method:

54.1. The resolvers module 1096

String getItemName(Object element, Object item, String name)
Determine the name of an item of a complex GUI element that will be used for the textual
representation of the item’s index.
Parameters
element The GUI element to which the item belongs.
item The item to get the name for. Its type depends on the

GUI element and the registered ItemResolvers as de-
scribed in section 54.3.5(1124).

name The original name that QF-Test would use without a re-
solver.

Returns The name to use or null if the resolver does not handle
this element or item.

The example implements an ItemNameResolver making the ID of a JTable available
as index:

def getItemName(tableHeader, item, name):
id = tableHeader.getColumnModel().getColumn(item).getIdentifier()
if id:

return str(id)
resolvers.addResolver("tableColumnId", getItemName,

"javax.swing.table.JTableHeader")

Example 54.14: An ItemNameResolver for JTableHeader

54.1.13 The ItemValueResolver Interface
3.1+

The ItemValueResolver is used to improve the textual check of elements.

An ItemValueResolver can change (or provide) the textual representation of the
value a sub-item of a complex component as used by a Check text(754) node or retrieved
via a Fetch text(786) node.

After QF-Test determined the value for an item’s index the registered
ItemValueResolvers get a chance to override. The first resolver that returns a
non-null value determines the outcome. If no resolvers are registered or all of them
return null the original value is used.

Technologies: AWT/Swing, JavaFX, SWT, Windows, Android, iOS. For web applica-
tions please use the Install CustomWebResolver(842) as described in Improving component
recognition with a CustomWebResolver(1004). It was optimized for web elements and
is more performant. Just in case the functionality provided there is insufficient use the
ItemValueResolver.

An ItemValueResolver needs to implement the following method:

54.1. The resolvers module 1097

String getItemValue(Object element, Object item, String value)
Determine the value of an item of a complex GUI element that will be used for its textual
representation in a Check text(754) or a Fetch text(786) node.
Parameters
element The GUI element to which the item belongs.
item The item to get the value for. Its type depends on the

GUI element and the registered ItemResolvers as de-
scribed in section 54.3.5(1124).

value The original value QF-Test would use without a resolver.
Returns The value to use or null if the resolver does not handle this

element or item.

54.1.14 The TreeTableResolver Interface

A TreeTableResolver helps QF-Test recognize TreeTable components. A TreeTable
is a mixture between a table and a tree. It is not a standard Swing component, but
most TreeTables are implemented alike using a tree as the renderer component for one
column of the table. Once QF-Test recognizes a TreeTable as such, it treats the row
indexes of all table cells as tree indexes, which is a lot more useful in that context than
standard table row indexes. In addition, geometry information for cells in the tree column
is based on tree nodes instead of table cells.

Technologies: AWT/Swing

The interface is only relevant for AWT/Swing. For SWT and JavaFX multi-column treesNote
are support by QF-Test automatically. For web frameworks the TreeTable is defined by
the (custom) web resolver (see Improving component recognition with a
CustomWebResolver(1004)).

A TreeTableResolver needs to implement to following two methods:

JTree getTree(JTable table)

Determine the tree component used to implement a TreeTable.
Parameters
table The JTable component to determine the tree for.
Returns The tree or null if the JTable is a plain table and not a

TreeTable.

54.1. The resolvers module 1098

int getTreeColumn(JTable table)
Determine the column index of the tree component in a TreeTable. Most implementa-
tions place the tree in the first column, in which case the index is 0.
Parameters
table The JTable component to determine the tree’s column in-

dex for.
Returns The column index or -1 if the JTable is a plain table and

not a TreeTable. The column index must always be given
in the table’s model coordinates, not in view coordinates.

Most TreeTableResolvers are trivial to implement. The following Jython example
works well for the org.openide.explorer.view.TreeTable component used in
the popular netBeans IDE, provided that the resolver is registered for the TreeTable
class:

def getTreeMethod(table):
return table.getCellRenderer(0,0)

def getColumn(table):
return 0

resolvers.addResolver("treetableResolver", getTreeMethod, \
getColumn, "org.openide.explorer.view.TreeTable")

Example 54.15: TreeTableResolver for netBeans IDE

The following example shows a typical TreeTableResolver.

def getTree(table):
return table.getTree()

def getColumn(table):
return 0

resolvers.addResolver("treeTable", getTree, getColumn,
"my.package.TreeTable")

Example 54.16: TreeTableResolver for Swing TreeTable with optional getColumn
method

As practically all TreeTables implement the tree in the first column of the table the
getColumn method is optional. When none is passed QF-Test automatically creates a
default implementation for the first column:

54.1. The resolvers module 1099

def getTree(table):
return table.getTree()

resolvers.addResolver("treeTable", getTree, None,
"my.package.TreeTable")

Example 54.17: Simplified TreeTableResolver

If no dedicated getTree method is available, the cell renderer of the column containing
the tree (typically 0) might work, as it is typically derived from JTree.

def getTree(table):
return table.getCellRenderer(0,0)

resolvers.addResolver("treeTable", getTree,
"my.package.TreeTable")

Example 54.18: Simplified TreeTableResolver using the method
getCellRenderer

54.1.15 The InterestingParentResolver Interface

An InterestingParentResolver influences which components will be treated as
interesting or ignorable by QF-Test recording. This, in turn, determines whether a Com-
ponent node will be created for a component.

Technologies: AWT/Swing, JavaFX, SWT, Windows, Android, iOS. For web applications
please use the Install CustomWebResolver(842) node as described in Improving component
recognition with a CustomWebResolver(1004). It was optimized for web elements and is
more performant. Just in case the functionality provided there is insufficient make use
of the InterestingParentResolver.

An InterestingParentResolver needs to implement the following method:

Boolean isInterestingParent(Object parent, boolean interesting)

Determine whether a parent element is interesting.
Parameters
parent The (direct or indirect) parent element.
interesting Whether QF-Test considers the parent interesting without

resolver.
Returns Boolean.TRUE if interesting, Boolean.FALSE if not, null if

this resolver cannot tell either way.

54.1. The resolvers module 1100

54.1.16 The TooltipResolver Interface
4.1+

A TooltipResolver can provide a tooltip for a component. A tooltip is one of the texts
considered for the ’qfs:label’ Extra feature.

Technologies: AWT/Swing, JavaFX, SWT. For web applications please use the
Install CustomWebResolver(842) node as described in Improving component recognition
with a CustomWebResolver(1004). It was optimized for web elements and is more
performant. Just in case the functionality provided there is insufficient make use of the
TooltipResolver.

A TooltipResolver needs to implement the following method:

String getTooltip(Object element, String tooltip)

Determine the tooltip of a GUI element.
Parameters
element The element to determine the tooltip for.
tooltip The original tooltip QF-Test would use without a resolver.
Returns The tooltip to use or null if the element is not handled by

this resolver. Returning an empty string suppresses the
original tooltip.

54.1.17 The IdResolver interface
Web

An IdResolver allows modifying or even removing the ’ID’ attribute of a DomNode.
When QF-Test registers the DOM nodes of a web page it also caches the ”id” attribute
of those nodes. Depending on the option Use ID attribute as name(528) the value of the
”id” attribute will even be taken as name for the component. As many web pages or
component libraries generate such IDs automatically it’s a very common requirement to
modify that ID in order to get stable and reliable component recognition.

There are three possibilities to deal with such automatically generated IDs:

• The simplest method influencing the IDs can be achieved by using the
Install CustomWebResolver(842) node. There you should configure the category
autoIdPatterns. This parameter allows to specify dedicated values to ignore
like myAutoId or even regular expressions like auto.*, which ignores any ID
beginning with auto.

• In case you have introduced a custom attribute, which should act as id instead of
the original ’ID’ attribute, you should also use Install CustomWebResolver(842). There
you should configure the category customIdAttributes. It allows to specify
custom attributes which will be used for determining the ’ID’.

54.1. The resolvers module 1101

• You can activate the option Eliminate all numerals from ’ID’ attributes(529) to ignore
any numerals from the ID.

• In case you would like to implement a complex algorithm you need to implement
an IdResolver.

The options mentioned above can also be combined and don’t exclude each other. In
case you decide to implement a custom algorithm you should always use an
IdResolver. You should take care that the ’ID’ attribute of a node can show up in
multiple places. The most notably place is the attribute Name(871) of the node (depending
on the option Use ID attribute as name(528)), its Feature(871) and its Extra feature(871).
Because of that many locations you should prefer implementing an IdResolver over
implementing individual Name-, Feature- and ExtraFeatureResolvers. More
importantly, changing a node’s ’ID’ attribute can have a major impact on whether the
attribute is unique and QF-Test’s mechanism for using an ID as a Name takes
uniqueness into account, so an IdResolver is allowed to return non-unique IDs
whereas a NameResolver2 is not.

Technologies: Web

The de.qfs.apps.qftest.extensions.IdResolver interface consists of a sin-
gle method:

String getId(DomNode node, String id)
Determine the ID of a DomNode. The resolved ID will be cached and can later be
retrieved via node.getId(), whereas node.getAttribute(”id”) always returns
the original, unmodified ’ID’ attribute.
Parameters
node The DomNode to determine the ID for.
id The ID that QF-Test has determined, possibly with sup-

pressed numerals, depending on the setting of the option
Eliminate all numerals from ’ID’ attributes(529). To imple-
ment the resolver based on the original ’ID’ attribute, sim-
ply fetch this with node.getAttribute(”id”).

Returns The ID or null if the element is not handled by this resolver.
Returning an empty string will suppress or hide the node’s
actual ID.

54.1.18 The EnabledResolver Interface
4.1+

An EnabledResolver provides information about when to consider a component
active or inactive. AWT/Swing Components have a respective attribute. Web and

54.1. The resolvers module 1102

JavaFX, however, have special stylesheet classes that need to be evaluated via the
EnabledResolver.

Technologies: JavaFX, Web, Windows, Android, iOS

An EnabledResolver needs to implement the following method:

Boolean isEnabled(Object element, boolean enabled)

Determine whether a GUI element is regarded as active or inactive.
Parameters
element The element to determine the enabled state for.
enabled The original state QF-Test would use without a resolver.
Returns True or false. Null if the element was not handled by the

resolver.

The example determines the enabled state of a web node via the css class
v-disabled.

def isEnabled(element):
try:

return not element.hasCSSClass("v-disabled")
except:

return True
resolvers.addResolver("vEnabledResolver",isEnabled, \

"DOM_NODE")

Example 54.19: An EnabledResolver

54.1.19 The VisibilityResolver Interface
4.1+

A VisibilityResolver influences whether to consider a web element to be visible.

Technologies: Web, Windows, Android, iOS

A VisibilityResolver needs to implement the following method:

Boolean isVisible(Object element, boolean visible)

Determine whether a GUI element is regarded visible.
Parameters
element The web element to determine the visible state for.
visible The original state QF-Test would use without a resolver.
Returns True or false. Null if the element was not handled by the

resolver.

54.1. The resolvers module 1103

The resolver in the example below returns false for the visibility state of the web element
in case it is opaque.

import re
def getOpacity(element):

style = element.getAttribute("style")
if not style:

return 1
m = re.search("opacity:\s*([\d\.]+)", style)
if m:

return float(m.group(1)) == 0.4
else:

return 1
def isVisible(element,visible):

while visible and element:
visible = getOpacity(element) > 0
element = element.getParent()

return visible
resolvers.addResolver("opacityResolver",isVisible)

Example 54.20: A VisibilityResolver

54.1.20 The MainTextResolver Interface
4.1+

A MainTextResolver determines the primary line of text of a component, which then
may be used for the Feature(871), the qfs:label* variants(66) etc.

Technologies: AWT/Swing, JavaFX, SWT, Web, Windows, Android, iOS

A MainTextResolver needs to implement the following method:

String getMainText(Object element, String text)

Determine the ’main’ text of a component
Parameters
element The GUI element to determine the text for.
text The original text QF-Test would use without a resolver.
Returns The ’main’ text. Null if the element was not handled by

the resolver. Returning an empty string suppresses the
original text.

The resolver in the example removes the string TO-DO from the ’main’ text of all com-
ponents.

54.1. The resolvers module 1104

def getMainText(element,text):
if text:

return text.replace("TO-DO","")
resolvers.addResolver("removeMarkFromText", getMainText)

Example 54.21: A MainTextResolver

54.1.21 The WholeTextResolver Interface
4.1+

A WholeTextResolver determines the ’whole’ text of a component, i.e. what should
be used for checks, etc.

Technologies: AWT/Swing, JavaFX, SWT, Web, Windows, Android, iOS

A WholeTextResolver needs to implement the following method:

String getWholeText(Object element, String text)

Determine the ’whole’ text of a component
Parameters
element The GUI element to determine the text for.
text The original text QF-Test would use without a resolver.
Returns The ’whole’ text. Null if the element was not handled by

the resolver. Returning an empty string suppresses the
original text.

The resolver in the example removes the string TO-DO from the texts used for example
for checks of TextFields and TextAreas.

def getWholeText(element,text):
if text:

return text.replace("TO-DO","")
resolvers.addResolver("removeMarkFromText", getWholeText, "TextField", "TextArea")

Example 54.22: A WholeTextResolver

54.1.22 The BusyPaneResolver Interfaces
4.1+

At text execution, QF-Test waits for BusyPanes covering other components to disappear
before resuming in a determined state. A BusyPaneResolver influences whether to
consider a component as being covered.

Technologies: AWT/Swing, JavaFX

A BusyPaneResolver needs to implement the following method:

54.1. The resolvers module 1105

Boolean isBusy(Object element)
Determine whether a component is currently being covered by a BusyPane or compa-
rable component.
Parameters
element The GUI element to determine the text state for.
Returns True if the element cannot currently be accessed because

of a BusyPane or similar.
False otherwise.
Null if the element was not handled by the resolver.

The resolver in the example below deactivates recognition of BusyPanes for compo-
nents of the type ”my.special.Component”.

def isBusy():
return false

resolvers.addResolver("neverBusyResolver",isBusy,"my.special.Component")

Example 54.23: A BusyPaneResolver

54.1.23 The GlassPaneResolver Interfaces
4.1+

When components (e.g. transparent ones) hide others components you can use a
GlassPaneResolver to inform QF-Test of this relationship and thus redirect events
to the correct component.

Technology: AWT/Swing

A GlassPaneResolver needs to implement the following method:

Object isGlassPaneFor(Object element, Object target)
Determine the relationship between an overlaying component and the actual target com-
ponent.
Parameters
element The GUI element events are received for.
target The GUI element QF-Test would pass the event on to with-

out a resolver.
Returns The component to which to pass the events on to. Null if

the element was not handled by the resolver.

The resolver in the example below deactivates passing on events through GlassPanes.

54.1. The resolvers module 1106

def isGlassPaneFor(element):
return element

resolvers.addResolver("noGlassPaneResolver", isGlassPaneFor)

Example 54.24: A GlassPaneResolver

54.1.24 The TreeIndentationResolver Interface
8.0+

A TreeIndentationResolver is used to determine the indentation of a tree node
in a tree or tree table. Use this resolver if QF-Test can not automatically determine
the right indentation of nodes in a Tree or TreeTable component and the abilities of the
parameter ”treeIndentationMode” of the CustomWebResolver category treeResolver
are not sufficient.

Note that the return value of the resolver is treated like a pixel amount. This means
that to distinguish different tree levels, the indentation value must differ by at least 2 by
default.

Technologies: Web

A TreeIndentationResolver has to implement the following method:

Integer getTreeIndentation(DomNode tree, DomNode treeNode)

Determines the indentation of a tree node in a tree.
Parameters
tree The DOM node of the tree the resolver should apply to.
treeNode The DOM node of the tree node to calculate the indenta-

tion for.
Returns The indentation for the given tree node, or null to let

other resolvers or QF-Test determine the indentation.
Note: To distinguish different tree levels, indentation must
exceed the TreeResolver nodeTolerance value (default 1).

The following Groovy example tries to determine the indentation of all TreeNodes
through the HTML attribute aria-level.

Integer getTreeIndentation(Object tree, Object treeNode) {
def ariaLevel = treeNode.getAttribute('aria-level')
return ariaLevel ? ariaLevel as Integer * 10 : null

}
resolvers.addResolver("TreeIndentationResolver-Tree", this, "Tree")

Example 54.25: A TreeIndentationResolver

54.1. The resolvers module 1107

54.1.25 The EventSynchronizer Interface
4.1+

After replaying an event to the SUT QF-Test waits for synchronization with the respective
Event Dispatch Thread. Via an EventSynchronizer you can tell QF-Test when the
SUT is ready to accept the next event. It ought to be used when the SUT has a non-
standard event synchronization.

Technologies: AWT/Swing, JavaFX, SWT, Web

An EventSynchronizer needs to implement the following method:

void sync(Object context)

Synchronization with the Event Dispatch Thread of the SUT.
Parameters
context The context specified when registrating the resolver.

The resolver in the following example stops execution on the Dispatch Thread until the
next full second.

import time
def sync():

t = time.time()
full = int(t)
delta = t - full
time.sleep(delta)

resolvers.addResolver("timeSynchronizer",sync)

Example 54.26: An EventSynchronizer

54.1.26 The BusyApplicationDetector Interface
4.1+

Using a BusyApplicationDetector can tell QF-Test when to consider an application
to be currently ’busy’ and not in grade of accepting events.

Technologies: AWT/Swing, JavaFX, SWT, Web

A BusyApplicationDetector needs to implement the following method:

Boolean applicationIsBusy

Determine whether an application is currently ’busy’.
Returns True if the application is ’busy’, false otherwise.

The resolver in the example uses a SUT specific method to tell QF-Test it is ’busy’:

54.1. The resolvers module 1108

def applicationIsBusy():
return my.app.App.instance().isDoingDbSynchronization()

resolvers.addResolver("dbAccessDetector",applicationIsBusy)

Example 54.27: A BusyApplicationDetector

54.1.27 Matcher

The difference between a matcher and a resolver is that matchers are relevant for
replay only. They have no effect on recordings. However, they are registered via the
resolvers module as well.

A matcher can become useful when you are working with generic components or for
keyword driven testing, if you do not record components.

The ExtraFeatureMatcher Interface
4.1+

An ExtraFeatureMatcher influences whether to consider an Extra feature QF-Test
registered for the component as ’suitable’.

Technologies: AWT/Swing, JavaFX, SWT, Web

An ExtraFeatureMatcher needs to implement the following method:

Boolean matchExtraFeature(Object element, String name, String
value, boolean regexp, boolean negate)

Check the Extra feature of a component.
Parameters
element The GUI element to check the Extra feature for.
name The name of the Extra feature.
value The value of the Extra feature.
regexp True, if value is a regular expression.
negate True, if the check is to be negated.
Returns True, if the ExtraFeature is suitable, false otherwise. Null

if the element was not handled by the resolver.

The matcher in the example below checks the value of the Extra feature my:label
against the my-label attribute of the web element.

54.1. The resolvers module 1109

import re
def matchExtraFeature(element, name, value, regexp, negate):

if not name == "my:label":
return None

label = element.getAttribute("my-label")
if label:

if regexp:
match = re.match(value,label)

else:
match = (value == label)

else:
match = False

return (match and not negate) or (not match and negate)
resolvers.addResolver("myLabelResolver", matchExtraFeature)

Example 54.28: An ExtraFeatureMatcher

The resolver method call can be limited to a specific feature name by means of the
special resolvers method addSpecificExtraFeatureMatcher:

import re
def matchExtraFeature(element, name, value, regexp, negate):

label = element.getAttribute("my-label")
if label:

if regexp:
match = re.match(value,label)

else:
match = (value == label)

else:
match = False

return (match and not negate) or (not match and negate)
resolvers.addSpecificExtraFeatureMatcher("myLabelResolver", \

matchExtraFeature, "my:label")

Example 54.29: Using addSpecificExtraFeatureMatcher

54.1.28 External Implementation

As an alternative to directly implementing a resolver in an SUT-script, it is possible to
provide them as Java classes inside a JAR file in the plugin folder. In doing so, it is
helpful to implement the aforementioned resolver interfaces (Basically, QF-Test is able
to detect resolvers by their implemented method names).

To implement the interfaces provided by QF-Test, the file qfsut.jar has to be
added to the development classpath. Most of the interfaces reside in the
de.qfs.apps.qftest.extensions package, and the names of the interfaces

54.2. The ResolverRegistry 1110

which have two method parameters are suffixed with a ”2”. All Interfaces named
Item... reside in the package de.qfs.apps.qftest.extensions.items.
When calling resolvers.addResolver in an SUT script, provide an instance of the
implemented resolver class as argument.

54.2 The ResolverRegistry

Resolvers of all kinds can be implemented via the resolvers module as Jython or
Groovy scripts as described in section 54.1(1075). Unless you want to understand how the
resolvers module itself works or want to implement a resolver in Java you may skip
the following sections.

This section describes how to implement a resolver directly by Java classes. However,
this will make the code of your application depend on QF-Test classes. The preferred
alternative is to implement the resolver interfaces in Jython or Groovy. That way the
whole mechanism can be strictly separated from the SUT and will not interfere with the
build process.

Additionally to the resolver registration described in this section you need to implement
the resolver interfaces described from section 54.1.7(1082) and following.

The need for describing such a method as an interface that has to implemented by
a class makes resolvers difficult at Java level. Then an instance of that class has to
be created and registered for use by QF-Test. If you don’t get it right on first try, that
instance has to be deregistered before a new instance from a new class can be created
and instance thereof registered, otherwise there may be interference between the two
versions of the resolver. Add some code for error handling and you’ve got many times
more glue code than actual ”flesh”.

As stated in section Implementation(1077) all exceptions thrown inside a name resolver will
be caught and handled by the ResolverRegistry. However, instead of dumping a
stack trace, the registry will only print a short message like ”Exception inside NameRe-
solver” because some resolvers may be called very often, and a buggy resolver printing
a stack trace for every error would flood the net and the client terminal. Therefore name
resolvers should include their own error handling. This can still generate a lot of output
in some cases, but the output will be more useful than a Java stack trace.

Before implementing a resolver in Java please have a look at sections section
54.1.1(1075) and section 54.1.2(1077), where everything not specific to scripts and the
resolvers module itself holds true for resolvers implemented in Java as well.

The singleton class de.qfs.apps.qftest.extensions.ResolverRegistry is
the central agent for registering and removing name resolvers.

The ResolverRegistry API is pretty straightforward:

54.2. The ResolverRegistry 1111

static String getElementName(Object element)
This static method should be used instead of com.getName() or widget.getData()
by resolvers that need to operate based on existing names of elements, except for
a NameResolver2 that gets just the original name passed to its getName method.
This method suppresses trivial or AWT/Swing specific component names that QF-Test
handles specially.
Parameters
element The element to get the name for.
Returns The name of the element or null if a trivial or special

name is suppressed.

static ResolverRegistry instance()
There can only ever be one ResolverRegistry object and this is the method to get
hold of this singleton instance.
Returns The singleton ResolverRegistry instance.

static boolean isInstance(Object object, String className)
This static method should be used instead of instanceof (or isinstance() in
Jython). It checks whether an object is an instance of a given class. The check is
performed by name instead of through reflection, so conflicts with differing class loaders
are prevented and there is no need to import the class to check against.
Parameters
object The object to check.
className The name of the class to test for.
Returns True if the object is an instance of the given class.

void registerExtraFeatureResolver(ExtraFeatureResolver
resolver)

Register a generic or global extra feature resolver.
Parameters
resolver The resolver to register.

void registerExtraFeatureResolver(Object element,
ExtraFeatureResolver resolver)
Register an extra feature resolver for an individual GUI element. The resolver does
not prevent garbage collection and will be removed automatically when the element
becomes unreachable.
Parameters
element The GUI element to register for.
resolver The resolver to register.

54.2. The ResolverRegistry 1112

void registerExtraFeatureResolver(String clazz,
ExtraFeatureResolver resolver)

Register an extra feature resolver for a GUI element class.
Parameters
clazz The name of the class to register for.
resolver The resolver to register.

void registerFeatureResolver2(FeatureResolver2 resolver)

Register a generic or global feature resolver.
Parameters
resolver The resolver to register.

void registerFeatureResolver2(Object element, FeatureResolver2
resolver)
Register a feature resolver for an individual GUI element. The resolver does not pre-
vent garbage collection and will be removed automatically when the element becomes
unreachable.
Parameters
element The GUI element to register for.
resolver The resolver to register.

void registerFeatureResolver2(String clazz, FeatureResolver2
resolver)

Register a feature resolver for a GUI element class.
Parameters
clazz The name of the class to register for.
resolver The resolver to register.

void registerIdResolver(IdResolver resolver)

Register a generic or global ID resolver.
Parameters
resolver The resolver to register.

void registerIdResolver(Object element, IdResolver resolver)
Register an ID resolver for an individual GUI element. The resolver does not prevent
garbage collection and will be removed automatically when the element becomes un-
reachable.
Parameters
element The GUI element to register for.
resolver The resolver to register.

54.2. The ResolverRegistry 1113

void registerIdResolver(String clazz, IdResolver resolver)

Register an ID resolver for a GUI element class.
Parameters
clazz The name of the class to register for.
resolver The resolver to register.

void registerNameResolver2(NameResolver2 resolver)

Register a generic or global name resolver.
Parameters
resolver The resolver to register.

void registerNameResolver2(Object element, NameResolver2
resolver)
Register a name resolver for an individual GUI element. The resolver does not pre-
vent garbage collection and will be removed automatically when the element becomes
unreachable.
Parameters
element The GUI element to register for.
resolver The resolver to register.

void registerNameResolver2(String clazz, NameResolver2
resolver)

Register a name resolver for a GUI element class.
Parameters
clazz The name of the class to register for.
resolver The resolver to register.

void registerTreeTableResolver(TreeTableResolver resolver)

Register a generic or global TreeTable resolver.
Parameters
resolver The resolver to register.

void registerTreeTableResolver(Object com, TreeTableResolver
resolver)
Register a TreeTable resolver for a specific component. The resolver will be removed
automatically if the component becomes invisible.
Parameters
com The component to register for.
resolver The resolver to register.

54.2. The ResolverRegistry 1114

void registerTreeTableResolver(String clazz, TreeTableResolver
resolver)

Register a TreeTable resolver for a component class.
Parameters
clazz The name of the class to register for.
resolver The resolver to register.

void unregisterExtraFeatureResolver(ExtraFeatureResolver
resolver)

Unregister a generic or global extra feature resolver.
Parameters
resolver The resolver to unregister.

void unregisterExtraFeatureResolver(Object element,
ExtraFeatureResolver resolver)

Unregister an extra feature resolver for an individual GUI element.
Parameters
element The GUI element to unregister for.
resolver The resolver to unregister.

void unregisterExtraFeatureResolver(String clazz,
ExtraFeatureResolver resolver)

Unregister an extra feature resolver for a GUI element class.
Parameters
clazz The name of the class to unregister for.
resolver The resolver to unregister.

void unregisterFeatureResolver2(FeatureResolver2 resolver)

Unregister a generic or global feature resolver.
Parameters
resolver The resolver to unregister.

void unregisterFeatureResolver2(Object element,
FeatureResolver2 resolver)

Unregister a feature resolver for an individual GUI element.
Parameters
element The GUI element to unregister for.
resolver The resolver to unregister.

54.2. The ResolverRegistry 1115

void unregisterFeatureResolver2(String clazz, FeatureResolver2
resolver)

Unregister a feature resolver for a GUI element class.
Parameters
clazz The name of the class to unregister for.
resolver The resolver to unregister.

void unregisterIdResolver(IdResolver resolver)

Unregister a generic or global ID resolver.
Parameters
resolver The resolver to unregister.

void unregisterIdResolver(Object element, IdResolver resolver)

Unregister an ID resolver for an individual GUI element.
Parameters
element The GUI element to unregister for.
resolver The resolver to unregister.

void unregisterIdResolver(String clazz, IdResolver resolver)

Unregister an ID resolver for a GUI element class.
Parameters
clazz The name of the class to unregister for.
resolver The resolver to unregister.

void unregisterNameResolver2(NameResolver2 resolver)

Unregister a generic or global name resolver.
Parameters
resolver The resolver to unregister.

void unregisterNameResolver2(Object element, NameResolver2
resolver)

Unregister a name resolver for an individual GUI element.
Parameters
element The GUI element to unregister for.
resolver The resolver to unregister.

54.3. Implementing custom item types with the ItemResolver interface 1116

void unregisterNameResolver2(String clazz, NameResolver2
resolver)

Unregister a name resolver for a GUI element class.
Parameters
clazz The name of the class to unregister for.
resolver The resolver to unregister.

void unregisterResolvers(Object element)

Unregister all resolvers for a specific GUI element.
Parameters
element The element to unregister for.

void unregisterResolvers(String clazz)

Unregister all resolvers for the class of a GUI element, value or renderer.
Parameters
clazz The name of the class to unregister for.

void unregisterTreeTableResolver(TreeTableResolver resolver)

Unregister a generic or global TreeTable resolver.
Parameters
resolver The resolver to unregister.

void unregisterTreeTableResolver(Object com, TreeTableResolver
resolver)

Unregister a TreeTable resolver for a specific component.
Parameters
com The component to unregister for.
resolver The resolver to unregister.

void unregisterTreeTableResolver(String clazz,
TreeTableResolver resolver)

Unregister a TreeTable resolver for a component class.
Parameters
clazz The name of the class to unregister for.
resolver The resolver to unregister.

54.3. Implementing custom item types with the ItemResolver interface 1117

54.3 Implementing custom item types with the
ItemResolver interface

3.1+

As described in section 5.9(82), QF-Test is able to dig below the given structure of GUI
elements and work with sub-items that are not GUI components themselves, like the
cells of a table, nodes in a tree or drawings on a canvas. Such items are implemented
via the ItemResolver mechanism which can be used to implement your own custom
items.

The ItemResolver interface is more complex than the simple NameResolver2 or
FeatureResolver2 described in the previous section and cannot be implemented
without solid programming skills and a thorough understanding of the underlying con-
cepts. Also, ItemResolvers and Checkers, described in the next section, are closely
related and need to be implemented together if you want to be able to perform checks
for your items.

On the upside the whole mechanism is very powerful and once implemented and reg-
istered, your ItemResolvers will integrate smoothly with QF-Test so that there is no
distinction between standard and custom items, so don’t let yourself be deterred.

You can find demo implementations in the directory qftest-9.0.4/Jython/Lib un-
der QF-Test’s root directory. The respective demo files are ktable.py and gef.py.
Both resolvers are for SWT specific tables, but the concept is the same for all engines.

54.3.1 ItemResolver concepts

Before you start implementing an ItemResolver you need to determine the kinds of
items that your GUI element might hold. There might be more than one kind, though
the decision is arbitrary. For example, we implemented items for all standard tables
of Swing, SWT and JavaFX so that an item can either be a table cell or a complete
column. The latter is useful because it makes it possible to implement a check that
checks a whole table column at once.

First you need to decide how to represent your items internally. You can use any kind
of Object because QF-Test doesn’t ever examine your internal representation itself, it
just passes it to the methods of your ItemResolver. What works best depends on the
API of the GUI element. If it already comes with its own concept for sub-items it may be
best to reuse those classes.

The most important decision to make is how to represent the item to the user of QF-Test.
As described in section 5.9(82), the user can address an item via a numerical index or a
textual one which can also be matched by a regular expression. You need to be able to
provide a two-way mapping between an item and its index(es), i.e. you need to be able
to answer the following two questions:

54.3. Implementing custom item types with the ItemResolver interface 1118

• Given an item, what is its numerical and its textual index?

• Given a numerical or textual index, which item matches that index best?

The issues involved in naming sub-items are the same as those for setting component
names. Please take a thorough look at section 5.4.2(59) and section 5.4.2(61) before con-
tinuing.

An single numerical or textual index is represented by a SubItemIndex object. The
current item concept supports addressing an item like a table cell via a primary and a
secondary index, but in the future we hope to support indexes to any depth, so instead
of using a path for a tree node it could be addressed with a mixed-type index in a form
like ”tree@Root&1%Name:.*”. Therefore the complete index is represented as an array
of SubItemIndex objects, though currently limited to single or two-element arrays.

Most items have a geometry, i.e. a location and a size. The coordinates for an item
are always calculated relative to the true upper left origin of the element, regardless of
whether it is scrolled, so they are independent of the current scroll position of the ele-
ment. For items where geometry is not applicable or cannot be determined, coordinates
can be ignored and the methods getItemLocation and getItemSize should simply
return [0,0].

54.3.2 The ItemResolver interface

The methods of the interface
de.qfs.apps.qftest.extensions.items.ItemResolver fall into three
categories: Retrieving an item, mapping between an item and its index and retrieving
miscellaneous information for - or performing actions on - an item.

Object getItem(Object element, int x, int y)
Get a sub-item for a GUI element at a given location. For items where geometry is
not applicable or cannot be determined, the coordinates can be ignored and the item
determined based on some other means like selection.
Parameters
element The GUI element to get the item for.
x The X coordinate relative to element.
y The Y coordinate relative to element.
Returns An arbitrary object representing an item or null if there is

no item at the given location.

54.3. Implementing custom item types with the ItemResolver interface 1119

int getItemCount(Object element, Object item)
Get the number of items in a GUI element or at the next item level. Though this method
is currently unused it should be implemented if possible. In the future it may be used for
a ’Fetch count’ node similar to Fetch index(790) or Fetch text(786).
Parameters
element The GUI element for which to get the item count.
item Null to get the number items at the top level of the element.

An item to get the number of its sub-items.
Returns The number of items or -1 if there is no further sub-item

level.

Object getItemForIndex(Object element, SubItemIndex[] idx)
Get an item for a given sub-item index.
At the end of this procedure a call of setIndexesResolved might be required in case
more than one index is resolved.
Parameters
element The GUI element to get the item for.
idx The sub-item index(es) for the item.
Returns The item that best matches the given index.
Throws
IndexNotFoundExceptionIf no item matches the given index. Use the construc-

tor de.qfs.apps.qftest.shared.exceptions.
IndexNotFoundException(SubItemIndex) for this
case.

SubItemIndex[] getItemIndex(Object element, Object item, int
type)

Get the SubItemIndex(es) for a sub-item of a GUI element.
Parameters
element The GUI element to which the item belongs.
item The item to get the index for.
type The type of index to get. Possible values are

INTELLIGENT, AS_STRING and AS_NUMBER, all defined
in the SubItemIndex class. Unless only one kind of in-
dex is supported, a textual index should be returned for
AS_STRING and a numerical index for AS_NUMBER. If the
type is INTELLIGENT you are free to return whatever best
represents the given item, even a mixed index like a col-
umn title and a row index for a table cell.

Returns An array of SutItemIndex objects. Currently only single
or two-element arrays are allowed.

54.3. Implementing custom item types with the ItemResolver interface 1120

int[] getItemLocation(Object element, Object item)

Get the location of a sub-item relative to its parent element.
Parameters
element The GUI element to which the item belongs.
item The item whose location to get.
Returns The item’s location as a two-element int array [x,y]. The

location returned must always be relative to the upper left
corner of the whole element, even if that corner is not cur-
rently visible, for example because it has been scrolled
outside the visible area. For items without geometry sim-
ply return [0,0].

int[] getItemSize(Object element, Object item)

Get the size of a sub-item relative to its parent element.
Parameters
element The GUI element to which the item belongs.
item The item whose size to get.
Returns The item’s size as a two-element int array [width,height].

For items without geometry simply return [0,0].

String getItemValue(Object element, Object item)

Get the value of a sub-item to be used for a text check.
Parameters
element The GUI element to which the item belongs.
item The item whose value to get.
Returns A string representing the value of the item, i.e. its con-

tents, label, whatever.

54.3. Implementing custom item types with the ItemResolver interface 1121

Boolean repositionMouseEvent(Object element, Object item, int[]
pos)
Change the coordinates for a mouse event on a sub-item of a GUI element to a default
location - typically the center - if the coordinates may be safely ignored during replay.
This method is called only if the option Record MouseEvents without coordinates where
possible (475) is active. Whether or not it is safe to override the event coordinates may
depend on the original coordinates. For example, QF-Test repositions events on a tree
node with positive coordinates pointing inside the node to its center whereas negative
coordinates indicate a click on the expansion toggle and are left unchanged.
Parameters
element The GUI element to which the item belongs.
item The target item for the event.
pos A two-element int array of the form [x,y] with the coordi-

nates of the event relative to the item. Its values can be
modified in place. You can either set them to a specific co-
ordinate or to [Integer.MAX_VALUE,Integer.MAX_VALUE]
to ignore coordinates for this event so that it will later be
replayed on the center of the target.

Returns Boolean.TRUE if the position was modified,
Boolean.FALSE if it was left unchanged. Null to sig-
nal that this resolver does not handle the element.

Throws
BadItemException If element and item types don’t match up (should never

happen).

54.3. Implementing custom item types with the ItemResolver interface 1122

Boolean scrollItemVisible(Object element, Object item, int x,
int y)
Scroll a GUI element so that an item becomes visible. If possible, the item should be
made fully visible. In case the item doesn’t fit into the visible region of the element, at
least the given position should be shown. In most cases you can simple return null to let
QF-Test handle scrolling. Sometimes however, scrolling cannot be implemented generi-
cally based on the item’s geometry, because some items need special compensation, for
example an SWT Table with a visible header. For GUI elements that cannot be scrolled,
this method should simply return Boolean.FALSE. If Boolean.TRUE is returned, QF-Test
will call the method again after a short interval because SWT sometimes interferes with
scrolling. In the ideal case the second call should return FALSE because the position
is already OK. After three attempts that return TRUE QF-Test gives up and signals an
error.
Parameters
element The GUI element to which the item belongs.
item The item that must be made visible.
x The X-coordinate of the position relative to the item that

must always become visible.
y The Y-coordinate of the position relative to the item that

must always become visible.
Returns Boolean.TRUE if the scroll position of the element change,

Boolean.FALSE if the position is unchanged scrolled or if
the element cannot be scrolled. Null to signal that QF-Test
should use its default mechanism and try to scroll the item
itself.

void setIndexesResolved(int num)
Notify the registry about how many item indexes were resolved during item resolution in
getItemForIndex. If this method is not called at the end of getItemForIndex, the
registry assumes one index.
Parameters
num The number of indexes resolved.

54.3.3 The class SubItemIndex

As explained in the previous section, a
de.qfs.apps.qftest.shared.data.SubItemIndex represents a (partial) index
for a sub-item of a complex GUI element. This class defines some constants with the
following meanings:

STRING
This is a textual index

54.3. Implementing custom item types with the ItemResolver interface 1123

NUMBER
This is a numerical index

REGEXP
This is a regular expression to match a textual index

INTELLIGENT
When retrieving an index, use whichever type best suits the item

AS_STRING
Retrieve a textual index

AS_NUMBER
Retrieve a numerical index

It also provides the following methods:

SubItemIndex SubItemIndex(String index)

Create a new SubItemIndex of type STRING.
Parameters
index The textual index.

SubItemIndex SubItemIndex(int index)

Create a new SubItemIndex of type NUMBER.
Parameters
index The numerical index.

int asNumber()

Get the index as a number.
Returns The numerical index.
Throws
IndexFormatException If the index is not of type NUMBER or cannot be parsed as

an integer.

String getIndex()

Get the index as a String.
Returns The index converted to a String.

String getType()

Get the type of the index.
Returns The type of the index, one of STRING, NUMBER or

REGEXP.

54.3. Implementing custom item types with the ItemResolver interface 1124

boolean matches(String name)

Test whether the index matches a given item name.
Parameters
name The name to match.
Returns True if the index is not numerical and matches the given

name.
Throws
IndexFormatException If the index contains a malformed regular expression.

54.3.4 The ItemRegistry

Once implemented and instantiated, your ItemResolver
must be registered with the ItemRegistry. The class
de.qfs.apps.qftest.extensions.items.ItemRegistry has the following
interface:

static ItemRegistry instance()
There can only ever be one ItemRegistry object and this is the method to get hold of
this singleton instance.
Returns The singleton ItemRegistry instance.

void registerItemNameResolver2(Object element,
ItemNameResolver2 resolver)

Register an ItemNameResolver2 for an individual GUI element.
Parameters
element The GUI element to register for. The resolver does not

prevent garbage collection and will be removed automati-
cally when the element becomes unreachable.

resolver The ItemNameResolver2 to register.

void registerItemNameResolver2(String clazz, ItemNameResolver2
resolver)

Register an ItemNameResolver2 for a class of GUI elements.
Parameters
clazz The class of GUI element to register for.
resolver The ItemNameResolver2 to register.

54.3. Implementing custom item types with the ItemResolver interface 1125

void registerItemResolver(Object element, ItemResolver
resolver)

Register an ItemResolver for an individual GUI element.
Parameters
element The GUI element to register for. The resolver does not

prevent garbage collection and will be removed automati-
cally when the element becomes unreachable.

resolver The ItemResolver to register.

void registerItemResolver(String clazz, ItemResolver resolver)

Register an ItemResolver for a class of GUI elements.
Parameters
clazz The class of GUI element to register for.
resolver The ItemResolver to register.

void registerItemValueResolver2(Object element,
ItemValueResolver2 resolver)

Register an ItemValueResolver2 for an individual GUI element.
Parameters
element The GUI element to register for. The resolver does not

prevent garbage collection and will be removed automati-
cally when the element becomes unreachable.

resolver The ItemValueResolver2 to register.

void registerItemValueResolver2(String clazz,
ItemValueResolver2 resolver)

Register an ItemValueResolver2 for a class of GUI elements.
Parameters
clazz The class of GUI element to register for.
resolver The ItemValueResolver2 to register.

void unregisterItemNameResolver2(Object element,
ItemNameResolver2 resolver)

Unregister an ItemNameResolver2 for an individual GUI element.
Parameters
element The GUI element to unregister for.
resolver The ItemNameResolver2 to unregister.

54.3. Implementing custom item types with the ItemResolver interface 1126

void unregisterItemNameResolver2(String clazz,
ItemNameResolver2 resolver)

Unregister an ItemNameResolver2 for a class of GUI elements.
Parameters
clazz The class of GUI element to unregister for.
resolver The ItemNameResolver2 to unregister.

void unregisterItemResolver(Object element, ItemResolver
resolver)

Unregister an ItemResolver for an individual GUI element.
Parameters
element The GUI element to unregister for.
resolver The ItemResolver to unregister.

void unregisterItemResolver(String clazz, ItemResolver
resolver)

Unregister an ItemResolver for a class of GUI elements.
Parameters
clazz The class of GUI element to unregister for.
resolver The ItemResolver to unregister.

void unregisterItemValueResolver2(Object element,
ItemValueResolver2 resolver)

Unregister an ItemValueResolver2 for an individual GUI element.
Parameters
element The GUI element to unregister for.
resolver The ItemValueResolver2 to unregister.

void unregisterItemValueResolver2(String clazz,
ItemValueResolver2 resolver)

Unregister an ItemValueResolver2 for a class of GUI elements.
Parameters
clazz The class of GUI element to unregister for.
resolver The ItemValueResolver2 to unregister.

54.3.5 Default item representations

For the implementation of the ItemNameResolver2, ItemValueResolver2 and
Checker interfaces it is important to know which kind of Object is used for the internal
representation of an item. This internal representation will be passed to the methods

54.3. Implementing custom item types with the ItemResolver interface 1127

getItemName, getItemValue, getCheckData and getCheckDataAndItem.

The following table lists the complex GUI elements and the default internal item repre-JavaFX
sentation used by QF-Test standard ItemResolvers for JavaFX.

GUI element class Item type
Accordion Integer index
ChoiceBox Integer index
ComboBox Integer index
ListView Integer index
TabPane Integer index
TableView int array [column,row] with row < 0 to represent

a whole column
TableHeaderRow Integer column index
TextArea Integer line
TreeView TreeItem object

Table 54.1: Internal item representations for JavaFX GUI elements

The following table lists the complex GUI elements and the default internal item repre-Swing
sentation used by QF-Test standard ItemResolvers for Swing.

GUI element class Item type
JComboBox Integer index
JList Integer index
JTabbedPane Integer index
JTable int array [column,row] with row < 0 to represent

a whole column
JTableHeader Integer column index
JTextArea Integer line
JTree TreePath path

Table 54.2: Internal item representations for Swing GUI elements

The following table lists the complex GUI elements and the default internal item repre-SWT
sentation used by QF-Test standard ItemResolvers for SWT.

54.4. Implementing custom checks with the Checker interface 1128

GUI element class Item type
CCombo Integer index
Combo Integer index
CTabFolder Integer index
List Integer index
StyledText Integer line
TabFolder Integer index
Table int array [column,row] or just Integer column

to represent a whole column
Text Integer line
Tree Object array [Integer column,TreeItem row]

or just Integer column to represent a whole col-
umn

Table 54.3: Internal item representations for SWT GUI elements

The following table lists the complex GUI elements and the default internal item repre-Web
sentation used by QF-Test standard ItemResolvers for Web.

GUI element class Item type
SELECT node OPTION node
TEXTAREA node Integer line

Table 54.4: Internal item representations for DOM nodes

54.4 Implementing custom checks with the Checker
interface

3.1+

Checks are one of QF-Test’s most useful features. Test automation would be mostly
useless without the ability to verify the results of simulated actions. However, the default
set of Checks available in QF-Test is naturally limited to checking the most common
attributes of standard components. For special attributes or custom components you
can resort to read the value in an SUT script(673) and use the method rc.checkEqual()
to compare it against the expected value. Such an SUT script is perfectly fine, it performs
and integrates well, is flexible and can be modularized by placing it inside a Procedure(627).
It has two major disadvantages however: It cannot be recorded and it is daunting for
non-programmers.

With the help of the API described in this section the default set of checks in QF-Test
can be extended. In fact, QF-Test’s own new-style checks are implemented exactly this

54.4. Implementing custom checks with the Checker interface 1129

way. By implementing and registering a Checker for a given type of GUI element and
possibly item you can create your own checks that can be recorded and replayed just
like the standard ones.

To make this as simple as possible, QF-Test handles everything from showing the check
in the check popup menu, fetching the check data, recording the respective Check node
to store that data, sending the data back to the SUT upon replay, fetching the then cur-
rent check data, comparing it to the expected value and reporting success or mismatch.
All that is left for you to do is tell QF-Test which checks your Checker implements and
for each of these provide the check data on request.

Illustrative examples are provided at the end of the chapter and in the test suite
carconfigSwing_en.qft, located in the directory demo/carconfigSwing in your
QF-Test installation.

54.4.1 The Checker interface

The interface de.qfs.apps.qftest.extensions.checks.Checker must be im-
plemented in order to add custom checks for your application. The associated helper
classes and interfaces are documented in the subsequent sections.

CheckData getCheckData(Object element, Object item, CheckType
type)
Get the check data for the current state of the GUI element or item. This method is used
during replay.
Parameters
element The GUI element for which to get the check data.
item An optional item within the element to check. Its

type depends on the GUI element and the registered
ItemResolvers as described in section 54.3.5(1124).

type The type of check to perform.
Returns The check data for the current state of the GUI element

itself, in case item is null, or the given item within the el-
ement. The kind of check to perform is specified via the
type parameter, which should normally be one of those
formerly returned by getSupportedCheckTypes. If you
cannot perform the requested check for the given type and
target, return null.

54.4. Implementing custom checks with the Checker interface 1130

Pair getCheckDataAndItem(Object element, Object item, CheckType
type)
Get the check data for the current state of the GUI element or item and also the item that
the check actually applies to. This method is used during recording, where QF-Test not
only needs to know, which data to record, but also whether to record the check for the
GUI element as a whole or for an item. To implement this method without duplicating
any code, call your own getCheckData method to retrieve the check data.
Parameters
element The GUI element for which to get the check data.
item An optional item within the element to check. Its

type depends on the GUI element and the registered
ItemResolvers as described in section 54.3.5(1124).

type The type of check to perform.
Returns A Pair with the check data for the current state of the GUI

element, and the item this check should be performed on,
which may be null.

CheckType[] getSupportedCheckTypes(Object element, Object item)

Get the types of checks supported for the given GUI element and optional item.
Parameters
element The GUI element for which to get the available checks.
item An optional item within the element to check. Its

type depends on the GUI element and the registered
ItemResolvers as described in section 54.3.5(1124).

Returns An array of CheckTypes supported by your checker. The
first element is the default for recording a check with a left-
click. If the item is null, return only those kinds of checks
that can be applied to the whole GUI element. Other-
wise it is best to provide all available checks because even
though the user may have right-clicked on an item, he may
still want to record a check on the whole GUI element.

54.4.2 The class Pair

The class de.qfs.lib.util.Pair for the return value of getCheckDataAndItem
is a simple utility class that often comes in handy for grouping two values. You’ll only
need its constructor, but of course you can also read its values:

54.4. Implementing custom checks with the Checker interface 1131

Pair Pair(Object first, Object second)

Create a new Pair.
Parameters
first The first object. May be null.
second The second object. May be null.

Object getFirst()

Get the first object of the Pair.
Returns The first object.

Object getSecond()

Get the second object of the Pair.
Returns The second object.

54.4.3 The CheckType interface and its implementation
DefaultCheckType

A de.qfs.apps.qftest.extensions.checks.CheckType encapsulates
information for a specific kind of check. It combines a CheckDataType with an
identifier and provides a user-friendly representation of the check for the check popup
menu. Unless you need to provide multi-lingual representations of the check
you should never implement this interface yourself, but simply instantiate a
de.qfs.apps.qftest.extensions.checks.DefaultCheckType instead:

DefaultCheckType(String identifier, CheckDataType dataType,
String description)

Create a new DefaultCheckType.
Parameters
identifier The identifier for the check. The QF-Test standard checks

all use lower case identifiers. To prevent conflicts, simply
start your custom check identifiers with a capital letter.

dataType The CheckDataType required for your check data.
description The description to show in the check popup menu for this

check.

For completeness sake, following are the methods of the CheckType interface:

CheckDataType getDataType()

Get the CheckDataType for the check type.
Returns The data type for the check type.

54.4. Implementing custom checks with the Checker interface 1132

String getDescription()

Get the localized description to show for this check type in the check popup menu.
Returns The description for the check type.

String getIdentifier()

Get the identifier for the check type.
Returns The identifier for the check type.

54.4.4 The class CheckDataType

The class de.qfs.apps.qftest.extensions.checks.CheckDataType is simi-
lar to an Enum. It defines a number of constant CheckDataType instances that simply
serve to identify the kind of data that a check operates on. Each constant corresponds
to one or more of the available Check nodes of QF-Test.

Besides serving as a constant identifier, a CheckDataType has no public attributes
or methods and you cannot add any new CheckDataTypes. If you want to imple-
ment a check of a kind that does not fit the existing data types you’ll need to convert
your data so that it does, for example by using a string representation. The following
CheckDataType constants are defined:

STRING
A single string. Used by the Check text(754) node.

STRING_LIST
A list of string items, like the cells in a table column. Used by the Check items(765)

node.

SELECTABLE_STRING_LIST
A list of selectable string items, like the elements of a list. Used by the

Check selectable items(770) node.

BOOLEAN
A boolean state, either true of false. Used by the Boolean check(759) node.

GEOMETRY
A set of four integer values for X and Y coordinates, width and height. Not all

have to be defined. Used by the Check geometry(780) node.

IMAGE
An image of a whole component or item or a sub-region thereof. Used by the

Check image(775) node.

54.4. Implementing custom checks with the Checker interface 1133

54.4.5 The class CheckData and its subclasses

The class de.qfs.apps.qftest.shared.data.check.CheckData and its sub-
classes, all from the same package, complete the Checker API. A CheckData encap-
sulates the actual data for a check, must be returned from Checker.getCheckData()
and is used to exchange this check data between the SUT and QF-Test. There is one
concrete CheckData subclass corresponding to each CheckDataType. You’ll only
ever need to use their constructors, so that’s what we’ll list here. Only two of these
classes are publicly available so far:

BooleanCheckData BooleanCheckData(String identifier, boolean
value)

Create a new BooleanCheckData.
Parameters
identifier The identifier for the check type. Should normally

match the identifier of the type argument passed to
Checker.getCheckData.

value The actual value for the check, a boolean state.

GeometryCheckData GeometryCheckData(String identifier, int x,
int y, int width, int height)

Create a new GeometryCheckData.
Parameters
identifier The identifier for the check type. Should normally

match the identifier of the type argument passed to
Checker.getCheckData.

x The x-coordinate for the check.
y The y-coordinate for the check.
width The width for the check.
height The height for the check.

54.4. Implementing custom checks with the Checker interface 1134

ImageCheckData ImageCheckData(String identifier, ImageRep
image, int xOffset, int yOffset, int subX, int subY, int
subWidth, int subHeight)

Create a new ImageCheckData.
Parameters
identifier The identifier for the check type. Should normally

match the identifier of the type argument passed to
Checker.getCheckData.

image The image for the check. See section 54.9(1149).
xOffset An optional x-offset.
yOffset An optional y-offset.
subX The X-coordinate of an optional check region.
subY The Y-coordinate of an optional check region.
subWidth The Width of an optional check region.
subHeight The Height of an optional check region.

SelectableItemsCheckData SelectableItemsCheckData(String
identifier, Object[][] values)

Create a new SelectableItemsCheckData.
Parameters
identifier The identifier for the check type. Should normally

match the identifier of the type argument passed to
Checker.getCheckData.

values The actual value for the check, an array of arrays with a
String, a Boolean for the regexp flag and a Boolean for the
selected flag.

StringCheckData StringCheckData(String identifier, String
value)

Create a new StringCheckData.
Parameters
identifier The identifier for the check type. Should normally

match the identifier of the type argument passed to
Checker.getCheckData.

value The actual value for the check, a String.

54.4. Implementing custom checks with the Checker interface 1135

StringItemsCheckData StringItemsCheckData(String identifier,
String[] values)

Create a new StringItemsCheckData.
Parameters
identifier The identifier for the check type. Should normally

match the identifier of the type argument passed to
Checker.getCheckData.

values The actual value for the check, an array of Strings.

Furthermore you can define an optional algorithm for an ImageCheckData.

void setAlgorithm(String algorithm)
Sets an algorithm. A detailed description can be found in Details about the algorithm for
image comparison(1223).

54.4.6 The CheckerRegistry

Once implemented and instantiated, your Checker must
be registered with the CheckerRegistry. The class
de.qfs.apps.qftest.extensions.checks.CheckerRegistry has the
following interface:

static CheckerRegistry instance()
There can only ever be one CheckerRegistry object and this is the method to get
hold of this singleton instance.
Returns The singleton CheckerRegistry instance.

void registerChecker(Object element, Checker checker)

Register a Checker for an individual GUI element.
Parameters
element The GUI element to register for. The checker does not

prevent garbage collection and will be removed automati-
cally when the element becomes unreachable.

checker The Checker to register.

void registerChecker(String clazz, Checker checker)

Register a Checker for a class of GUI elements.
Parameters
clazz The class of GUI element to register for.
checker The Checker to register.

54.4. Implementing custom checks with the Checker interface 1136

void unregisterChecker(Object element, Checker checker)

Unregister a Checker for an individual GUI element.
Parameters
element The GUI element to unregister for.
checker The Checker to unregister.

void unregisterChecker(String clazz, Checker checker)

Unregister a Checker for a class of GUI elements.
Parameters
clazz The class of GUI element to unregister for.
checker The Checker to unregister.

54.4.7 Custom checker example

The following Jython SUT script illustrates how to put everything together. Let’s say you
have a Java Swing application and want to check all labels which reside in a panel at
once. To this end, your custom checker needs to iterate over all components contained
in the panel and its children respectively, identify the labels and generate a list of all
their text contents. In QF-Test notation, this means you need to create a
CheckDataType.STRING_LIST check type and return the data in an
StringItemsCheckData object:

54.4. Implementing custom checks with the Checker interface 1137

from de.qfs.apps.qftest.extensions import ResolverRegistry
from de.qfs.apps.qftest.extensions.checks import CheckerRegistry, \

Checker, DefaultCheckType, CheckDataType
from de.qfs.apps.qftest.extensions.items import ItemRegistry
from de.qfs.apps.qftest.shared.data.check import StringItemsCheckData
from de.qfs.lib.util import Pair
from java.lang import String
import jarray
componentClass = "javax.swing.JPanel"
allLabelsCheckType = DefaultCheckType("AllLabels",

CheckDataType.STRING_LIST,
"All labels in the panel")

class AllLabelsChecker(Checker):
def __init__(self):

pass
def getSupportedCheckTypes(self, com, item):

return jarray.array([allLabelsCheckType], DefaultCheckType)
def getCheckData(self, com, item, checkType):

if allLabelsCheckType.getIdentifier() == checkType.getIdentifier():
labels = self._findLabels(com)
labels = map(lambda l: l.getText(), labels)
values = jarray.array(labels, String)
return StringItemsCheckData(checkType.getIdentifier(), values)

return None
def getCheckDataAndItem(self, com, item, checkType):

data = self.getCheckData(com, item, checkType)
if data is None:

return None
return Pair(data, None)

def _findLabels(self, com, labels=None):
if labels is None:

labels = []
if ResolverRegistry.instance().isInstance(com, "javax.swing.JLabel"):

labels.append(com)
for c in com.getComponents():

self._findLabels(c, labels)
return labels

def unregister():
try:

CheckerRegistry.instance().unregisterChecker(
componentClass, allLabelsChecker)

except:
pass

def register():
unregister()
global allLabelsChecker
allLabelsChecker = AllLabelsChecker()
CheckerRegistry.instance().registerChecker(

componentClass, allLabelsChecker)
register()

Example 54.30: Check all labels in a panel

54.5. Working with the Eclipse Graphical Editing Framework (GEF) 1138

After running that script once, you’ll find a new entry ”All labels in the panel” among the
entries in the check type menu as soon as you right click on a JPanel component while
being in recording mode (cf. section 4.3(38)). If you want to use the allLabelsChecker
all over your client application, you can put the above SUT script behind your Wait for
client to connect node in the Setup sequence. Otherwise, you may register the checker
only when it is actually needed as shown above and remove it afterwards by means of
another SUT script:

from de.qfs.apps.qftest.extensions.checks import CheckerRegistry
global allLabelsChecker
def unregister():

try:
CheckerRegistry.instance().unregisterChecker(

"javax.swing.JPanel", allLabelsChecker)
except:

pass
unregister()

Example 54.31: Remove the label checker

54.5 Working with the Eclipse Graphical Editing
Framework (GEF)

3.2+

The Graphical Editing Framework (GEF) is a set of Eclipse plugins for creating editors
that support visual editing of arbitrary models. This framework is very popular and QF-
Test has supported recording and playback of GEF items for a long time (since about
version 2.2). It is also a good example for the power of the ItemResolver concept
(see section 54.3(1115)), because the gef Jython module contains an implementation of
just that interface.

The gef module can deal with GEF editors at a generic level and even support sev-
eral editors at once. Though reasonable item names are provided out of the box also
for GMF applications, there are limits to what can be determined automatically. De-
pending on the underlying model classes, there might still remain some work for you:
Implementing custom resolvers to provide useful names and values for your items.

54.5.1 Recording GEF items

The actual GEF component is the FigureCanvas. This control displays Figures
which represent EditParts. When recording a mouse click on such an element, QF-
Test does not register a pure Mouse event node for the canvas component with the cor-

54.5. Working with the Eclipse Graphical Editing Framework (GEF) 1139

responding (x,y) position but tries to recognize the object under the mouse cursor. For
example, the recorded QF-Test component ID may look like

canvas@/Diagram/My ship/ShipLargeCargo (wine)
canvas@Connection-2
canvas@/Diagram/Rectangle 16329001

where ”canvas” is the QF-Test ID of the FigureCanvas component, followed by the
item index of the recognized EditPart (see section 5.9(82)). EditParts reside in a
tree like hierarchy which is reflected in the index by a path separator ’/’. The names of
the individual items are generated as follows:

• The item name is getModel().toString() unless it contains a hash value (e.g.
NodeImpl@2d862).

• QF-Test tries to extract a name for the item from the model (”My ship” in the above
examples).

• The class name along with a description gets recorded, e.g. ”ShipLargeCargo
(wine)”.

• If there’s no description, an index is appended to the class name when there’s
more than one item of that class, e.g. ”Connection-2” for the third connection.

• The root EditPart always reads ”Diagram”.

As one can imagine, those generated item names may not always be useful. For ex-
ample, items might be deleted so that the recorded index is not longer valid. Or the
generated item name is unstable as ”Rectangle 16329001” in the GEF Shapes exam-
ple: The number is random and when restarting the application a different one will be
created. Three options exist to overcome the problem:

• Instead of working with a textual index, you can try to go with a numerical one.
To this end, open the recording options and set the ’Sub-Item format’ to ’Number’
(see section 41.2.4(488)). This is probably not satisfying because a numerical index
like /0/1 tells nothing about an item.

• Get in touch with your developers and convince them to provide a useful imple-
mentation of the toString() method of the item’s model. It would make live
easy for you, but only if the developers are cooperative.

• Write an ItemNameResolver2. This is the tough course but unfortunately the
most likely scenario. It is covered in the next section.

54.5. Working with the Eclipse Graphical Editing Framework (GEF) 1140

54.5.2 Implementing a GEF ItemNameResolver2

As stated in section 54.1(1075), an ItemNameResolver2 is the hook to change or provide
names for items. To get started, insert a new Jython SUT script(673) in the Extras(588) node
with the following code:

def getItemName(canvas, item, name):
print "name: %s" %name
print "item: %s" %(item.__class__)
model = item.getModel()
print "model: %s" %(model.__class__)

resolvers.addItemNameResolver2("myGefItemNames", getItemName,
"org.eclipse.draw2d.FigureCanvas")

Example 54.32: Get started with a GEF ItemNameResolver2

To ease the installation of the resolver we use the resolvers module described in
section 54.1(1075). The resolver gets registered for the FigureCanvas class where the
items reside. The default item name provided by QF-Test is supplied as the last argu-
ment to our function getItemName(). Now run the script, press the record button and
then simply move the mouse over your figures on the canvas - supposing you have cre-
ated some of them previously. Note that this first resolver implementation does nothing
but print out out some information into the terminal, something like

name: Rectangle 16329001
item: org.eclipse.gef.examples.shapes.parts.ShapeEditPart
model: org.eclipse.gef.examples.shapes.model.RectangularShape

The question is now: Does the model of the GEF EditPart provide any property that
might be used as name for the item? The answer in the case of the GEF Shapes
example is ”No”, and hopefully you are in a better situation with your application. To find
out insert a line

print dir(model)

in the getItemName() function and run the script again. Now you will also see the
methods of the model when moving the mouse over the items in record mode. With a
bit of luck you will find methods like getId() or getLabel() and can create a resolver
like this:

def getItemName(canvas, item, name):
model = item.getModel()
return model.getId()

resolvers.addItemNameResolver2("myGefItemNames", getItemName,
"org.eclipse.draw2d.FigureCanvas")

Example 54.33: A simple ItemNameResolver2

54.5. Working with the Eclipse Graphical Editing Framework (GEF) 1141

Let’s go back to the GEF Shapes example where we don’t have such useful methods.
Only geometry information is available for the shapes and that is not really helpful. At
least we can distinguish between rectangles and ellipses. To make the item names
unique we simply add a child index as shown in the following resolver:

def getItemName(canvas, item, name):
name = None
shapes = "org.eclipse.gef.examples.shapes"
diagrammEditPart = shapes + ".parts.DiagramEditPart"
shapeEditPart = shapes + ".parts.ShapeEditPart"
connectionEditPart = shapes + ".parts.ConnectionEditPart"
ellipticalShape = shapes + ".model.EllipticalShape"
rectangularShape = shapes + ".model.RectangularShape"
if qf.isInstance(item, shapeEditPart):

siblings = item.getParent().getChildren()
for i in range(len(siblings)):

if (item == siblings[i]):
if qf.isInstance(item.getModel(), ellipticalShape):

name = "Ellipse " + str(i)
elif qf.isInstance(item.getModel(),

rectangularShape):
name = "Rectangle " + str(i)

elif qf.isInstance(item, connectionEditPart):
source = item.getSource()
target = item.getTarget()
sourceName = getItemName(canvas, source, str(source.getModel()))
targetName = getItemName(canvas, target, str(target.getModel()))
name = "Connection " + sourceName + " " + targetName

elif qf.isInstance(item, diagrammEditPart):
name = "Diagram"

return name
resolvers.addItemNameResolver2("shapesItemNames", getItemName,

"org.eclipse.draw2d.FigureCanvas")

Example 54.34: An ItemNameResolver2 for GEF Shapes

With this resolver in place, the item index for a rectangle becomes

/Diagram/Rectangle 1

where the trailing number is the child index of the item. The above implementation also
provides names for the connections by calling getItemName() recursively for
the source and the target item of the connection. Checking the types with
qf.isInstance() (see section 50.6(988)) will save you the need to import the GEF
classes, something that is not trivial.

Once your resolver is working fine you should move the script into your Setup(595) se-
quence right behind the Wait for client to connect(709) node. This way the resolver will be
registered automatically when the SUT starts.

54.6. Test run listeners 1142

54.5.3 Implementing a GEF ItemValueResolver2

Usually a GEF editor consists of two parts. Having focused so far on the canvas where
you draw the figures, we now take a look at the palette where you select the kind of figure
to draw (e.g. ’Rectangle’, ’Ellipse’ or ’Connection’). Its entries look like tool buttons but
actually the palette is a FigureCanvas too. You will be glad to know that this one works
out of the box, that is without implementing an ItemNameResolver2. When you click
for example on the ’Rectangle’ button, QF-Test recognizes a

/Palette Root/Palette Container (Shapes)/Palette Entry
(Rectangle)

item. What will happen when you record a check (cf. section 4.3(38)) for the ’Object value’
for this button? You may expect to get the button text ’Rectangle’ but in fact the value of
this item is

Palette Entry (Rectangle)

The reason is that by default name and value of an item are the same. To alter
this behavior and provide customized values you need to implement an
ItemValueResolver2. This interface is very similar to the ItemNameResolver2
above. For the palette we can code the following one:

def getItemValue(canvas, item, value):
value = None
paletteEditPart = \

"org.eclipse.gef.ui.palette.editparts.PaletteEditPart"
if qf.isInstance(item, paletteEditPart):

value = item.getModel().getLabel()
return value

resolvers.addItemValueResolver2("shapesItemValues", getItemValue,
"org.eclipse.draw2d.FigureCanvas")

Example 54.35: An ItemValueResolver2 for the GEF Shapes palette

The method getLabel() returns the text as displayed in the palette.

54.6 Test run listeners
3.1+

Once registered with the current run context via rc.addTestRunListener, an imple-
mentation of the TestRunListener interface will get notified whenever test execution
enters or exits a node and when a problem occurs. An illustrative example is provided in
the test suite TestRunListener.qft, located in the directory demo/runlistener
in your QF-Test installation. Best deactivate the debugger before running the whole test
suite.

54.6. Test run listeners 1143

A variant of the TestRunListener interface called DaemonTestRunLister can beNote
used to monitor a test run remotely via the daemon API. It is described in section
55.2.5(1209).

The run listener API consists of the following classes:

54.6.1 The TestRunListener interface

The interface de.qfs.apps.qftest.extensions.qftest.TestRunListener
has to be implemented and registered with a run context via
rc.addTestRunListener().

To implement the interface you can also derive from the classNote
de.qfs.apps.qftest.extensions.qftest.AbstractTestRunListener
which provides empty implementations of all methods so you only need to implement
those methods you are interested in.

void nodeEntered(TestRunEvent event)

Notify the listener that a node is being entered.
Parameters
event The event containing the details.

void nodeExited(TestRunEvent event)

Notify the listener that a node was just exited.
Parameters
event The event containing the details.

void problemOccurred(TestRunEvent event)

Notify the listener that a problem occurred.
Parameters
event The event containing the details.

void runStarted(TestRunEvent event)

Notify the listener that a test run was started.
Parameters
event The event containing the details, irrelevant in this case.

void runStopped(TestRunEvent event)

Notify the listener that a test run was stopped.
Parameters
event The event containing the details, irrelevant in this case.

54.6. Test run listeners 1144

54.6.2 The class TestRunEvent

The class de.qfs.apps.qftest.extensions.qftest.TestRunEvent
holds information about the currently executed nodes and the current error
state. It defines the following constants for execution states and error levels:
STATE_NOT_IMPLEMENTED, STATE_SKIPPED, STATE_OK, STATE_WARNING,
STATE_ERROR and STATE_EXCEPTION. The first two states apply only to Test set(566)

and Test case(558) nodes.

In the runStopped method you can also check whether the test run has been inter-
rupted or completed normally. Therefore the constants STATE_RUN_INTERRUPTED
and STATE_RUN_TERMINATED are defined.

JsonObject asJsonValue()
Serializes the event object as JsonObject. This can be used to simplify the inter-
action of TestRunListeners with JSON-based tools like web services or databases.
The API of the JSON library embedded in QF-Test is documented in the file
doc/javadoc/json.zip in your QF-Test installation
Returns The object as JsonObject.

int getErrors()

Get the error count for the exited node.
Returns The total error count for the node just exited. Only avail-

able for nodeExited.

int getExceptions()

Get the exception count for the exited node.
Returns The total exception count for the node just exited. Only

available for nodeExited.

int getLocalState()

Get the execution state for the current node.
Returns The local execution state for the current node, the high-

est error level of this node and its children regardless of
whether this state propagates to the top. Available only
for nodeExited and problemOccurred. For Test set
and Test case nodes the local state can also be one of
STATE_SKIPPED or STATE_NOT_IMPLEMENTED.

String getMessage()

Get the current error message.
Returns The message for the current warning, error or exception.

Only available for problemOccurred.

54.6. Test run listeners 1145

TestSuiteNode getNode()

Get the current node
Returns The current node or null for runStarted and

runStopped.

TestSuiteNode[] getPath()

Get the whole tree path for the current node.
Returns The path for the current node as seen from the run log,

equivalent to the execution stack, or null for runStarted
and runStopped. The last node in the array is the current
node.

int getState()

Get the overall execution state for the current node.
Returns The overall propagating state for the current node, the

highest error level of this node and its children, possibly
limited by Maximum error level(578) attributes. Available only
for nodeExited and problemOccurred.

int getWarnings()

Get the warning count for the exited node.
Returns The total warning count for the node just exited. Only

available for nodeExited.

54.6.3 The class TestSuiteNode

A de.qfs.apps.qftest.extensions.qftest.TestSuiteNode is a representa-
tion of a QF-Test node that is currently being executed, including information about the
type of node, its name, comment, etc.

JsonObject asJsonValue()

Serializes the node as JsonObject.
Returns The object as JsonObject.

String getComment()

Get the comment of the node.
Returns Get the expanded comment of the node.

String getComponentId()

Get the QF-Test ID of the component of the node, if available.
Returns Get the expanded QF-Test ID of the component of the

node.

54.7. ResetListener 1146

String getExpandedTreeName()

Get the expanded tree name of the node.
Returns The name of the node as displayed in the test suite tree

wth expanded variables.

String getId()

Get the ID of the node.
Returns The ID of the node.

String getName()

Get the name of the node.
Returns The name of the node or null if that type of node does not

have a ’Name’ attribute.

String getReportName()

Get the report name of the node.
Returns The expanded report name for Test set(566) and Test case(558)

nodes. The normal name for other nodes or null if unde-
fined.

String getSuite()

Get the test suite to which the node belongs.
Returns The full path of the test suite to which the node belongs.

String getTreeName()

Get the tree name of the node.
Returns The name of the node as displayed in the test suite tree.

String getType()

Get the type of the node.
Returns The type of node, the last part of the name of the class

implementing the node’s behavior.

String getVerboseReportName()

Get the expanded report name or expanded name of the node.
Returns The expanded report name for Test set(566) and Test case(558)

nodes. As fallback, the expanded name of the node is
returned.

54.7 ResetListener
4.0.3+

During test development you sometimes want to stop all connected clients and reset
all dependencies as well as delete global QF-Test variables in order to establish a well

54.7. ResetListener 1147

defined starting point for the next test execution.

For that purpose QF-Test offers Run→Reset everything in its main menu. To accom-
modate their particular needs test developers can additionally implement a ResetLis-
tener which allows to

• keep (certain) clients alive

• restore global QF-Test variables

• perform custom operations, for example deleting global Jython variables

To manage ResetListeners the QF-Test runcontext(963) provides the methods
addResetListener(), isResetListenerRegistered() and
removeResetListener().

The ResetListener interface itself has two methods:

void afterReset()

This method is called when the reset was executed.
Set<String> beforeReset()
This method is called before dependencies are reset, global QF-Test variables deleted
and clients terminated when invoking Run→Reset everything . Implement this method
when you want to prevent certain clients from being terminated.
Returns A java.util.Set<String> object containing the

names of all clients that should stay alive.

The following example shows the implementation and registration of a ResetListener. It
restores the global QF-Test variable client and prevents from closing the respective
SUT.

54.8. DOM processors 1148

from java.util import HashSet
from de.qfs.apps.qftest.extensions.qftest import ResetListener
from de.qfs.apps.qftest.shared.exceptions import UnboundVariableException
class RL(ResetListener):

def beforeReset(self):
try:

self.client = rc.getStr("client")
h = HashSet()
h.add(self.client)
return h

except UnboundVariableException:
self.client = None

def afterReset(self):
if self.client != None:

rc.setGlobal("client", self.client)
global resetListener
try:

rc.removeResetListener(resetListener)
except:

pass
resetListener = RL()
rc.addResetListener(resetListener)

Example 54.36: Example of a ResetListener implementation

54.8 DOM processors

When creating reports from a run log, or package documentation from a test suite, QF-
Test operates in a two-step process. The first step creates an XML document which is
transformed to an HTML document in the second step. Both transformations are done
using XSLT stylesheets.

The term DOM (for Document Object Model) also applies to XML documents, not onlyNote
to HTML web pages. This section is all about XML and XSLT and not about the DOM of
a web SUT.

However, XSLT stylesheets are not very useful when it comes to parsing plain text.
The Comment fields of Test set, Test case, Test step, Package or Procedure nodes often
contain some internal structure that XSLT cannot make use of. Additionally, the internal
structures employed by users may vary, depending on the conventions used. A typical
example is the use of JavaDoc tags to describe parameters of Procedure nodes. Here’s
an example Comment for the Procedure qfs.swing.menu.select from our standard
library after the first step of the transformation:

54.8. DOM processors 1149

<comment>Select an item from a menu.
For example: for the File -> Open action, the QF-Test component ID
"File" is the menu, and the QF-Test component ID "Open" is the item.

@param client The name of the SUT client.
@param menu The QF-Test ID of the menu.
@param item The QF-Test ID of the menu item.</comment>

Example 54.37: Example Comment after first step transformation

It is very difficult to make use of the @param tags with XSLT alone. This is where
DOM processors enter the scene. Between the first and second transformation, QF-
Test can optionally run an additional transformation directly on the DOM tree of the
XML document generated by the first step. During that extra transformation, QF-Test
traverses the DOM tree, calling the registered DOM processors for each node to give
them a chance to manipulate the DOM.

For JDK 1.4 the XML Document Object Model (DOM) is part of the standard API. ForNote
earlier JDK versions it is provided by XML parser xerces (from the Apache project)
which QF-Test includes. The API documentation for the DOM is available at
http://download.oracle.com/javase/1.5.0/docs/api/org/w3c/dom/package-
summary.html.

54.8.1 The DOMProcessor interface

The interface that must be implemented is
de.qfs.apps.qftest.extensions.DOMProcessor. It is quite trivial:

Element process(Element node)

Process one element node.
Returns An element node or null. If null is returned, the child nodes

of the node are processed normally. Otherwise, the child
nodes are not processed. If a node other than the original
node is returned, the original node is replaced with the
return value.

In the process method, the processor is free to do whatever it likes, as long as it
constrains itself to the node passed in and its sub-nodes. The node can be replaced
simply by returning some different element node.

To remove an element node from the DOM, the DOMProcessor must be registered onNote
an ancestor of the node, its parent node, for example. The current node may not be
removed from the DOM in the process method.

54.8. DOM processors 1150

QF-Test provides two example implementations of DOM processors. The
ParagraphProcessor is available in the misc directory for illustration. It is used
internally to break comments which contain empty lines into paragraphs.

Also to be found in the misc directory is the DocTagProcessor which is used to trans-
form JavaDoc tags like @param or @author to an XML DOM sub-tree. After processing,
the above example would look as follows:

<comment>Select an item from a menu.
For example: for the File -> Open action, the QF-Test component ID
"File" is the menu, and the QF-Test component ID "Open" is the item.</comment>

<param name="client">The name of the SUT client.</param>
<param name="menu">The QF-Test component ID of the menu.</param>
<param name="item">The QF-Test component ID of the menu item.</param>

Example 54.38: Example comment after DOM processing

Transforming the above into useful HTML during the second stage transformation is now
straightforward.

54.8.2 The DOMProcessorRegistry

Before a DOM processor can be used, it must be registered for the kind of node(s) it
applies to. This is done through the DOMProcessorRegistry.

There is one DOMProcessorRegistry instance object per kind of transformation,
each identified by a string. Currently these identifiers are ”report” for report
generation and ”testdoc” and ”pkgdoc” for test set and package documentation
plus their variants for transforming the respective summary documents named
”report-summary”, ”testdoc-summary” and ”pkgdoc-summary”. To get hold
of a registry instance, use the static instance method:

DOMProcessorRegistry instance(String identifier)

Get hold of a registry instance.
Parameters
identifier The identifier for the kind of transformation.

The rest of the methods consist of the typical set of register/unregister variants:

void registerDOMProcessor(DOMProcessor processor)

Register a generic DOM processor that will be called for all kinds of nodes.
Parameters
processor The processor to register.

54.9. Image API extensions 1151

void registerDOMProcessor(String node, DOMProcessor processor)

Register a DOM processor for a specific kind of node.
Parameters
name The type of the node.
processor The processor to register.

void unregisterDOMProcessor(DOMProcessor processor)

Unregister a generic DOM processor.
Parameters
processor The processor to unregister.

void unregisterDOMProcessor(String node, DOMProcessor
processor)

Unregister a DOM processor for a specific kind of node.
Parameters
name The type of the node.
processor The processor to unregister.

void unregisterDOMProcessors()

Unregister all DOM processors.

54.8.3 Error handling

Exceptions raised during DOM processing by the process method of a
DOMProcessor are caught and duly reported, the transformation is stopped in that
case.

54.9 Image API extensions
3.0+

The Image API of QF-Test makes use of a technology independent class for image
representation ImageRep and it offers an interface to implement an own image compare
algorithm.

54.9.1 The ImageRep class

The class de.qfs.apps.qftest.shared.extensions.image.ImageRep is the
wrapper class for technology independent images.

The class holds the image representation either as ARGB data, which is an int array

54.9. Image API extensions 1152

or as RGB data, which is a byte array. Besides the image data, you can also specify a
name, the width and the height for the ImageRep object.

The ImageRep class also contains an equals method for comparisons. If you want
to implement your own image comparison algorithm, you have to implement your own
ImageComparator. This implementation has to be registered at the ImageRep object.
See section 54.9.2(1152) for further information.

ImageRep ImageRep()

Constructor for the ImageRep class.

ImageRep ImageRep(String name, byte[] rgb, boolean png, int
width, int height)

Constructor method for the ImageRep class.
Parameters
name The name of the ImageRep object.
rgb A byte array containing RGB data of the image.
png Whether the image is already png encoded.
width The width of the image.
height The height of the image.

ImageRep ImageRep(String name, int[] argb, boolean png, int
width, int height)

Constructor method for the ImageRep class.
Parameters
name The name of the ImageRep object.
argb An int array containing the ARGB data of the image.
png Whether the image is already png encoded.
width The width of the image.
height The height of the image.

void crop(int x, int y, int width, int height)

Crop the image to a specified sub-region.
Parameters
x The X coordinate of the left upper corner of the sub-

region.
y The Y coordinate of the left upper corner of the sub-

region.
width The width of the sub-region.
height The height of the sub-region.

54.9. Image API extensions 1153

ImageRepDrawer draw()
Creates an ImageRepDrawer object for this image. This image allows drawing lines,
rectangles and further figures on the image.
ImageRepDrawer draw(Object obj)

Creates an ImageRepDrawer object for this image.
Parameters
obj A lambda object. The lambda object gets a

java.awt.Graphics2D object as input which it can use to
draw on the image.

boolean equals(ImageRep compare)
Return, whether the current object is equal to a given object. It uses the equals method
of the current ImageComparator implementation.
Parameters
compare The ImageRep object to compare with.
Returns True, if images are equal, otherwise false.

int[] getARGB()
Get the ARGB data. If no ARGB data is set, the RGB data will be translated into the
ARGB data.
Returns The current ARGB data.

ImageComparator getComparator()

Get the current ImageComparator implementation.
Returns The current ImageComparator implementation.

int getHeight()

Get the height.
Returns The current height.

String getName()

Get the name.
Returns The current name.

int getPixel(int x, int y)

Get an ARGB pixel value.
Parameters
x The X coordinate of the pixel.
y The Y coordinate of the pixel.
Returns The pixel value.

54.9. Image API extensions 1154

byte[] getPng()
Get the RGB data. If no RGB data is set, the ARGB data will be translated into the RGB
data.
Returns The current RGB data.

int getWidth()

Get the width.
Returns The current width.

void setARGB(int[] argb)

Set the ARGB data.
Parameters
argb The new ARGB data.

void setComparator(ImageComparator comparator)

Set ImageComparator implementation, which will be used for comparing images.
Parameters
comparator The new ImageComparator implementation.

void setHeight(int height)

Set the height.
Parameters
height The new height.

void setName(String name)

Set the name.
Parameters
name The new name.

void setPng(byte[] png)

Set the RGB data.
Parameters
png The new RGB data.

void setWidth(int width)

Set the width.
Parameters
width The new width.

54.9.2 The ImageComparator interface

The interface
de.qfs.apps.qftest.shared.extensions.image.ImageComparator has to

54.9. Image API extensions 1155

be implemented, if you want to implement your own image comparison algorithm.

The implementation has then to be registered at the used ImageRep objects using the
setComparator method.

boolean equals(ImageRep actual, ImageRep expected)
Return, whether the current object is equal to a given object. It uses the equals method
of the current ImageComparator implementation.
Parameters
actual The actual ImageRep object.
expected The expected ImageRep object.
Returns True, if images are equal, otherwise false.

54.9.3 The ImageRepDrawer class

The class
de.qfs.apps.qftest.shared.extensions.image.ImageRepDrawer provides
methods to draw on an ImageRep object.

ImageRepDrawer arrow(int x1, int y1, int x2, int y2)

Draws an arrow.
Parameters
x1 The x-part of the first coordinate of the arrow.
y1 The y-part of the first coordinate of the arrow.
x2 The x-part of the second coordinate of the arrow.
y2 The y-part of the second coordinate of the arrow.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer arrow(int x1, int y1, int x2, int y2, int
arrowStretch)

Draws an arrow.
Parameters
x1 The x-part of the first coordinate of the arrow.
y1 The y-part of the first coordinate of the arrow.
x2 The x-part of the second coordinate of the arrow.
y2 The y-part of the second coordinate of the arrow.
arrowStretch The size of the arrow head.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1156

ImageRepDrawer arrow(int x1, int y1, int x2, int y2, int
arrowStretch, int strokeSize)

Draws an arrow.
Parameters
x1 The x-part of the first coordinate of the arrow.
y1 The y-part of the first coordinate of the arrow.
x2 The x-part of the second coordinate of the arrow.
y2 The y-part of the second coordinate of the arrow.
arrowStretch The size of the arrow head.
strokeSize The size of the stroke.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer arrow(int x1, int y1, int x2, int y2, int
arrowStretch, int strokeSize, Color strokeColor)

Draws an arrow.
Parameters
x1 The x-part of the first coordinate of the arrow.
y1 The y-part of the first coordinate of the arrow.
x2 The x-part of the second coordinate of the arrow.
y2 The y-part of the second coordinate of the arrow.
arrowStretch The size of the arrow head.
strokeSize The size of the stroke.
strokeColor The stroke color.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1157

ImageRepDrawer arrow(int x1, int y1, int x2, int y2, int
arrowStretch, int strokeSize, int r, int g, int b)

Draws an arrow.
Parameters
x1 The x-part of the first coordinate of the arrow.
y1 The y-part of the first coordinate of the arrow.
x2 The x-part of the second coordinate of the arrow.
y2 The y-part of the second coordinate of the arrow.
arrowStretch The size of the arrow head.
strokeSize The size of the stroke.
r The red part of the stroke color.
g The green part of the stroke color.
b The blue part of the stroke color.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer arrow(int x1, int y1, int x2, int y2, int
arrowStretch, int strokeSize, int r, int g, int b, int a)

Draws an arrow.
Parameters
x1 The x-part of the first coordinate of the arrow.
y1 The y-part of the first coordinate of the arrow.
x2 The x-part of the second coordinate of the arrow.
y2 The y-part of the second coordinate of the arrow.
arrowStretch The size of the arrow head.
strokeSize The size of the stroke.
r The red part of the stroke color.
g The green part of the stroke color.
b The blue part of the stroke color.
a The alpha part of the stroke color.
Returns The ImageRepDrawer object for method concatination.

BufferedImage asBufferedImage()

Converts this image to a BufferedImage.
Returns This image as BufferedImage.

54.9. Image API extensions 1158

ImageRepDrawer circle(int x, int y, int r)

Draws a circle.
Parameters
x The x-coordinate of the center of the circle.
y The y-coordinate of the center of the circle.
r The radius of the circle.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer circle(int x, int y, int r, Color color)

Draws a circle.
Parameters
x The x-coordinate of the center of the circle.
y The y-coordinate of the center of the circle.
r The radius of the circle.
color The color of the circle.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer cross(int x, int y)

Draws a cross.
Parameters
x The x-coordinate of the cross to draw.
y The y-coordinate of the cross to draw.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer cross(int x, int y, int size)

Draws a cross.
Parameters
x The x-coordinate of the cross to draw.
y The y-coordinate of the cross to draw.
size The size of the cross to draw.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer draw(Object drawFunction)

Draws on an ImageRep object.
Parameters
drawFunction A lambda object. The lambda object takes a

java.awt.Graphics2D object as input which can be used
to draw onto the image.

Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1159

ImageRepDrawer erase(int x, int y, int w, int h)

”Erases” a particular area in the image.
Parameters
x The x-coordinate of the area that should get erased.
y The y-coordinate of the area that should get erased.
w The width of the area that should get erased.
h The height of the area that should get erased.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer fillRectangle(int x, int y, int w, int h)

Draws a filled rectangle.
Parameters
x The x-coordinate of the rectangle to draw.
y The y-coordinate of the rectangle to draw.
w The width of the rectangle to draw.
h The height of the rectangle to draw.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer fillRectangle(int x, int y, int w, int h, Color
color)

Draws a filled rectangle.
Parameters
x The x-coordinate of the rectangle to draw.
y The y-coordinate of the rectangle to draw.
w The width of the rectangle to draw.
h The height of the rectangle to draw.
color The color to use to fill the rectangle.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer image(ImageRep imgToDraw, int x, int y)

Draws an image onto the already existing image.
Parameters
imgToDraw The image to draw.
x The x-coordinate where the image should get drawn.
y The y-coordinate where the image should get drawn.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1160

ImageRepDrawer image(Image img, int x, int y)

Draws an image onto the already existing image.
Parameters
img The image to draw.
x The x-coordinate where the image should get drawn.
y The y-coordinate where the image should get drawn.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer line(int x1, int y1, int x2, int y2)

Draws a line.
Parameters
x1 The x-part of the first coordinate of the line to draw.
y1 The y-part of the first coordinate of the line to draw.
x2 The x-part of the second coordinate of the line to draw.
y2 The y-part of the second coordinate of the line to draw.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer line(int x1, int y1, int x2, int y2, Color
strokeColor)

Draws a line.
Parameters
x1 The x-part of the first coordinate of the line to draw.
y1 The y-part of the first coordinate of the line to draw.
x2 The x-part of the second coordinate of the line to draw.
y2 The y-part of the second coordinate of the line to draw.
strokeColor The color that should get used for stroke drawing.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer line(int x1, int y1, int x2, int y2, int
strokeSize)

Draws a line.
Parameters
x1 The x-part of the first coordinate of the line to draw.
y1 The y-part of the first coordinate of the line to draw.
x2 The x-part of the second coordinate of the line to draw.
y2 The y-part of the second coordinate of the line to draw.
strokeSize The stroke thickness.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1161

ImageRepDrawer line(int x1, int y1, int x2, int y2, int
strokeSize, Color strokeColor)

Draws a line.
Parameters
x1 The x-part of the first coordinate of the line to draw.
y1 The y-part of the first coordinate of the line to draw.
x2 The x-part of the second coordinate of the line to draw.
y2 The y-part of the second coordinate of the line to draw.
strokeSize The line thickness of the line to draw.
strokeColor The color to use for line drawing.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer line(int x1, int y1, int x2, int y2, int r, int
g, int b)

Draws a line.
Parameters
x1 The x-part of the first coordinate of the line to draw.
y1 The y-part of the first coordinate of the line to draw.
x2 The x-part of the second coordinate of the line to draw.
y2 The y-part of the second coordinate of the line to draw.
r The red value of the color that should get used for stroke

drawing.
g The green value of the color that should get used for

stroke drawing.
b The blue value of the color that should get used for stroke

drawing.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1162

ImageRepDrawer line(int x1, int y1, int x2, int y2, int r, int
g, int b, int a)

Draws a line.
Parameters
x1 The x-part of the first coordinate of the line to draw.
y1 The y-part of the first coordinate of the line to draw.
x2 The x-part of the second coordinate of the line to draw.
y2 The y-part of the second coordinate of the line to draw.
r The red value of the color that should get used for stroke

drawing.
g The green value of the color that should get used for

stroke drawing.
b The blue value of the color that should get used for stroke

drawing.
a The alpha value of the color that should get used for stroke

drawing.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer line(int x1, int y1, int x2, int y2, int
strokeSize, int r, int g, int b, int a)

Draws a line.
Parameters
x1 The x-part of the first coordinate of the line to draw.
y1 The y-part of the first coordinate of the line to draw.
x2 The x-part of the second coordinate of the line to draw.
y2 The y-part of the second coordinate of the line to draw.
strokeSize The line thickness of the line to draw.
r The red value of the color to use for line drawing.
g The green value of the color to use for line drawing.
b The blue value of the color to use for line drawing.
a The alpha value of the color to use for line drawing.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1163

ImageRepDrawer pixel(int x, int y)
Colors a particular pixel on the image by using the color previously set via setStroke-
Color. In case no color was set previously, the color black will be used.
Parameters
x The x-coordinate of the pixel that should get colored.
y The y-coordinate of the pixel that should get colored.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer pixel(int x, int y, java.awt.Color color)

Colors a particular pixel on the image.
Parameters
x The x-coordinate of the pixel that should get colored.
y The y-coordinate of the pixel that should get colored.
c The color object that should get used to color that partic-

ular pixel.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer pixel(int x, int y, int r, int g, int b)

Colors a particular pixel on the image.
Parameters
x The x-coordinate of the pixel that should get colored.
y The y-coordinate of the pixel that should get colored.
r The red value of the color that should get used to color a

particular pixel.
g The green value of the color that should get used to color

a particular pixel.
b The blue value of the color that should get used to color a

particular pixel.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1164

ImageRepDrawer pixel(int x, int y, int r, int g, int b, int a)

Colors a particular pixel on the image.
Parameters
x The x-coordinate of the pixel that should get colored.
y The y-coordinate of the pixel that should get colored.
r The red value of the color that should get used to color a

particular pixel.
g The green value of the color that should get used to color

a particular pixel.
b The blue value of the color that should get used to color a

particular pixel.
a The alpha value of the color that should get used to color

a particular pixel.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer rectangle(int x, int y, int w, int h)

Draws a rectangle.
Parameters
x The x-coordinate where the rectangle should get drawn.
y The y-coordinate where the rectangle should get drawn.
w The width of the rectangle that should get drawn.
h The height of the rectangle that should get drawn.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer rectangle(int x, int y, int w, int h, int b)

Draws a rectangle.
Parameters
x The x-coordinate where the rectangle should get drawn.
y The y-coordinate where the rectangle should get drawn.
w The width of the rectangle that should get drawn.
h The height of the rectangle that should get drawn.
b The width of the stroke of the rectangle.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1165

ImageRepDrawer rectangle(int x, int y, int w, int h, int b,
Color strokeColor)

Draws a rectangle.
Parameters
x The x-coordinate where the rectangle should get drawn.
y The y-coordinate where the rectangle should get drawn.
w The width of the rectangle that should get drawn.
h The height of the rectangle that should get drawn.
b The width of the stroke of the rectangle.
strokeColor The color to use for the rectangle strokes.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer rectangle(int x, int y, int w, int h, int b,
Color strokeColor, Color fillColor)

Draws a rectangle.
Parameters
x The x-coordinate where the rectangle should get drawn.
y The y-coordinate where the rectangle should get drawn.
w The width of the rectangle that should get drawn.
h The height of the rectangle that should get drawn.
b The width of the stroke of the rectangle.
strokeColor The color to use for the rectangle strokes.
fillColor The color to use to fill the rectangle.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer rectangle(int x, int y, int w, int h, int b, int
strokeCap, Color strokeColor)

Draws a rectangle.
Parameters
x The x-coordinate where the rectangle should get drawn.
y The y-coordinate where the rectangle should get drawn.
w The width of the rectangle that should get drawn.
h The height of the rectangle that should get drawn.
b The width of the stroke of the rectangle.
strokeCap The stroke caps to use.
strokeColor The color to use for the rectangle strokes.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1166

ImageRepDrawer rectangle(int x, int y, int w, int h, int b, int
strokeCap, Color strokeColor, Color fillColor)

Draws a rectangle.
Parameters
x The x-coordinate where the rectangle should get drawn.
y The y-coordinate where the rectangle should get drawn.
w The width of the rectangle that should get drawn.
h The height of the rectangle that should get drawn.
b The width of the stroke of the rectangle.
strokeCap The stroke cap to use for rectangle drawing.
strokeColor The stroke color to use for rectangle drawing.
fillColor The color to use to fill the rectangle.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer rectangle(int x, int y, int w, int h, int b, int
strokeCap, int rstroke, int gstroke, int bstroke, int rfill,
int gfill, int bfill)

Draws a rectangle.
Parameters
x The x-coordinate where the rectangle should get drawn.
y The y-coordinate where the rectangle should get drawn.
w The width of the rectangle that should get drawn.
h The height of the rectangle that should get drawn.
b The width of the stroke of the rectangle.
strokeCap The stroke cap to use for rectangle drawing.
rstroke The red value of the color to use for the rectangle strokes.
gstroke The green value of the color to use for the rectangle

strokes.
bstroke The blue value of the color to use for the rectangle strokes.
rfill The red value of the color to use to fill the rectangle.
gfill The green value of the color to use to fill the rectangle.
bfill The blue value of the color to use to fill the rectangle.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1167

ImageRepDrawer rectangle(int x, int y, int w, int h, int b, int
strokeCap, int rstroke, int gstroke, int bstroke, int astroke,
int rfill, int gfill, int bfill, int afill)

Draws a rectangle.
Parameters
x The x-coordinate where the rectangle should get drawn.
y The y-coordinate where the rectangle should get drawn.
w The width of the rectangle that should get drawn.
h The height of the rectangle that should get drawn.
b The width of the stroke of the rectangle.
strokeCap The stroke cap to use for rectangle drawing.
rstroke The red value of the color to use for the rectangle strokes.
gstroke The green value of the color to use for the rectangle

strokes.
bstroke The blue value of the color to use for the rectangle strokes.
astroke The alpha value of the color to use for the rectangle

strokes.
rfill The red value of the color to use to fill the rectangle.
gfill The green value of the color to use to fill the rectangle.
bfill The blue value of the color to use to fill the rectangle.
afill The alpha value of the color to use to fill the rectangle.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer setFillColor(java.awt.Color color)

Sets the default fill color.
Parameters
color The new fill color.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer setFillColor(int r, int g, int b)

Sets the default fill color.
Parameters
r The red component of the fill color.
g The green component of the fill color.
b The blue component of the fill color.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1168

ImageRepDrawer setFillColor(int r, int g, int b, int a)

Sets the default fill color.
Parameters
r The red component of the fill color.
g The green component of the fill color.
b The blue component of the fill color.
a The alpha component of the fill color.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer setFont(java.awt.Font font)

Sets the default font.
Parameters
font The default font to use.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer setFont(String fontName)

Sets the default font.
Parameters
fontName Der Name of the default font to use.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer setFont(String fontName, int size)

Sets the default font.
Parameters
fontName The name of the default font to use.
size The size of the default font to use.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer setFont(String fontName, int size, int style)

Sets the default font.
Parameters
fontName The name of the default font to use.
size The size of the default font to use.
style The style of the default font to use.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1169

ImageRepDrawer setStrokeCap(int cap)

Set the stroke caps.
Parameters
cap Can either be ImageRepDrawer.CAPS_SQUARED

for strokes with squared caps or ImageRep-
Drawer.CAPS_ROUND for strokes with round caps.

Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer setStrokeColor(java.awt.Color color)

Sets the default stroke color.
Parameters
color The new color.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer setStrokeColor(int r, int g, int b)

Sets the default stroke color.
Parameters
r The red component of the stroke color.
g The green component of the stroke color.
b The blue component of the stroke color.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer setStrokeColor(int r, int g, int b, int a)

Sets the default stroke color.
Parameters
r The red component of the stroke color.
g The green component of the stroke color.
b The blue component of the stroke color.
a The alpha component of the stroke color.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer setStrokeSize(int size)

Sets the default stroke thickness.
Parameters
size The new default stroke thickness.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1170

ImageRepDrawer text(int x, int y, String text)

Draws a particular text onto the image.
Parameters
x The x-coordinate of the position where the text should get

drawn.
y The y-coordinate of the position where the text should get

drawn.
text The text that should get drawn.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer text(int x, int y, String text, Color textColor)

Draws a particular text onto the image.
Parameters
x The x-coordinate of the Position where the text should get

drawn.
y The y-coordinate of the Position where the text should get

drawn.
text The text that should get drawn.
textColor The color that should get used.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer text(int x, int y, String text, String fontName)

Draws a particular text onto the image.
Parameters
x The x-coordinate of the position where the text should get

drawn.
y The y-coordinate of the position where the text should get

drawn.
text The text that should get drawn.
fontName The name of the font to use.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1171

ImageRepDrawer text(int x, int y, String text, Color textColor,
Font font)

Draws a particular text onto the image.
Parameters
x The x-coordinate of the Position where the text should get

drawn.
y The y-coordinate of the Position where the text should get

drawn.
text The text that should get drawn.
textColor The color that should get used.
font The font that should get used.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer text(int x, int y, String text, String fontName,
int fontSize)

Draws a particular text onto the image.
Parameters
x The x-coordinate of the position where the text should get

drawn.
y The y-coordinate of the position where the text should get

drawn.
text The text that should get drawn.
fontName The name of the font to use.
fontSize The font size to use.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer text(int x, int y, String text, int r, int g,
int b)

Draws a particular text onto the image.
Parameters
x The x-coordinate of the position where the text should get

drawn.
y The y-coordinate of the position where the text should get

drawn.
text The text that should get drawn.
r The red value of the color that should get used.
g The green value of the color that should get used.
b The blue value of the color that should get used.
Returns The ImageRepDrawer object for method concatination.

54.9. Image API extensions 1172

ImageRepDrawer text(int x, int y, String text, String fontName,
int fontSize, int fontStyle)

Draws a particular text onto the image.
Parameters
x The x-coordinate of the position where the text should get

drawn.
y The y-coordinate of the position where the text should get

drawn.
text The text that should get drawn.
fontName The name of the font to use.
fontSize The font size to use.
fontStyle The font style to use.
Returns The ImageRepDrawer object for method concatination.

ImageRepDrawer text(int x, int y, String text, int r, int g,
int b, int a)

Draws a particular text onto the image.
Parameters
x The x-coordinate of the position where the text should get

drawn.
y The y-coordinate of the position where the text should get

drawn.
text The text that should get drawn.
r The red value of the color that should get used.
g The green value of the color that should get used.
b The blue value of the color that should get used.
a The alpha value of the color that should get used.
Returns The ImageRepDrawer object for method concatination.

In the following examples shows how the ImageRepDrawer method can be used to draw
onto an ImageRep object:

54.10. Pseudo DOM API 1173

from imagewrapper import ImageWrapper
from java.awt import Color
iw = ImageWrapper(rc)
img = iw.loadPng(r"C:/temp/foobar.png")
img.draw().setStrokeSize(12).setStrokeColor(Color.RED).line(20, 20, 2000, 3500) \

.setStrokeColor(Color.GREEN).setStrokeSize(1).rectangle(40, 45, 250, 300)
rc.logImage(img)

Example 54.39: Using the ImageRepDrawer object to draw a red line and a green
rectangle on an image.

54.10 Pseudo DOM API
Web

To a certain extent QF-Test exposes the DOM of a web based SUT to SUT script(673)

nodes. This API is not equivalent to working directly at the JavaScript level which can
be done via the methods toJS, callJS and evalJS described in this chapter. With
this API is possible to traverse the DOM and retrieve and set attributes of the respec-
tive nodes, but not to manipulate the structure of the DOM. Thus this API is useful for
implementing Name- or FeatureResolvers as described in section 54.1(1075).

For Swing, FX and SWT QF-Test works with the actual Java GUI classes whereas a
pseudo class hierarchy is used for web applications as follows:

Figure 54.1: Pseudo class hierarchy for web elements

As shown, ”NODE” is at the root of the pseudo class hierarchy. It matches any kind of el-
ement in the DOM. Derived from ”NODE” are ”DOCUMENT”, ”FRAME”, ”DOM_NODE”

54.10. Pseudo DOM API 1174

and ”DIALOG”, the types of nodes implementing the pseudo DOM API explained in
section 54.10(1171). ”DOM_NODE” is further sub-classed according to the tag name of
the node, e.g. ”H1”, ”A” or ”INPUT” where some tags have an additional subclass like
”INPUT:TEXT”.

The DOM can differ depending on the browser, so you should try not to rely too muchNote
on child indexes in your resolvers or scripts in case of cross-browser testing if viable.

QF-Test’s DOM API comprises a hierarchy of the following five classes:

54.10.1 The abstract Node class

All classes of QF-Test’s pseudo DOM are derived from this class
and thus implement the following interface. Its is located in the package
de.qfs.apps.qftest.client.web.dom.

Node findCommonAncestor(Node node1, Node node2, Node topmost)

Get the common parent of two nodes.
Parameters
node1 The first node.
node2 The second node.
topmost The topmost node to stop the search.
Returns The common parent or null.

Node getAncestorOfClass(String clazz)

Get the closest parent of a specified class name.
Parameters
clazz The parent’s class name.
Returns The parent or null.

Node getAncestorOfClass(String clazz, int maxDepth)
Get the closest parent of a specified class name. You can specify a maximal search
level.
Parameters
clazz The parent’s class name.
maxDepth The maximum search level.
Returns The parent or null.

54.10. Pseudo DOM API 1175

String getAttribute(String name)
Get the value of an attribute of the node. For convenience this method is defined at
Node level. If this node is not a DomNode the result will always be null. In some cases
this method also returns attributes that have not been explicitly specified, like the width
and height of an IMG node. Which attributes can be retrieved in that way is browser
dependent.
Parameters
name The name of the attribute
Returns The value of the attribute or null if no such attribute is avail-

able for the node.

String getAttributeIfSpecified(String name)
Get the value of an attribute of the node if it is explicitly specified in the HTML code.
For convenience this method is defined at Node level. If this node is not a DomNode the
result will always be null.
Parameters
name The name of the attribute
Returns The value of the attribute or null if no such attribute is ex-

plicitly specified for the node.

Node getChild(int index)
Get the child node at the given index. Remark for Opera before version 86, Google
Chrome and Microsoft Edge before version 100: Text-nodes, which are only used to
format the HTML code and which have no influence on the visualisation of the web site
are not transferred from the browser to QF-Test in CDP connection mode. Therefore, a
different index of the child node can occure in this connection mode wth these browsers.
If possible, use getChildrenByTagName in your scripts.
Parameters
index The index of the child node, starting with 0.
Returns The child node at the index.
Throws
IllegalArgumentExceptionIf index is negative or exceeds the number of child nodes.

int getChildCount()
Get the number of child nodes. Remark for Opera before version 86, Google Chrome
and Microsoft Edge before version 100: Text-nodes, which are only used to format the
HTML code and which have no influence on the visualisation of the web site are not
transferred from the browser to QF-Test in CDP connection mode. Therefore, a different
number of the child nodes can occure in this connection mode with these browsers.
Returns The number of child nodes.

54.10. Pseudo DOM API 1176

Node[] getChildren()
Get the children of this node as an array. Remark for Opera before version 86, Google
Chrome and Microsoft Edge before version 100: Text-nodes, which are only used to
format the HTML code and which have no influence on the visualisation of the web site
are not transferred from the browser to QF-Test in CDP connection mode. Therefore,
less children might be reported in this connection mode with these browsers.
Returns The child nodes.

String getClassName()

Get the most current class name of that node.
Returns The most current class name.

String[] getClassNames()

Get all class names of that node.
Returns An array with all class names of that node.

DocumentNode getDocument()

Get the document to which this node belongs.
Returns The document to which this node belongs. A

DocumentNode will return itself, a DialogNode will re-
turn null.

Node getElementById(String id)
Get a direct or indirect child node of this node with a given ID. The given ID is not
compared to the node’s original ’ID’ attribute, but to its ID, which may have been modified
by an IdResolver (see section 54.1.17(1098)).
Parameters
id The ID to look for.
Returns The child node with the given ID, an arbitrary one in

case of multiple matches or null if none is found. A
DialogNode will always return null, a FrameNode for-
wards the call to its DocumentNode child node and a
DocumentNode to its <HTML> root element.

Node[] getElementsByClassName(String className)

Get all direct and indirect child nodes with a specified class.
Parameters
className The name of the class.
Returns An array of child nodes with the specified class name. If

none are found, an empty array is returned.

54.10. Pseudo DOM API 1177

Node[] getElementsById(String id)
Get all direct or indirect child nodes of this node with a given ID. The given ID is not
compared to the node’s original ’ID’ attribute, but to its ID, which may have been modified
by an IdResolver (see section 54.1.17(1098)).
Parameters
id The ID to look for.
Returns An array of child nodes with the given ID. If none are found,

an empty array is returned. A DialogNode will always
return an empty array, a FrameNode forwards the call to
its DocumentNode child node and a DocumentNode to
its <HTML> root element.

Node[] getElementsByIdAndTagname(String id, String tagName)
Get all direct or indirect child nodes of this node with a given ID and a given tag name.
The given ID is not compared to the node’s original ’ID’ attribute, but to its ID, which may
have been modified by an IdResolver (see section 54.1.17(1098)).
Parameters
id The ID to look for.
tagName The tag name to look for.
Returns An array of child nodes with the given ID and the given

tag name. If none are found, an empty array is re-
turned. A DialogNode will always return an empty ar-
ray, a FrameNode forwards the call to its DocumentNode
child node and a DocumentNode to its <HTML> root ele-
ment.

Node[] getElementsByTagName(String tagName)

Get all direct or indirect child nodes of this node with a given tag name.
Parameters
tagName The tag name to look for.
Returns An array of child nodes with the given tag name. If none

are found, an empty array is returned. A DialogNode
will always return an empty array, a FrameNode for-
wards the call to its DocumentNode child node and a
DocumentNode to its <HTML> root element.

Node getFirstChild()

Get the first child node: an element node, a text node or a comment.
Returns The first child node.

Node getFirstElementChild()

Get the first child element (text nodes and comments are skipped).
Returns The first child element.

54.10. Pseudo DOM API 1178

String getFlatText()
Get the flat text content of a Node. In case of a plain text node, return its value. Oth-
erwise collect the values of all text nodes directly contained within this node, excluding
those nested at a deeper level.
Returns The whole direct text content of a node.

String getGenericClassName()

Get the generic class name of that node.
Returns The generic class name.

int getIndexOfChild(Node child)

Get the index of a given child node.
Parameters
child The child node to get the index for.
Returns The index of the child node, starting with 0, or -1 in case it

is not a child of the this node.

Node getInterestingParent()
Get the interesting parent of a node. A top-level DocumentNode or a DialogNode will
return null. Everything else should have a parent unless removed from the DOM via
JavaScript.
Returns The interesting parent of the node.

Node getInterestingParent(int n)
Get the interesting parent of a node. A top-level DocumentNode or a DialogNode will
return null. Everything else should have a parent unless removed from the DOM via
JavaScript.
Parameters
n The interesting parent’s level.
Returns The interesting parent of the node.

String getName()
Get the tag name of the node. The tag name is the type of node in upper case like
”HTML” for an <HTML> node. Plain text nodes are represented as a DomNode with tag
name ”#text”. Pseudo tag names are defined for DocumentNodes (”DOCUMENT”) and
DialogNodes (”DIALOG”).
Returns The tag name of the node.

Node getNextElementSibling()

Get the next element in the same tree level.
Returns The next element sibling.

Node getNextSibling()

Get the next sibling node: An element node, a text node, or a comment node.
Returns The next sibling.

54.10. Pseudo DOM API 1179

String getNodeType()
Get an identifier for the type of the node. Though this method is not fully in line with
pure OO doctrine, while traversing the DOM it is often necessary to find out the type of
a given node and this is quite convenient.
Returns A string specifying the type of node. The re-

spective constants are defined in the concrete
sub-classes: DocumentNode.DOCUMENT_NODE,
FrameNode.FRAME_NODE, DomNode.DOM_NODE and
DialogNode.DIALOG_NODE.

Node getNthParent(int n)

Get the n-th parent node.
Parameters
n The parent’s level.
Returns The n-th parent or null.

Node getParent()
Get the parent of a node. A top-level DocumentNode or a DialogNode will return null.
Everything else should have a parent unless removed from the DOM via JavaScript.
Returns The parent of the node.

Node getPreviousElementSibling()

Get the previous element in the same tree level.
Returns The previous element sibling.

Node getPreviousSibling()

Get the previous sibling node: An element node, a text node, or a comment node.
Returns The previous sibling.

Object getProperty(String name)

Retrieve a user-defined property.
Parameters
name The name of the property to retrieve.
Returns The value of the specified property or null.

String getSimpleText()
Get the simple text content of a Node. In case of a plain text node, return its value.
Otherwise traverse the DOM and collect all text nodes contained directly within this
node or in ”simple” nodes like , but do not descend into structurally more complex
nodes like <TABLE>.
Returns The simple text content of a node.

54.10. Pseudo DOM API 1180

String getText()
Get the text content of a Node. In case of a plain text node, return its value. Oth-
erwise traverse the DOM and collect all nested text node’s values. Care is taken to
collapse whitespace between nodes to get as close as possible to what is displayed in
the browser.
Returns The whole direct and indirect text content of a node.

String getVisibleFlatText()
Get the flat text content of a Node. In case of a plain text node, return its value. Oth-
erwise collect the values of all text nodes directly contained within this node, excluding
invisible ones and those nested at a deeper level.
Returns The whole direct visible text content of a node.

String getVisibleSimpleText()
Get the simple text content of a Node. In case of a plain text node, return its value. Oth-
erwise traverse the DOM and collect all visible text nodes contained directly within this
node or in ”simple” nodes like , but do not descend into structurally more complex
nodes like <TABLE>.
Returns The visible simple text content of a node.

String getVisibleText()
Get the text content of a Node. In case of a plain text node, return its value. Otherwise
traverse the DOM and collect all nested text node’s values, ignoring invisible nodes.
Care is taken to collapse whitespace between nodes to get as close as possible to what
is displayed in the browser.
Returns The whole direct and indirect visible text content of a node.

boolean isAncestor(Node node)

Check whether the given node is an ancestor of the current node.
Parameters
node The possible ancestor node.
Returns True, if node is an ancestor, otherwise false.

boolean isAttributeSpecified(String name)
Test whether an attribute of the node is explicitly specified in the HTML code. For con-
venience this method is defined at Node level. If this node is not a DomNode the result
will always be false.
Parameters
name The name of the attribute
Returns True if an attribute is explicitly specified for the node.

boolean isBrowserChrome()

Test whether the browser to which the node belongs is a Chrome derivative.
Returns True for Chrome derivatives, false otherwhise.

54.10. Pseudo DOM API 1181

boolean isBrowserHeadless()

Test whether the browser to which the node belongs is a headless browser.
Returns True for headless browser, false otherwhise.

boolean isBrowserMozilla()

Test whether the browser to which the node belongs is a Mozilla derivative.
Returns True for Mozilla derivatives, false otherwhise.

boolean isBrowserSafari()

Test whether the browser to which the node belongs is a Safari.
Returns True for Safari, false otherwhise.

boolean isMatchingClass(String className)

Check, whether the node matches a given class name.
Parameters
className The class name to check.
Returns True, if node matches this class, otherwise false.

void setProperty(String name, Object value)

Set a user-defined property.
Parameters
name The name of the property.
value The property value or null to remove an existing property.

54.10.2 The DocumentNode class

The root document of a web page is not represented by a Window node, but the spe-Web
cial node Web page(864). Nested document nodes in frames correspond to Components
nodes.

The DocumentNode class is derived from Node and also resides in the package
de.qfs.apps.qftest.client.web.dom. In addition to the methods defined in the
Node class and explained above, DocumentNode provides the following:

Object callJS(String code)
Execute some JavaScript code within a function in the context of this document. This
often works even if the call of eval() is restricted by a Content Security Policy (CSP).
Parameters
code The code to execute.
Returns Whatever the code returns explicitely using a return

statement, converted to the proper object type. Even re-
turning a DOM node, frame or document works.

54.10. Pseudo DOM API 1182

Object evalJS(String script)
Evaluate some JavaScript code in the context of this document by calling
window.eval().
In most cases, the method callJS should be used instead, since eval() might be
restricted by the document’s Content Security Policy (CSP).
Parameters
script The script to execute.
Returns Whatever the script returns, converted to the proper object

type. Even returning a DOM node, frame or document
works.

FrameNode[] getFrames()

Get the child frames of the document.
Returns The child frames of the document, an empty array in case

there are none.

DomNode getRootElement()

Get the <HTML> root element of the document.
Returns The root element of the document.

String getSourcecode()
Get the HTML source code of the document in its current state, which is not necessarily
the same as what was loaded when the document was opened because attributes or
the DOM’s structure may have been changed since, e.g. via JavaScript.
Returns The current HTML code of the document.

String getTitle()
Get the title of the document as defined in the <TITLE> of the <HEAD> of its root
element.
Returns The title of the document.

String getUrl()
Get the URL of the document.
This is not necessarily the same as the URL currently displayed in the
browser’s address bar. To get that value, you should use callJS(”return
window.location.href”) instead.
Returns The URL of the document.

boolean hasParent()
To test whether a document is a top-level document this method should be used instead
of testing whether the result of getParent() is null. The reason is that loading of
nested child documents may be completed before loading of the main document. During
this time it is known that the nested document will have a parent, but the parent is not
available yet.
Returns True if the document has a parent, false if it is a top-level

document.

54.10. Pseudo DOM API 1183

In addition to the instance methods describe above, the DocumentNode class provides
some static convenience methods for manipulating URLs.

static String getUrlBase(String url)
Get the base part of an URL, including host and directory but excluding possible param-
eters separated by ’?’ and excluding a possible Tomcat session ID.
Parameters
url The URL to get the base part of.
Returns The base part of the URL.

static String getUrlHost(String url)

Get the host part of an URL, i.e. the part between ”http(s)://” and the next ’/’.
Parameters
url The URL to get the host part of.
Returns The host part of the URL or null if the protocol is neither

http nor https.

static ExtraFeatureSet getUrlParameters(String url)
Get the parameters of an URL, including those separated by ’?’ and a possible
Tomcat session ID, in the form of an ExtraFeatureSet that can be used for an
ExtraFeatureResolver as described in section 54.1.11(1087).
Parameters
url The URL to get the parameters for.
Returns The parameters of the URL.

static String normalizeUrl(String url)
Normalize an URL by replacing ’\’ with ’/’, ”file:/(/(/))” with ”file:///”, up-casing windows
drive letters and decoding %.. sequences.
Parameters
url The URL to normalize.
Returns The normalized URL.

54.10.3 The FrameNode class

The FrameNode class is derived from Node and also resides in the package
de.qfs.apps.qftest.client.web.dom. In addition to the methods defined in the
Node class and explained above, FrameNode provides the following:

DocumentNode getChildDocument()

Get the child document of the frame.
Returns The child document of the frame.

54.10. Pseudo DOM API 1184

DomNode getFrameElement()
Get the DomNode-Object, which contains the frame, if known, i.e. an IFRAME- or
FRAME-node.
Returns Der DomNode oder null.

String getFrameName()

Get the name of the frame as defined by its ”name” attribute.
Returns The name of the frame.

String getFrameUrl()
Get the URL of the frame which should normally be the same as the URL of its child
document.
Returns The URL of the frame.

int[] getGeometry()
Get the location and size of the frame relative to its parent frame or the browser window’s
display area.
Returns The frame geometry in the form [x, y, width, height].

54.10.4 The DomNode class

The DomNode class is derived from Node and also resides in the package
de.qfs.apps.qftest.client.web.dom. In addition to the methods defined in the
Node class and explained above, DomNode provides the following:

Object callJS(String code)
Execute some JavaScript code in a function in the context of this node’s document. This
often works even if the call of eval() is restricted by a Content Security Policy (CSP).
Parameters
code The script to execute. Use _qf_node as the reference for

the HTML element.
Returns Whatever the code returns explicitely using a return

statement, converted to the proper object type. Even re-
turning a DOM node, frame or document works.

54.10. Pseudo DOM API 1185

Object evalJS(String script)
Evaluate some JavaScript code in the context of this node’s document by calling
window.eval().
In most cases, the method callJS should be used instead, since eval() might be
restricted by the document’s Content Security Policy (CSP).
Parameters
script The script to execute. Use _qf_node as the reference for

the HTML element.
Returns Whatever the script returns, converted to the proper object

type. Even returning a DOM node, frame or document
works.

DomNode[] getAllByCSS(String css)

Get all nodes, which are determined via CSS-selectors.
Parameters
css CSS-selector starting from that node.
Returns An array of all found nodes or null.

DomNode[] getAllByXPath(String xpath)

Get all nodes, which are determined via XPath.
Parameters
xpath XPath starting from that node.
Returns An array of all found nodes or null.

DomNode getByCSS(String css)

Get a node, which is determined via a CSS-selector.
Parameters
css CSS-selector starting from that node.
Returns The found node or null.

DomNode getByXPath(String xpath)

Get a node, which is determined via XPath.
Parameters
xpath XPath starting from that node.
Returns The found node or null.

54.10. Pseudo DOM API 1186

Node[] getChildrenByTagName(String tagName)

Get all direct child nodes of this node with a given tag name.
Parameters
tagName The tag name to look for.
Returns An array of child nodes with the given tag name. If none

are found, an empty array is returned.

String getId()
Get the cached ID of the node which may have been processed by an IdResolver as
described in section 54.1.17(1098). The original, unmodified ’ID’ attribute is available via
getAttribute(”id”).
Returns The cached ID of the node.

int[] getLocationOnScreen()

Get the location and size of the node relative to desktop.
Returns The node’s geometry in the form [x, y, width, height].

boolean hasCSSClass(String cl)

Check, whether the node has a specified css-class.
Parameters
cl The name of the css-class.
Returns True, if the node has this css-class, otherwise false.

boolean hasFocus()

Test whether the node has the keyboard focus.
Returns True if the node has the keyboard focus.

boolean isShowing()

Test whether the node is visible or can be made visible by scrolling.
Returns True if the node is visible.

void requestFocus()
Tell the node to request the keyboard focus. This is a best-effort implementation.
Whether the node actually receives the keyboard focus depends on the browser and
operating system settings.
void scrollVisible()
Try to scroll the page or a frame so as to make the node fully visible. This is a best
effort implementation. Whether the node can actually be made visible depends on the
browser and operating system settings.

54.11. WebDriver SUT API 1187

void setAttribute(String name, String value)

Set an attribute value on the node.
Parameters
name The name of the attribute.
value The value to set.

void toJS(String name)

Set a JavaScript variable in the context of this node’s document to this node.
Parameters
name The name of the variable to set.

54.10.5 The DialogNode class

The DialogNode class, also derived from Node is not a standard DOM class, but
created solely for convenient access to dialogs within QF-Test. It also resides in the
package de.qfs.apps.qftest.client.web.dom but has very little to do with the
other Node classes. A DialogNode represents a message or error dialog which can
be triggered via JavaScript. It provides the following methods:

long getStyle()

Get the style of the dialog.
Returns The style of the dialog. Any of the con-

stants STYLE_ALERT, STYLE_CONFIRM or
STYLE_AUTHENTICATE defined in the DialogNode
class.

String getText()

Get the message text of the dialog.
Returns The message text of the dialog.

String getTitle()

Get the title of the dialog.
Returns The title of the dialog.

54.11 WebDriver SUT API
4.1+

The WebDriverConnection SUT API provides classes and interfaces to enable using
Selenium WebDriver Java API inside a SUT script(673). With this kind of bridge you can
use your existing Selenium WebDriver scripts inside a SUT script(673) of QF-Test. You can

54.11. WebDriver SUT API 1188

even combine the Pseudo DOM API (section 54.10(1171)) with Selenium WebDriver based
scripts.

This API is only usable if the browser is connected to QF-Test using connection modeNote
”WebDriver”. Calls on the returned WebDriver-object are automatically synchronized
and guarded by a time-out.

from webdriver import WebDriverConnection
from org.openqa.selenium import By
wdc = WebDriverConnection(rc)
driver = wdc.getDriver()
driver now of type org.openqa.selenium.WebDriver
element = driver.findElement(By.cssSelector(".myClass"))
element is now of type org.openqa.selenium.WebElement
You can call WebDriver-Methods directly on the element
element.click()
Objects of type WebElement can be mapped to the QF-Test Pseudo DOM API
node = wdc.getComponent(element)
and assigned to a component in the component tree
rc.overrideElement("Your-QF-Test-Id",node)
Also, a QF-Test component can be translated to a WebElement object
node = rc.getComponent("QF-Test-Id-Of-Some-Textfield")
element = wdc.getElement(node)
and interacted using WebDriver-methods
element.clear()

Example 54.40: WebDriver-Usage in a Jython SUT Script

The WebDriver-Object is extended by methods to control the automatic timeout.Note

import de.qfs.WebDriverConnection
def wdc = new WebDriverConnection(rc)
def driver = wdc.getDriver()
print sprintf("Current timeout: %d ms", driver.getCallTimeout())
driver.setCallTimeout(30000) # 30 sec
driver.get("http://www.slowpage.com") # Slow WebDriver-Action
driver.resetCallTimeout()

Example 54.41: WebDriver-Timeout Control (Groovy Script)

54.11.1 The WebDriverConnection class

Following is a list of the methods of the WebDriverConnection class in alphabetical
order. The syntax used is a bit of a mixture of Java and Python. Python doesn’t support
static typing, but the parameters are passed on to Java, so they must be of the correct

54.11. WebDriver SUT API 1189

type to avoid triggering exceptions. If a parameter is followed by an ’=’ character and a
value, that value is the default and the parameter is optional.

Object getComponent(WebElement element, String windowname=None)
Get the QF-Test component of a given WebDriver WebElement. This component could
then be used with the other API’s QF-Test provides.(e.g. the Pseudo DOM-API in section
54.10(1171))
Parameters
element The WebDriver WebElement.
windowname The windowname of the Browser of which the WebEle-

ment is requested.
Returns The corresponding QF-Test component.

WebDriver getDriver(String windowname=None)
Get the WebDriver instance used to interact with a browser in WebDriver mode. Re-
quires, that a web page was opened using a Start web engine(689) step.
Parameters
windowname The windowname of the Browser of which the WebDriver

is requested.
Returns The WebDriver instance.

WebElement getElement(Object componentOrId)
Get the WebDriver WebElement of the given QF-Test component or the QF-Test com-
ponent id.
Parameters
componentOrId The QF-Test component or its QF-Test component id.
Returns The WebDriver WebElement object of the component.

54.12. Windows Control API 1190

WebDriver getUnmanagedDriver(String browserType=None,
DesiredCapabilities desiredCapabilities=None)
Get a WebDriver instance with the specified browser type. As long as no page has been
opened with a Start web engine(689) step, the WebDriver instance is not monitored by QF-
Test, so web pages and their components are not automatically detected by QF-Test.
Interaction with the web page is only possible by the means of the embedded Selenium
API, and checks have to be performed using rc.check and rc.checkEqual (see
section 11.1(169))
Parameters
browserType The type of browser to be tested (see Browser type(691)). Is

this parameter empty or unset, the browserName capa-
bility of the desiredCapabilities is inspected. If this is also
not set, the value of the Browser type(691) attribute of the
Start web engine(689) step starting the SUT is used.

desiredCapabilities The DesiredCapabilities, which should be handed over to
the WebDriver instance.

Returns The WebDriver instance.

54.12 Windows Control API
5.0+

The elments of native Windows applications are represented during a test by Java ob-
jects of the class WinControl. This class provides several public methods, e.g. to
develop custom resolvers.

54.12.1 The WinControl class

Following is a list of the methods of the WinControl class in alphabetical order.

WinControl getAncestorByUiaType(String typeName)

Get the control ancestor which has the given UIAutomation type name.
Parameters
typeName The type name.
Returns The ancestor or null.

54.12. Windows Control API 1191

WinControl getChild(int index)

Get the control’s child with the given index.
Parameters
index The index.
Returns The child.
Throws
IllegalArgumentExceptionIf index is negative or exceeds the number of child nodes.

int getChildCount()

Get number of children of the control.
Returns The child count.

WinControl[] getChildren()

Get the children of the control.
Returns An array with the children.

WinControl[] getChildrenByUiaClassName(String className)

Get all children of the control which have the given UIAutomation class name.
Parameters
className The class name.
Returns An array with the children.

WinControl[] getChildrenByUiaType(String typeName)

Get all children of the control which have the given UIAutomation type name.
Parameters
typeName The type name.
Returns An array with the children.

WinControl[] getElementsByClassName(String className)

Get all descendants of the control which match the given class name.
Parameters
className The class name to be matched.
Returns An array of WinControl objects, which have the current

object as ancestor and match the given class name.

54.12. Windows Control API 1192

WinControl[] getElementsByClassName(String[] classNames)

Get all descendants of the control which match any of the given class names.
Parameters
classNames The class names to be matched.
Returns An array of WinControl objects, which have the cur-

rent object as ancestor and match any of the given class
names.

WinControl[] getElementsByClassName(String[] classNames,
String[] stopClassNames)
Get all descendants of the WinControl matching any of the given class names, but
skips all controls (and their decendants) matching the given stop class names.
Parameters
classNames The class names to be matched.
stopClassNames The stop class names.
Returns An array with the matching descendants.

String[] getGenericClassNames()

Get the generic class names of the control.
Returns An array of Strings with the generic class names of the

control.

int getHwnd()

Get the native window handle.
Returns The native window handle.

int[] getLocation()

Get the (physical) location of the element within its parent.
Returns An array with the X and Y coordinates.

int[] getLocationOnScreen()

Get the (physical) location of the element on the screen.
Returns An array with X, Y, width and height.

WinControl getNextSibling()

Get the control’s next sibling.
Returns The next sibling or null.

String getPatterns()
Get all patterns in a string separated by whitespace. Prefer using hasPattern() for
not to bother with the exact format of the return string.
Returns A string with the patterns of the element.

54.12. Windows Control API 1193

int[] getSize()

Get the (physical) size of the element.
Returns An array with the width and the height.

String getTextOrValue()
Get a value for an element, most of the time from the Value or Text pattern, if any. A
value may also be retrieved from Text children or in special cases from the Automation
Name.
Returns A value or null.

WinControl getTopAncestor()

Get the top-level ancestor of the control.
Returns The top-level ancestor or null.

String getUiaClassName()
Get the class name for the WinControl. This is the UIAutomation class name extended
by a framework specific prefix to avoid confusion with QF-Test’s generic class names.
Returns A String with the class name of the control.

AutomationBase getUiaControl()
Create an AutomationBase control for the WinControl, compatible with the uiauto
script module (chapter 52(1059)).
Returns The AutomationBase object.

String getUiaDescription()
Get the UI Automation description of the control. If there is no full description, the
accessibility description is returned as fallback.
Returns The description, if any or an empty string.

String getUiaHelp()

Get the UI Automation help text of the control.
Returns The help text, if any or an empty string.

String getUiaId()

Get the UI Automation identifier of the control.
Returns The ID, if any or null.

String getUiaName()

Get the UI Automation name of the control.
Returns The name, if any or null.

String getUiaType()
Get the type for the WinControl. This is the UIAutomation type name extended by a
prefix Uia. to avoid confusion with QF-Test’s generic class names.
Returns A String with the type of the control.

54.12. Windows Control API 1194

boolean hasPattern(String pattern)

Check whether the underlying Automation Element supports the given pattern.
Parameters
pattern The pattern name, e.g, ”Invoke”, ”ExpandCollapse”, etc.
Returns true if the pattern is supported by the element, false

otherwise.

boolean isMatchingClass(String className)

Check whether the control matches a given class name.
Parameters
className The class name to be checked.
Returns true if the control matches the given class name, false

otherwise.

boolean isMatchingClass(String[] classNames)

Checks if any of the given classNames is part of the WinControl’s class names list.
Parameters
classNames The class names to be checked.
Returns true if the control matches one of the given class names,

false otherwise.

boolean isShowing()

Get the visibility of an element.
Returns true, when the control is considered to be visible on the

screen, false otherwise.

Chapter 55

Daemon mode

!!! Warning !!!

Anybody with access to the QF-Test daemon can start any program on the machine
running the daemon with the rights of the user account that the daemon is running
under, so access should be granted only to trusted users.

If you are not running the daemon in a secure environment where every user is trusted
or if you are creating your own library to connect to the QF-Test daemon, you definitely
should read section 55.3(1210) below.

55.1 Daemon concepts

In daemon mode (comparable, but not equivalent to a ”service” on Windows) QF-Test
listens to RMI connections and providing an interface for remote test execution. This
is useful for simplifying test execution in a distributed load-testing scenario, but also for
integration with existing test management or test execution tools.

There are three command line arguments, all of which are available in batch and inter-
active mode:

• -daemon(916) - Run QF-Test in daemon mode.

• -daemonport <port>(917) - Specify the port the daemon should listen at, the
default is 3543.

• -daemonrmiport <port>(917) - Specify the RMI port the daemon should use.
Useful only when running the daemon behind a firewall. Default is a random free
port.

When run in batch and daemon mode, QF-Test will not use a license. Licenses will
be acquired during use as described below. In interactive daemon mode, QF-Test will

55.2. Daemon API 1196

be fully functional and thus use a license. In addition it will accept connections from
the outside and use additional licenses during use, similar to batch mode. The latter
scenario is useful during development of distributed tests.

Tests can be executed on a running daemon in one of two ways:

• Use of QF-Test’s batch command line option -calldaemon(916).

• Direct implementation against the daemon API, documented in section 55.2(1194).

Both options are explained in more detail and accompanied by examples in section
25.2(320).

55.2 Daemon API

The daemon API provides all methods necessary to directly control test execution via a
QF-Test daemon. Typically the following relatively simple steps need to be implemented:

When writing an application based on the daemon API you need to take security con-Note
siderations into account and either disable security or set some RMI-specific properties
as described in section 55.3(1210).

• Get hold of a Daemon using the DaemonLocator service.

• Either get hold of the shared TestRunDaemon or have the Daemon create a
TestRunDaemon. You can use the TestRunDaemon to define global variables
and the root directory of your test suites for the upcoming test runs.

• Either get hold of the TestRunDaemon’s shared DaemonRunContext or have
it create one or more DaemonRunContext instances. A DaemonRunContext
represents one test execution context for functional or load testing. Each
DaemonRunContext is independent of the others, except for a group of contexts
created via TestRunDaemon.createContexts(int threads) which
creates a group of related contexts for load-testing similar to running QF-Test
with the -threads <number>(929) command line argument. Each
DaemonRunContext requires one QF-Test development or runtime license
during its lifetime.

• Now you can tell the DaemonRunContext to execute tests on your behalf, either
whole test suites or Test set(566) or Test case(558) nodes. With properly implemented
Dependencies(589) you can have a Daemon execute Test cases on your behalf in any
arbitrary order without explicitly having to take care of any setup or cleanup tasks.

• The DaemonRunContext also has methods to check the current state of a test
run or wait for it to finish.

55.2. Daemon API 1197

• Finally you can get the run log of the test run from the Daemon. Right now, all
you can do is save it, but we will open the run log API so that you will be able to
integrate run logs from various daemons and test runs into a single run log.

For proper dependency management, including rollback of no longer required
dependencies between Test case invocations, it is important to use the same
DaemonRunContext for execution of each related Test case. The easiest
way to achieve this is to use the shared TestRunDaemon and its shared
DaemonRunContext each time you talk to a given Daemon.

The following sections provide a complete reference for the daemon API. Further expla-
nations and examples are provided in section 25.2(320).

55.2.1 The DaemonLocator

The singleton class de.qfs.apps.qftest.daemon.DaemonLocator can be used
to get hold of Daemon instances.

static DaemonLocator instance()

Get the singleton instance.
Returns The singleton instance.

Daemon locateDaemon(String host, int port)

Get a Daemon from a specific host and port.
Parameters
host The target host, name or IP string.
port The target port.
Returns The daemon or null if none can be found.

Daemon[] locateDaemons(long timeout)

Get all known daemons.
Parameters
timeout The time in milliseconds to wait for daemons to react.
Returns The known daemons.

void setKeystore(String keystoreFile)

Sets the keystore, which should be used to to secure the daemon communication.
Parameters
keystoreFile The path to the keystore file used to encrypt the daemon

communication.

55.2. Daemon API 1198

void setKeystorePassword(String password)

Sets the password for the keystore defined with setKeystore.
Parameters
password The password.

void setTruststore(String truststoreFile)
Sets the truststore, which should be used to to secure the daemon communication. If
not set, the keystore will be used, which has been set with setKeystore.
Parameters
truststoreFile The path to the truststore file used to encrypt the daemon

communication.

void setTruststorePassword(String password)

Sets the password for the trststore defined with setTruststore.
Parameters
password The password.

55.2.2 The Daemon

The de.qfs.apps.qftest.daemon.Daemon interface is an envelope for various
kinds of QF-Test daemons. Currently only the TestRunDaemon is available, but
something like an SUTClientStarterDaemon is already planned and others may
follow.

void cleanup()
Clean up all TestRunDaemons belonging to this Daemon and then kill all clients. The
default timeout of 30 seconds is used to wait for possible dependency rollback.
Throws
RemoteException If something RMI specific goes wrong.

void cleanup(long timeout)

Clean up all TestRunDaemons belonging to this Daemon and then kill all clients.
Parameters
timeout The maximum time in milliseconds to wait for possible de-

pendency rollback.
Throws
RemoteException If something RMI specific goes wrong.

55.2. Daemon API 1199

TestRunDaemon createTestRunDaemon()

Get access to a TestRunDaemon.
Returns A TestRunDaemon.
Throws
RemoteException If something RMI specific goes wrong.

String getHost()

Get the host of the Daemon.
Returns The host of the Daemon.
Throws
RemoteException If something RMI specific goes wrong.

String getIp()

Get the ip of the Daemon.
Returns The ip of the Daemon.
Throws
RemoteException If something RMI specific goes wrong.

int getPort()

Get the port of the Daemon.
Returns The port of the Daemon.
Throws
RemoteException If something RMI specific goes wrong.

TestRunDaemon getSharedTestRunDaemon()

Get the shared TestRunDaemon.
Returns The shared TestRunDaemon.
Throws
RemoteException If something RMI specific goes wrong.

TestRunDaemon[] getTestRunDaemons()

Get all TestRunDaemons created by the Daemon that are still live.
Returns The set of live TestRunDaemons created by the Daemon.

Does not include the shared TestRunDaemon.
Throws
RemoteException If something RMI specific goes wrong.

void killClients()

Kill all clients that belong to the VM of the daemon.
Throws
RemoteException If something RMI specific goes wrong.

55.2. Daemon API 1200

void ping()

Test whether the Daemon is still alive.
Throws
RemoteException If something RMI specific goes wrong.

void terminate(int exitCode)

Terminate the daemon process by calling System.exit.
Parameters
exitCode The exit code for the daemon.
Throws
RemoteException If something RMI specific goes wrong.

55.2.3 The TestRunDaemon

The de.qfs.apps.qftest.daemon.TestRunDaemon is the outer interface for test
execution. It is used to define the environment for associated test runs and create the
DaemonRunContext instances that handle the actual test execution.

Miscellaneous

Daemon getDaemon()

Get the Daemon to which the TestRunDaemon belongs.
Returns The Daemon of the TestRunDaemon.
Throws
RemoteException If something RMI specific goes wrong.

Global variable handling

The TestRunDaemon has its own set of global variables which are used to initialize the
globals when creating a new DaemonRunContext. The following methods have no effect
on already running DaemonRunContext instances.

void clearGlobals()

Clear all global variables.
Throws
RemoteException If something RMI specific goes wrong.

55.2. Daemon API 1201

String getGlobal(String name)

Get a global variable value as String.
Parameters
name The name of the global variable.
Returns The value of the global variable as String or null if unde-

fined.
Throws
RemoteException If something RMI specific goes wrong.

Object getGlobalObject(String name)
Get the object value of a global variable.
When working with the object returned please be aware the properties and methods of
the object may differ slightly when using a different script language than the one used
to create the object.
Parameters
name The name of the global variable.
Returns The object value of the global variable or null if undefined.

If problems occure during serialization or deserialization,
the String value is returned.

Throws
RemoteException If something RMI specific goes wrong.

Map getGlobalObjects()
Get all global variable values.
When working with the objects returned please be aware the properties and methods of
the objects may differ slightly when using a different script language than the one used
to create the objects.
Returns All global variable values as String-Object pairs.
Throws
RemoteException If something RMI specific goes wrong.

Properties getGlobals()

Get all global variable values as Strings.
Returns All global variable values as Strings.
Throws
RemoteException If something RMI specific goes wrong.

55.2. Daemon API 1202

void setGlobal(String name, String value)

Set a global variable value.
Parameters
name The name of the global variable.
value The value of the global variable.
Throws
RemoteException If something RMI specific goes wrong.

Test execution

void cleanup()
Clean up and release all contexts belonging to this TestRunDaemon. The default time-
out of 30 seconds is used to wait for possible dependency rollback.
Throws
RemoteException If something RMI specific goes wrong.

void cleanup(long timeout)

Clean up and release all contexts belonging to this TestRunDaemon.
Parameters
timeout The maximum time in milliseconds to wait for possible de-

pendency rollback.
Throws
RemoteException If something RMI specific goes wrong.

DaemonRunContext createContext()

Create a single daemon run context. Needs to acquire a license.
Returns The context or null if no license can be acquired.
Throws
RemoteException If something RMI specific goes wrong.

DaemonRunContext[] createContexts(int threads)
Create daemon run contexts for multiple threads. Needs to acquire one license per
thread.
Parameters
threads The number of threads for the contexts.
Returns The contexts or null if not enough licenses can be ac-

quired.
Throws
RemoteException If something RMI specific goes wrong.

55.2. Daemon API 1203

DaemonRunContext[] getContexts()
Get all DaemonRunContexts created by the TestRunDaemon that are still live and have
not been released.
Returns The set of live DaemonRunContexts created by the

TestRunDaemon. Does not include the shared Daemon-
RunContext.

Throws
RemoteException If something RMI specific goes wrong.

DaemonRunContext getSharedContext()
Get the shared daemon run context. Needs to acquire a license if the shared context
must be created first.
Returns The shared context or null if no license can be acquired.
Throws
RemoteException If something RMI specific goes wrong.

void setRootDirectory(String directory)

Set the test suite root directory for new created daemon run contexts.
Parameters
directory The new root directory.
Throws
RemoteException If something RMI specific goes wrong.

Identification

String getIdentifier()
Get the identifier for the TestRunDaemon. If no identifier was previously set with se-
tIdentifier(), a default identifier is created from the name of the Daemon, to which the
TestRunDaemon belongs, and a counter.
Returns The identifier for the TestRunDaemon.
Throws
RemoteException If something RMI specific goes wrong.

void setIdentifier(String identifier)
Set an identifier for the TestRunDaemon. This can be useful in identifying a TestRun-
Daemon retrieved via Daemon.getTestRunDaemons().
Parameters
identifier The identifier to set.
Throws
RemoteException If something RMI specific goes wrong.

55.2. Daemon API 1204

55.2.4 The DaemonRunContext

The de.qfs.apps.qftest.daemon.DaemonRunContext interface is in charge of
the actual test execution.

The following run states are defined:

State Value Description
STATE_INVALID -1 Invalid after release - cannot be reactivated.
STATE_IDLE 0 No run scheduled.
STATE_SCHEDULED 1 Run scheduled but not started.
STATE_RUNNING 2 Running.
STATE_PAUSED 3 Running but paused.
STATE_FINISHED 4 Run finished, result and run log available.

Table 55.1: The run state

The following result codes for the getResult() method are the same as everywhere6.0+
in QF-Test:

Result Value Description
RESULT_OK 0 Run OK, no warnings, errors or exceptions.
RESULT_WARNING 1 Run mostly OK, some warnings but no errors or exceptions.
RESULT_ERROR 2 Run failed with errors but no exceptions.
RESULT_EXCEPTION 3 Run failed with an exception.

Table 55.2: The result codes

55.2. Daemon API 1205

void addTestRunListener(DaemonTestRunListener listener, boolean
synchronous, long timeout)

Add a DaemonTestRunListener to the DaemonRunContext.
Parameters
listener The listener to add.
synchronous Whether the listener should get notified synchronously, in

which case the test run will be blocked while the listener
is processing the event.

timeout Timeout in milliseconds for callbacks to the listener. If the
listener does not reply within that time the listener is au-
tomatically unregistered to prevent further problems. In
case of a synchronous listener the test run will then con-
tinue. A value of 0 means no timeout which is dangerous
but may be useful.

boolean callProcedure(String procedure, Properties
bindings=None)

Call a procedure in the run context.
Parameters
procedure The procedure to run, of the form Suite#Procedure

where Procedure is the fully qualified name of the Proce-
dure.

bindings An optional set of variable bindings. These variables have
higher precedence than the globals or any bindings on the
fallback stack.

Returns True if the procedure call was started, false if suite or pro-
cedure could not be found.

Throws
RemoteException If something RMI specific goes wrong.
IllegalStateException If no run can be started in the current state, i.e. if the state

is neither STATE_IDLE nor STATE_FINISHED.

void clearGlobals()

Clear all global variables of the DaemonRunContext.
Throws
RemoteException If something RMI specific goes wrong.

void clearTestRunListeners()

Remove all DaemonTestRunListeners from the DaemonRunContext.

55.2. Daemon API 1206

String getGlobal(String name)

Retrieve the value of a global variable as String from the DaemonRunContext.
Parameters
name The name of the variable.
Returns The value of the variable as String or null if undefined.
Throws
RemoteException If something RMI specific goes wrong.

Object getGlobalObject(String name)
Retrieve the value of a global variable from the DaemonRunContext.
When working with the object returned please be aware the properties and methods of
the object may differ slightly when using a different script language than the one used
to create the object.
Parameters
name The name of the variable.
Returns The value of the variable or null if undefined.
Throws
RemoteException If something RMI specific goes wrong.

Map getGlobalObjects()
Retrieve all global variables from the DaemonRunContext.
When working with the objects returned please be aware the properties and methods of
the objects may differ slightly when using a different script language than the one used
to create the objects.
Returns The global variables.
Throws
RemoteException If something RMI specific goes wrong.

Properties getGlobals()

Retrieve all global variables as Strings from the DaemonRunContex.
Returns The global variables as Strings.
Throws
RemoteException If something RMI specific goes wrong.

55.2. Daemon API 1207

Object getGroupObject(String group, String name)
Retrieve the value of a group object (property or resource) from the DaemonRunCon-
text.
When working with the object returned please be aware the properties and methods of
the object may differ slightly when using a different script language than the one used
to create the object.
Parameters
name The name of the property or resource group.
name The name of the property.
Returns The value of the property or null if undefined.
Throws
RemoteException If something RMI specific goes wrong.

Map getGroupObjects(String group)
Retrieve all objects from a property or resource group from the DaemonRunContext.
When working with the objects returned please be aware the properties and methods of
the objects may differ slightly when using a different script language than the one used
to create the objects.
Parameters
name The name of the property or resource group.
Returns The objects or null if no such group exists.
Throws
RemoteException If something RMI specific goes wrong.

String getIdentifier()
Get the identifier for the DaemonRunContext. If no identifier was previously set with
setIdentifier(), a default identifier is created from the name of the TestRunDaemon, to
which the DaemonRunContext belongs, and a counter.
Returns The identifier for the DaemonRunContext.
Throws
RemoteException If something RMI specific goes wrong.

String getLastTest()
Get the name of the test that is currently running or was last run on this DaemonRun-
Context.
Returns The name of the currently running or most recently exe-

cuted test.
Throws
RemoteException If something RMI specific goes wrong.

55.2. Daemon API 1208

int getNumThreads()

Get the number of threads in the group to which the DaemonRunContext belongs.
Returns The number of threads of the DaemonRunContext’s

group.
Throws
RemoteException If something RMI specific goes wrong.

Properties getProperties(String group)
Retrieve all properties from a property or resource group as String from the Daemon-
RunContext.
Parameters
name The name of the property or resource group.
Returns The properties as Strings or null if no such group exists.
Throws
RemoteException If something RMI specific goes wrong.

String getProperty(String group, String name)

Retrieve the value of a property or resource from the DaemonRunContext as String.
Parameters
name The name of the property or resource group.
name The name of the property.
Returns The value of the property as String or null if undefined.
Throws
RemoteException If something RMI specific goes wrong.

int getResult()

Get the result of the test run.
Returns The result of the run, one of RESULT_OK,

RESULT_WARNING, RESULT_ERROR or RE-
SULT_EXCEPTION.

Throws
RemoteException If something RMI specific goes wrong.
IllegalStateException If the state isn’t STATE_FINISHED.

byte[] getRunLog()

Get the run log of the test run.
Returns The run log dumped into a byte array.
Throws
RemoteException If something RMI specific goes wrong.
IllegalStateException If the state isn’t STATE_FINISHED.

55.2. Daemon API 1209

int getRunState()

Get the current run state of the context.
Returns The current run state, one of STATE_IDLE,

STATE_SCHEDULED, STATE_RUNNING,
STATE_PAUSED or STATE_FINISHED.

Throws
RemoteException If something RMI specific goes wrong.

TestRunDaemon getTestRunDaemon()

Get the TestRunDaemon to which the DaemonRunContext belongs.
Returns The TestRunDaemon of the DaemonRunContext.
Throws
RemoteException If something RMI specific goes wrong.

int getThreadNum()

Get the thread index of the DaemonRunContext.
Parameters

Returns The thread index of the DaemonRunContext.
Throws
RemoteException If something RMI specific goes wrong.

void release()

Release the DaemonRunContext and return its license. If a test is running, stop it.
Throws
RemoteException If something RMI specific goes wrong.
IllegalStateException If no DaemonRunContext was allocated.

void removeTestRunListener(DaemonTestRunListener listener)

Remove a DaemonTestRunListener from the DaemonRunContext.
Parameters
listener The listener to remove.

void rollbackDependencies()

Roll back the dependencies for this DaemonRunContext.
Throws
RemoteException If something RMI specific goes wrong.
IllegalStateException If no run can be started in the current state, i.e. if the state

is neither STATE_IDLE nor STATE_FINISHED.

55.2. Daemon API 1210

boolean runTest(String test, Properties bindings=None)

Run a test in the run context.
Parameters
test The test to run, of the form Suite#Test where #Test

is optional and Test is the fully qualified name of a Test
set or Test case or just ”.”. The latter is equivalent to spec-
ifying just Suite and causes the whole test suite to be
executed. Examples:
MySuite Runs whole test

suite MySuite.
MySuite#. Runs whole test

suite MySuite.
MySuite#MyTestSet Runs test set

MyTestSet
in test suite
MySuite.

MySuite#MyTestSet.MyTestCaseRuns test case
MyTestCase
located in test
set MyTestSet
in test suite
MySuite.

bindings An optional set of variable bindings. These variables have
higher precedence than the globals or any bindings on the
fallback stack.

Returns True if the test was started, false if suite or test could not
be found.

Throws
RemoteException If something RMI specific goes wrong.
IllegalStateException If no run can be started in the current state, i.e. if the state

is neither STATE_IDLE nor STATE_FINISHED.

void setGlobals(Properties globals)

Set the global variables of the DaemonRunContext.
Parameters
globals The global variables to set.
Throws
RemoteException If something RMI specific goes wrong.

55.2. Daemon API 1211

void setIdentifier(String identifier)
Set an identifier for the DaemonRunContext. This can be useful in identifying a Dae-
monRunContext retrieved via TestRunDaemon.getContexts().
Parameters
identifier The identifier to set.
Throws
RemoteException If something RMI specific goes wrong.

void setRootDirectory(String directory)

Set the test suite root directory for the next test run.
Parameters
directory The new root directory.
Throws
RemoteException If something RMI specific goes wrong.

void stopRun()

Stop the test run.
Throws
RemoteException If something RMI specific goes wrong.
IllegalStateException If no run was scheduled.

boolean waitForRunState(int state, long timeout)

Wait for the context to reach a given state.
Parameters
state The state to wait for.
timeout Maximum time in milliseconds to wait.
Returns True if the state was reached, false if timed out.
Throws
RemoteException If something RMI specific goes wrong.

55.2.5 The DaemonTestRunListener
3.1+

The de.qfs.apps.qftest.daemon.DaemonTestRunListener
interface is identical to the interface
de.qfs.apps.qftest.extensions.qftest.TestRunListener described in
section 54.6(1140), except that its methods can throw a RemoteException on RMI
failure. When implementing this interface you must derive your class from
java.rmi.server.UnicastRemoteObject.

You can register the listener with a DaemonRunContext via its addTestRunListener

55.3. Daemon security considerations 1212

method described in the previous section.

55.3 Daemon security considerations
3.5+

Anybody with access to the QF-Test daemon can start any program on the daemon
machine with the rights of the user account that the daemon is running under, so care
should be taken to only allow trusted users to connect to the daemon.

Of course the QF-Test daemon should always be run on a machine that is protected
from outside access by a firewall. If all users that can access the machine behind the
firewall are trusted, that is sufficient. If the set of trusted users needs to be limited
further, please read on.

By default the QF-Test daemon uses SSL to secure the RMI connection. However,
unless you take additional precautions, this only means that the network traffic between
the daemon and its client is encrypted. To restrict access to certain users, one further
step is required.

Setting up SSL communication can be very complex. One usually has to learn about
keys, certificates, certificate authorities, chains of trust etc. Fortunately, this is a very
special case, and the fact that once a user has access to the QF-Test daemon he also
has control over the daemon’s machine means that there is no distinction between the
daemon administrator and a daemon user. Without going into details, QF-Test normally
uses a single keystore file with a single self-signed certificate on both daemon and client
side. More complex scenarios are possible but beyond the scope of this manual. The
default keystore file is named daemon.keystore and provided in QF-Test’s system
directory or the version-specific directory. By creating your own keystore as described
below you can ensure that only users that have read access to that keystore file can
interact with the daemon.

55.3.1 Creating your own keystore

To create the keystore file you need a current JDK version 1.5 or higher, a JRE is not
sufficient. In a shell or console window, execute the following command (you may need
to prepend the path to the keytool program which resides in the JDK’s bin directory):

keytool -keystore daemon.keystore -genkey -alias "qftest daemon"
-keyalg DSA -validity 999999

Example 55.1: Creating a keystore for secure daemon communication

For further information about the keytool command please see

55.3. Daemon security considerations 1213

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.htm.

When asked for the password for the keystore enter 123456. When asked for your
name or organization, feel free to provide answers or not. For QF-Test these don’t make
any difference. Of course you can provide a secure password instead of 123456, but
that will only complicate starting the daemon and its client and not contribute much to
security. You could also use a shorter validity, but in case the keystore file gets into the
wrong hands, all you need to do is set up your daemon and users with a new one, so
the old one becomes useless.

55.3.2 Specifying the keystore

You have several options to tell QF-Test to use your keystore instead of the default one:

• Save the file as daemon.keystore in QF-Test’s system directory

• Save the file as daemon.keystore in the user configuration directory(11).

• Save the file wherever you like and provide its location to QF-Test via the command
line argument -keystore <keystore file>(919).

In case you specified your own password for the keystore you also need to specify that
via the command line argument -keypass <keystore password>(919).

In case you would like to start the daemon without any SSL support, for example to
interact with a QF-Test version older than 3.5, either remove the file called
daemon.keystore from QF-Test’s version specific directory or use the command line
argument in the form -keystore= to specify no keystore.

55.3.3 Specifying the keystore on the client side

If you use qftest -batch -calldaemon to access the daemon or script nodes from
within QF-Test, the options for the client are the same as for the daemon.

To access the daemon over SSL from your own code via the daemon API
you must set the System properties javax.net.ssl.keyStore
and javax.net.ssl.trustStore to the keystore file and
javax.net.ssl.keyStorePassword to the password for the keystore file. See
section 55.2(1194) for details about the daemon API and section 25.2(320) for examples.

Chapter 56

The Procedure Builder definition file

For general information about the Procedure Builder, please see chapter chapter 27(341).

56.1 Placeholders

In the definition of procedures, packages and even in the nodes of the procedures, you
can use placeholders. The following table shows all placeholders and their meaning:

56.1. Placeholders 1215

Placeholder Description
<COMPID> The QF-Test ID of the component
<COMPNAME> The name of the component
<COMPFEATURE> The feature of the component
<COMPCLASS> The recorded class of the component
<COMPTKCLASS> The toolkit specific class of the component
<COMPSYSCLASS> The system class of the component
<COMPGENCLASS> The generic class of the component
<COMPEF-name-of-extra-feature> The value of the given extra feature
<CURRENTVALUE> The current value of the component, e.g. the text of a text-field

or the current selection of a combo-box etc.
<CURRENTENABLEDSTATE> The current enabled state of the component
<CURRENTSELECTEDSTATE> The current selectable state of the component
<CURRENTEDITABLESTATE> The current editable state of the component
<PCOMPID> The QF-Test ID of the parent component
<PCOMPNAME> The name of the parent component
<PCOMPFEATURE> The feature of the parent component
<PCOMPCLASS> The class of the parent component
<PCOMPEF-name-of-extrafeature> The value of the given extra feature of the parent component
<GPCOMPID> The QF-Test ID of the grandparent component
<GPCOMPNAME> The name of the grandparent component
<GPCOMPFEATURE> The feature of the grandparent component
<GPCOMPCLASS> The class of the grandparent component
<GPCOMPEF-name-of-extrafeature> The value of the given extra feature of the grandparent com-

ponent
<ENGINE> The engine’s name, either ’awt’, ’swt’, ’web’ or ’fx’.
<ENGINE2> The alternative engine’s name, either ’swing’, ’swt’, ’web’ or

’fx’.

Table 56.1: Placeholders for component procedures

For procedures of container or composite components you can also use placeholders
for the child components. Please see following table for those additional variables:

56.1. Placeholders 1216

Variable Description
<CCOMPID> The QF-Test ID of the child component
<CCOMPNAME> The name of the child component
<CCOMPFEATURE> The feature of the child component
<CCOMPCLASS> The recorded class of the child component
<CCOMPTKCLASS> The toolkit class of the child component
<CCOMPSYSCLASS> The system class of the child component
<CCOMPGENCLASS> The generic class of the child component
<CCOMPEF-name-of-extrafeature> The value of the given extra feature
<CCURRENTVALUE> The current value of the child component, e.g. the text of a

text-field or the current selection of a combo-box etc.
<CCURRENTENABLEDSTATE> The current enabled state of the child component
<CCURRENTSELECTEDSTATE> The current selectable state of the child component
<CCURRENTEDITABLESTATE> The current editable state of the child component

Table 56.2: Additional placeholders for container procedures

56.1.1 Fallback values for placeholders
4.1.3+

In many projects procedure and parameter names will be generated using the place-
holders COMPNAME, COMPFEATURE or COMPEF-qfs:label. Those placeholders are
used because readable names or meaningful labels exist. But in some cases those
placeholders cannot be filled by every component, e.g. a new implemented button has
no meaningful name yet or QF-Test cannot determine a useful label for a textfield. In
such cases you could consider implementing resolvers but those need to be stable and
robust again. Instead you can specify so called fallback values for any placeholder now.
The values of those fallback definition will be used whenever the actual placeholder has
no value.

You can specify them in the ’Comment’ attribute of the configured ’Package’ and
’Procedure’ nodes. Therefore, you need to write @fallback_ and then the name of
the placeholder. Afterwards you define the fallback placeholders. So, a placeholder for
COMPNAME looks like @fallback_COMPNAME COMPFEATURE. You can see that the
value of the placeholder COMPFEATURE will be taken into account, if no value
for COMPNAME could be detected. You can also specify several fallback
placeholders using a comma separated list like @fallback_COMPEF-qfs:label
COMPFEATURE,COMPNAME.

56.2. Conditions for Package and Procedure Definition 1217

56.2 Conditions for Package and Procedure Definition

You can influence the creation of packages and procedures via using the ’Comment’
attribute of the ’Package’ or ’Procedure’ node.

Comment-Attribute Description
@ABSOLUTECALL This doctag can be used in procedures generating procedure calls via

@FORCHILDREN when you do not want QF-Test to prefix the specified pro-
cedure call by procbuilder.

@CONDITION Specifies a dedicated condition for creating packages or procedures. You can
define conditions as Jython, Groovy, JavaScript or regular expression. Please
see below for further details.

@EXCEPT Specifies, whether the package or the procedure should be defined for a cer-
tain class or not. This construct might be useful, if you define a package or
procedure for an abstract class and the procedures should not be created for
all of its descendants.

@FORCECREATION This doctag can be used in procedures generating procedure calls via
@FORCHILDREN when you want QF-Test to create the procedure call once
in the procedure, irrespective of child components.

@FORCHILDREN When you set this doctag for Procedure nodes you can specify Procedure calls
in the body of the Procedure where you prefix the Procedure name by the class
name of the child components for which the Procedure call should be created.
When generating the procedures, QF-Test will create the respective Proce-
dure call for each component matching the class the Procedure call was pre-
fixed with. Example: If you place a Procedure call with the Procedure name
TextField.setText in a procedure flagged with @FORCHILDREN QF-
Test will generate a Procedure node with Procedure calls to setText for each
child component with the Class name TextField.

@NOTINHERIT If this value is set, then this package or procedure is only defined for the exact
class and not for its descendants.

@SUBITEM This value is only valid for menu actions up-to-now. If this flag is set, then the
according package or procedure will be created for sub-items on the second
level of a menu only.

@SWTSTYLE Evaluate the style attribute of a given SWT-button. This SWT specific attribute
sometimes is needed because SWT distinguishes between check-boxes, but-
tons or radio-buttons only via the style attribute. For SWT-buttons you can
define something like @SWTSTYLE=PUSH or @SWTSTYLE=RADIO for radio but-
tons.

Table 56.3: Comment attributes for procedure creation

56.3. Interpretation of the Component Hierarchy 1218

56.3 Interpretation of the Component Hierarchy

It might be interesting to make use of the component-hierarchy in the package structure.
This approach allows the tester to locate the component-specific procedures quite easy.
If you want to create component-hierarchy packages, you can use two placeholders in
the package-names:

Hierarchy-Placeholder Description
<HIERARCHY> Create packages for the full component-hierarchy by using the QF-Test

component ID.
<HIERARCHY_NAME> Create packages for the full component-hierarchy by using the name

of the component. If a component in the hierarchy has no name, the
component won’t get taken into account.

<HIERARCHY_FEATURE> Create packages for the full component-hierarchy by using the
recorded feature of the component. If a component in the hierarchy
has no feature, the component won’t get taken into account.

<IHIERARCHY> Create packages only for interesting components in the component-
hierarchy by using the QF-Test component ID. An interesting compo-
nent is a component with a feature.

<IHIERARCHY_NAME> Create packages only for interesting components in the component-
hierarchy by using the name of the component. An interesting com-
ponent is a component with a feature.

<IHIERARCHY_FEATURE> Create packages only for interesting components in the component-
hierarchy by using the feature of the component. An interesting com-
ponent is a component with a feature.

<MHIERARCHY> Create packages only for menu components in the component-
hierarchy by using the QF-Test component ID. It only takes components
into account, which act as menu or menu item.

<MHIERARCHY_NAME> Create packages only for menu components in the component-
hierarchy by using the component-name. It only takes components
into account, which act as menu or menu item. If no name is set, the
component will be ignored.

<MHIERARCHY_FEATURE> Create packages only for menu components in the component-
hierarchy by using the component-feature. It only takes components
into account, which act as menu or menu item. If no feature is set, the
component will be ignored.

Table 56.4: Hierarchy placeholders

56.4 Details about the @CONDITION tag
3.4+

Using the @CONDITION tag allows you to configure, whether a dedicated node should
be created or not during creation time.

56.4. Details about the @CONDITION tag 1219

Such conditions might be used to check a certain name or for appearance of a dedicated
letter in the feature. If this condition is not fulfilled, the node won’t be created. You can
use all known placeholders, e.g. <COMPID> or <CCOMPNAME>.

Value of Condition Meaning
@CONDITION jython ”<COMPFEATURE>”.startswith(”abc”) Here we define a Jython condi-

tion, which will create the accord-
ing node, if the feature of the cur-
rent component starts with ’abc’.
It is possible to use any string or
comparing method of Jython.

@CONDITION groovy ”<COMPFEATURE>”.startsWith(”abc”) Here we define a Groovy condi-
tion, which will create the accord-
ing node, if the feature of the cur-
rent component starts with ’abc’.
It is possible to use any string or
comparing method of Groovy.

@CONDITION javascript ”<COMPFEATURE>”.startsWith(”abc”) Here we define a JavaScript con-
dition, which will create the ac-
cording node, if the feature of
the current component starts with
’abc’. It is possible to use any
string or comparing method of
JavaScript.

@CONDITION regexp ”<COMPFEATURE>” =∼ ”abc.*” Here we define a regular expres-
sion, which will create the accord-
ing node, if the feature of the cur-
rent component starts with ’abc’. It
is possible to use all capabilities of
Java regular expressions.

@CONDITION regexp ”<COMPFEATURE>” !∼ ”abc.*” Here we define a regular expres-
sion condition, which will create
the according node, if the feature
of the current component does not
start with ’abc’. It is possible to use
all capabilities of Java regular ex-
pressions.

Table 56.5: Samples for the @CONDITION tag

If you need more than one row, you have to use a \ at the end of the first row.

Chapter 57

The ManualStepDialog

The ManualStepDialog is a Java class delivered by QF-Test. If you want to make use
of this dialog for your own tests, please see following sample script and API specification.

from de.qfs.apps.qftest import ManualStepDialog
#create the dialog and show it immediately
manualDialog = ManualStepDialog(None, "New Test Case Title", \
"Step Description", "Expected Test Result")
#did the test fail or succeed?
failOrSuccess = manualDialog.getResult()
#get the content of the received result
receivedResult = manualDialog.getReceivedResult()
#get the execution information, whether skipped or canceled
execInfo = manualDialog.getExecInfo()

Example 57.1: Example use of ManualStepDialog

57.1 The ManualStepDialog API

ManualStepDialog ManualStepDialog(Component parent, String
title, String stepText, String expResult)

Create a new ManualStepDialog.
Parameters
parent The parent component for the dialog.
title The title of the dialog.
stepText The text for the step description text-field.
expResult The text for the expected result text-field.

57.1. The ManualStepDialog API 1221

String getExecInfo()

Get the execution information of the test step.
Returns A string containing the execution information.

String getReceivedResult()

Get the received result of the test step.
Returns A string containing the received result.

String getResult()

Get the result of the test step. Please, see chapter section 34.5(424) for all possible results.
Returns A string containing the result.

boolean isStatusCanceled()

Test whether the status is CANCELED.
Returns True if the status is canceled, false otherwise.

boolean isStatusFailed()

Test whether the status is FAILED.
Returns True if the status is failed, false otherwise.

boolean isStatusPassed()

Test whether the status is PASSED.
Returns True if the status is passed, false otherwise.

boolean isStatusSkipped()

Test whether the status is SKIPPED.
Returns True if the status is skipped, false otherwise.

void setExecInfo(String newExecInfo)

Set the execution information of the test step.
Parameters
newExecInfo The execution information of the test step.

void setReceivedResult(String newRecResult)

Set the received result of the test step.
Parameters
newReceived Result The received result of the test step.

void setResult(String newResult)

Set the result of the test step. Please, see chapter section 34.5(424) for all possible results.
Parameters
newResult The result of the test step.

Chapter 58

Details about transforming nodes

3.1+

58.1 Introduction

The transformation mechanism allows you to turn a node into another type, e.g. a
Sequence into a Procedure or a Test into a Test case. Such actions could be required for
re-factoring purposes or simply to make test development for efficient.

You can transform nodes via a right mouse click and then selecting
Transform node into and the desired type.

QF-Test only shows transformations that are possible in the current context of the testNote
suite, so sometimes you may not see all possible transformations.

58.2 Transformation with type changes

The following transformations also change the type of child nodes of the converted
nodes:

1. Test set into Test case

(a) Data driver into disabled Sequence

(b) Test case into Test step

2. Test case into Test set

(a) All children are packed into a new sub Test case node.

3. Test into Test set recursive

58.3. Additional transformations below the Extras node 1223

(a) If there are only Data driver and Test children, the Data driver is turned into a
disabled Test.

(b) Otherwise all children are packed into a new sub Test case node.

4. Test into Test case

(a) Data driver into disabled Sequence

58.3 Additional transformations below the Extras node

The following transformations are allowed below the Extras node only:

58.3.1 Transformations without side-effects

1. Sequence into Cleanup

2. Sequence into Setup

3. Sequence into Test case

4. Cleanup into Procedure

5. Setup into Procedure

6. Procedure into Sequence

7. Procedure into Test case

58.3.2 Transformations with side-effects

The following transformations also change the type of some child nodes:

1. Test set into Package

(a) Cleanup into disabled Procedure

(b) Data driver into disabled Procedure

(c) Dependency reference into disabled Dependency containing the previous Depen-
dency reference

(d) Setup into disabled Procedure

(e) Test into Procedure

58.3. Additional transformations below the Extras node 1224

(f) Test case into Procedure

(g) Test call into disabled Procedure containing the Test call

2. Test case into Procedure

(a) Cleanup into disabled Sequence

(b) Dependency into disabled Sequence

(c) Dependency reference into disabled Sequence

(d) Setup into disabled Sequence

3. Test into Procedure

(a) Data driver into disabled Sequence

4. Test into Package

(a) All child nodes are packed into a Procedure node.

5. Test into Sequence

(a) Data driver into disabled Sequence

6. Package into Test set

(a) Package into Test set

(b) Procedure into Test case

Chapter 59

Details about the algorithm for image
comparison

3.3+

59.1 Introduction

The classic Check image(775) node is only minimally tolerant towards deviations. Using the
default algorithm of comparing pixel by pixel it is not possible to check images that are
generated in a not-quite-deterministic way or differ in size.

By using the attribute Algorithm for image comparison(778) it is possible to define a special
algorithm which is tolerant towards certain image deviations. The attribute must start
with the algorithm definition in the form algorithm=<algorithm> followed by all required
parameters, separated by semicolons. Parameters may be defined in any order, and
use of variables is possible, e.g.:

algorithm=<algo>;parameter1=value1;parameter2=value2;
expected=$(expected)

Since QF-Test 3.5.1 the definition does not need so start with algorithm=<algorithm>3.5.1+
but can simply begin with <algorithm>.
It is also no longer necessary to define the parameter ’expected’. QF-Test uses a default
value if it is not set. Please see below for more information.

A detailed description of the available algorithms and their parameters is provided in the
following section. For illustration, explanations are based on their effects on the following
image:

59.2. Description of algorithms 1226

Figure 59.1: Original image

In the related run log (see section 7.1(124)) of a failed check you have the opportunity to
analyze the results of the algorithm as well as the result of probability calculation.
If you activate the option Log successful advanced image checks(549) all tolerant image
checks will be logged for further analysis.

59.2 Description of algorithms

59.2.1 Classic image check

Description
The classic - or default - image check compares the color value of every single

expected and actual pixel. If at least one expected pixel differs from the actual
pixel the check fails. The option Tolerance for checking images(507) defines the
tolerance for comparing pixel values.

Purpose
This pixel-based check is suitable if you expect an exact image match with

minimal tolerances or any deviations. Whenever your application renders the
component not fully deterministically, this algorithm is not suitable.

Example
The classic image check doesn’t transform the image, thus the result looks

identical to the original image.

59.2. Description of algorithms 1227

Figure 59.2: Classic image check

The classic image check is used when the Algorithm for image comparison(778) attribute is
empty.

59.2.2 Pixel-based identity check

Description
This algorithm is similar to the classic algorithm, but accepts an amount of

unexpected pixels. It splits every pixel in it’s three sub-pixels red, green and blue.
Afterwards it checks every actual color value against the expected color value.
The final result is the amount of identical pixels divided by the total amount of
pixels. The calculated result is checked against an expected value.

Purpose
If your images are not rendered fully deterministic but you accept a certain

percentage of unexpected pixels, this algorithm may be useful.
But it is not suitable, if the actual images are used to have shifts or distortions.

Example
The result image of the exemplary algorithm
algorithm=identity;expected=0.95
looks identical to the original image because this algorithm does not manipulate
the image.

Figure 59.3: Pixel-based identity check

59.2. Description of algorithms 1228

Parameters

algorithm=identity
The ’Pixel-based identity check’ should be used.

expected (optional, but recommended)
Defines which probability you expect.
Valid values are between 0.0 and 1.0. If not defined, use 0.98.

resize (optional)
Defines, if the actual image should be resized before calculation to match

the size of the expected image.
Valid values are ”true” and ”false”.

find (optional)
Defines an image-in-image search.
A detailed description of this parameter can be found in section 59.3.1(1235).

59.2.3 Pixel-based similarity check

Description
This algorithm splits every pixel in it’s three sub-pixels red, green and blue.

Afterwards it checks every actual color value against the expected color value to
calculate a percental similarity. All percental deviations are added up and used
for calculation. The final result is the average deviation over all color values and
all pixels. The calculated result is checked against an expected value.

Purpose
If your images are not rendered fully deterministic but you accept a certain

deviation, this algorithm is a possible candidate for your purpose.
If you accept deviations for some pixels, but the average deviation all over the
image is small, this algorithm is also suitable.
But it is not suitable, if the actual images are used to have shifts or distortions.

Example
The result image of the exemplary algorithm
algorithm=similarity;expected=0.95
looks identical to the original image because this algorithm does not manipulate
the image.

59.2. Description of algorithms 1229

Figure 59.4: Pixel-based similarity check

Parameters

algorithm=similarity
The ’Pixel-based similarity check’ should be used.

expected (optional, but recommended)
Defines which probability you expect.
Valid values are between 0.0 and 1.0. If not defined, use 0.98.

resize (optional)
Defines, if the actual image should be resized before calculation to match

the size of the expected image.
Valid values are ”true” and ”false”.

find (optional)
Defines an image-in-image search.
A detailed description of this parameter can be found in section 59.3.1(1235).

59.2.4 Block-based identity check

Description
This algorithm partitions the image into quadratic blocks with a selectable size.

The color value of each of these blocks is calculated as the average of the color
values of the pixels the block contains. If the width or height of the image is not a
multiple of the block size, the blocks at the right and bottom edge are cropped
and weighted accordingly.
The actual blocks are checked against the expected blocks. The final result is the
amount of identical blocks divided by the total amount of blocks.

Purpose
This algorithm’s purpose is to check an image which only differs at some parts

but is identical at the remaining parts.

59.2. Description of algorithms 1230

Example
The exemplary algorithm
algorithm=block;size=10;expected=0.95
results in the following image:

Figure 59.5: Block-based identity check

Parameters

algorithm=block
The algorithm ’Block-based identity check’ should be used.

size
Defines the size of each block.
Valid values are between 1 and the image size.

expected (optional, but recommended)
Defines the minimal match probability for the check to succeed.
Valid values are between 0.0 and 1.0. If not defined, use 0.98.

resize (optional)
Defines, if the actual image should be resized before calculation to match

the size of the expected image.
Valid values are ”true” and ”false”.

find (optional)
Defines an image-in-image search.
A detailed description of this parameter can be found in section 59.3.1(1235).

59.2.5 Block-based similarity check

Description
This algorithm also partitions the image in quadratic blocks with a selectable

size. The color value of each of these blocks is calculated as the average of the

59.2. Description of algorithms 1231

color values of the pixels the block contains. If the width or height of the image is
not a multiple of the block size, the blocks at the right and bottom edge are
cropped and weighted accordingly.
The color value of each expected block is checked against the actual block. Their
color values are analyzed for percental similarity. The final result is the average
similarity of all blocks with their weight taken into account.

Purpose
This algorithm is suitable for checking images with similar color variances.

Example
The exemplary algorithm
algorithm=blocksimilarity;size=5;expected=0.95
results in the following image:

Figure 59.6: Block-based similarity check

Parameters

algorithm=blocksimilarity
The algorithm ’Block-based similarity check’ should be used.

size
Defines the size of each block.
Valid values are between 1 and the image size.

expected (optional, but recommended)
Defines the minimal match probability for the check to succeed.
Valid values are between 0.0 and 1.0. If not defined, use 0.98.

resize (optional)
Defines, if the actual image should be resized before calculation to match

the size of the expected image.
Valid values are ”true” and ”false”.

find (optional)
Defines an image-in-image search.
A detailed description of this parameter can be found in section 59.3.1(1235).

59.2. Description of algorithms 1232

59.2.6 Histogram check

Description
To create a histogram, an image is first broken into its three base colors red,

green and blue. Then the color values for each pixel are analyzed to partition
them into a definable amount of categories (known as buckets when talking about
histograms). The actual fill level of each bucket is compared to the expected level.
The result of the algorithm is a comparison of the relative frequencies of color
categories.

Purpose
Histograms are used for many scenarios. For example it is possible to check for

color tendencies or do brightness analyses.
However, histograms are not suitable for checking rather plain-colored images.

Example
The exemplary algorithm
algorithm=histogram;buckets=64;expected=0.95
results in the following image:

Figure 59.7: Histogram

Parameters

algorithm=histogram
A ’Histogram’ should be used for this image check.

buckets
Defines how many buckets to use.
Valid values are a power of 2 between 2 and 256.

59.2. Description of algorithms 1233

expected (optional, but recommended)
Defines the minimal match probability for the check to succeed.
Valid values are between 0.0 and 1.0. If not defined, use 0.98.

resize (optional)
Defines, if the actual image should be resized before calculation to match

the size of the expected image.
Valid values are ”true” and ”false”.

find (optional)
Defines an image-in-image search.
A detailed description of this parameter can be found in section 59.3.1(1235).

59.2.7 Analysis with Discrete Cosine Transformation

Description
The Discrete Cosine Transformation is a real-valued, discrete, linear, orthogonal

transformation which transforms the discrete signal from local range to frequency
range.
After transforming an image, you can eliminate low-order (fast oscillating)
frequencies. The remaining high-order (slow oscillating) frequencies with the
steady component (zeroth frequency = 0*cos(x) + y) can now be analyzed. You
can define how many frequencies per basic color should be used for this image
check. You can also specify a tolerance to accept cosine-oscillations as identical
which actually differ. Low-order frequencies get weighted less than high-order
frequencies when calculating the result.

Purpose
The Discrete Cosine Transformation is suitable for many kinds of image checks,

which require certain tolerances. The more frequencies are used for analysis the
sharper the image check is.

Example
The exemplary algorithm
algorithm=dct;frequencies=20;tolerance=0.1;expected=0.95
results in the following image:

59.2. Description of algorithms 1234

Figure 59.8: Analysis with Discrete Cosine Transformation

Parameters

algorithm=dct
’Analysis with Discrete Cosine Transformation’ should be used for this

image check.

frequencies
Defines how many frequencies to analyze.
Valid values are between 0 (steady component only) and the area of the
image.
The less frequencies are analyzed the more tolerant the check is. The
tolerance is also dependent on the size of the image.

tolerance
Defines the (non-linear) tolerance for accepting different cosine-oscillations

as identical.
Valid values are between 0.0 and 1.0.
The value 1.0 means every image matches every other image, because the
maximum difference of each frequency is tolerated. A value of 0.0 means
frequencies only match if they are exactly the same. A value of 0.1 is a good
starting point because only quite similar frequencies are accepted as
identical.

expected (optional, but recommended)
Defines the minimal match probability for the check to succeed.
Valid values are between 0.0 and 1.0. If not defined, use 0.98.

resize (optional)
Defines, if the actual image should be resized before calculation to match

the size of the expected image.
Valid values are ”true” and ”false”.

find (optional)
Defines an image-in-image search.
A detailed description of this parameter can be found in section 59.3.1(1235).

59.2. Description of algorithms 1235

59.2.8 Block-based analysis with Discrete Cosine Transformation

Description
When using this algorithm the image is first partitioned into quadratic blocks with

a selectable size (see section 59.2.4(1227)). Afterwards every partition is analyzed
using a Discrete Cosine Transformation (see section 59.2.7(1231)). The final result
is the average of all results of these Discrete Cosine Transformations with
consideration of the blocks and their weight.

Purpose
The Discrete Cosine Transformation used on the whole image deviates strongly

in case of significant brightness differences occurring in the middle of the image
because then the steady component (zeroth frequency), which is the highest
weighted part, varies strongly. The partitioning circumvents this behavior
because now only the affected partitions result in intense deviations while the
other partitions stay untouched.

Example
The exemplary algorithm
algorithm=dctblock;size=32;frequencies=4;tolerance=0.1;
expected=0.95
results in the following image:

Figure 59.9: Block-based analysis with Discrete Cosine Transformation

Parameters

algorithm=dctblock
’Blocks for analysis with Discrete Cosine Transformation’ should be used for

this image check.

size
Defines the size of each block.
Valid values are between 1 and the image size.

59.2. Description of algorithms 1236

frequencies
Defines how many frequencies to analyze.
Valid values are between 0 (steady component only) and the area of a block.
The less frequencies are analyzed the more tolerant the check is. The
tolerance is also dependent on the size of the image.

tolerance
Defines the (non-linear) tolerance for accepting different cosine-oscillations

as identical.
Valid values are between 0.0 and 1.0.
The value 1.0 means every image matches every other image, because the
maximum difference of each frequency is tolerated. A value of 0.0 means
frequencies only match if they are exactly the same. A value of 0.1 is a good
starting point because only quite similar frequencies are accepted as
identical.

expected (optional, but recommended)
Defines the minimal match probability for the check to succeed.
Valid values are between 0.0 and 1.0. If not defined, use 0.98.

resize (optional)
Defines, if the actual image should be resized before calculation to match

the size of the expected image.
Valid values are ”true” and ”false”.

find (optional)
Defines an image-in-image search.
A detailed description of this parameter can be found in section 59.3.1(1235).

59.2.9 Bilinear Filter

Description
This algorithm shrinks the image to a chooseable percental size. Afterwards the

image gets resized to its original size by use of a bilinear filter. This filter effects a
blurring, because every color value is calculated by use of neighbor pixels.
The final result is the average deviation over all color values and all pixels of this
transformed images.

Purpose
Depending on the chosen sharpness the images loose any desired image

information. Thus this algorithm is valuable for nearly any scenario.

Example
The exemplary algorithm
algorithm=bilinear;sharpness=0.2;expected=0.95
results in the following image:

59.3. Description of special functions 1237

Figure 59.10: Bilinear Filter

Parameters

algorithm=bilinear
A ’Bilinear Filter’ should be used for this image check.

sharpness
Defines the sharpness of this bilinear filter.
Valid values are between 0.0 (complete loss of information) and 1.0 (no loss
of information).
The sharpness is a linear parameter. This means a value of 0.5 eliminates
exactly half (plus minus rounding to entire pixels) of information.

expected (optional, but recommended)
Defines the minimal match probability for the check to succeed.
Valid values are between 0.0 and 1.0. If not defined, use 0.98.

resize (optional)
Defines, if the actual image should be resized before calculation to match

the size of the expected image.
Valid values are ”true” and ”false”.

find (optional)
Defines an image-in-image search.
A detailed description of this parameter can be found in section 59.3.1(1235).

59.3 Description of special functions

59.3.1 Image-in-image search

Description
The image-in-image search allows to find an expected image within a (larger)

image. The check is successful when the expected image can be found

59.3. Description of special functions 1238

anywhere using the defined algorithm. Furthermore, you can determine the
position of the match.
The following combination of parameters are valid: find=best or
find=anywhere
find=best(resultX, resultY) or find=anywhere(resultX,
resultY)

Purpose
The image-in-image search allows to compare images if you don’t know the

exact position and thus cannot define an offset. The search can be combined
with any algorithm and is thus valuable for any purpose.

Example
The exemplary algorithm
algorithm=similarity;expected=0.95;find=best(resultX,resultY)
uses pixel-based similarity check (see section 59.2.3(1226)) to find an image of Q as
part of the full image. The got image with highlighted region can be found within
the run log. Besides, the variables resultX and resultY are set to the location of
the found image.

Figure 59.11: Image-in-image search: Expected image

Figure 59.12: Image-in-image search: Got image

Parameters

find=best
Defines that the best match should be used.

59.3. Description of special functions 1239

find=anyhwere
Defines that the first match which exceeds the expected match probability

should be used.
The image-in-image search uses multiple threads and thus finding anywhere
is non-deterministic.

resultX
resultX is the name of a QF-Test variable which holds the x-position of

the found image.
If a variable for the x-position is defined, a variable for the y-position has to
be defined as well (see syntax above).

resultY
resultY is the name of a QF-Test variable which holds the y-position of

the found image. If a variable for the y-position is defined, a variable for the
x-position has to be defined as well (see syntax above).

Chapter 60

Result lists

3.2+

60.1 Introduction

Search operations like locating a reference or searching for a particular value can pro-
duce large result sets, as can operations like renaming components or procedures. In
order to provide a better overview of all affected nodes QF-Test shows a mass result list
at the end of such operations. This list holds all nodes that have been touched by the
respective operation. Besides providing an overview that list allows you to apply mass
operations on all nodes quite easily. Such mass operations could be toggling a mark
at all found nodes or deleting all of them from the test suites. Those operations can be
triggered by the Edit menu or a the table’s context menu.

60.1. Introduction 1241

Figure 60.1: Sample result list for ’Locate references’

The table comes with a context menu as well. This context menu allows you to perform
several actions on the shown nodes. If you select entries in the result list and perform a
right mouse-click you can raise some very useful actions from that menu like jumping to
the node or disabling it. Depending on the type of the list there might be specific actions
which only make sense in that particular context. A list of possible actions is provided in
section 60.2(1240).

Such result lists are available for the following actions:

• Once you press Show result list on the Search or Replace dialog.

• As result of the Locate reference action for callable nodes or components.

• As result of any command which updates several nodes.

• As result of any replacement action from the Replace dialog.

60.2. Specific list actions 1242

• As result of several analyzing actions under the Additional node operations
menu.

• Once you open a list of breakpoints under Debugger→List of all breakpoints... .

• Once a duplicate QF-Test component ID gets inserted or a suite with duplicate
components get opened.

• Once a node transformation changes the type of some child nodes.

• Once you press Edit→Open error list in the run log.

• If you update components via Update components all errors will be shown in
such a list.

If you have lots of entries in the table you can also apply a filter at the top for limiting the
nodes to the given filter values. Once you reset the filter you will see all nodes again.

60.2 Specific list actions

60.2.1 All types of lists

Following actions are available on all types of lists:

• Toggle mark

• Toggle disabled state

• Jump to node in test suite

• Set a breakpoint

• Delete a node from the list only

• Delete a node from test suite

• Store the result in a .qcv file, for details see section 60.3(1241)

• If the according action affects only one node you can also jump back to this.

60.2.2 Replacing

The replacement list provides the capability of replacing only the selected values.

60.3. Exporting and loading results 1243

60.2.3 Error list

The error list of the run log provides capabilities to update failing checks in a bunch. It
doesn’t allow to delete a node from the run log of course.

60.3 Exporting and loading results
3.5+

In case you have a very large result list that you need to work on within more than one
session, you can store its results in an external file using the menu action
Extras→Export . The export process creates a .qcv file, which is more or less a CSV

file holding the information in a QF-Test internal format. To proceed with
your work at a later time, simply load the previously exported .qcv file via
Operations→Load result list... into QF-Test.

Chapter 61

Generic classes

4.0+

QF-Test abstract recorded class from the framework specific classes in order to get
classes of common use. Those classes are called generic classes. This concept pro-
vides a better readability and clearer understanding of components. Furthermore al-
ready created tests can be re-used once the target technology is switched or if you want
to maintain tests in various technologies in parallel.

Beside those generic classes QF-Test records generic types as well. Those types give
a more detailed specification of the target component. A typical use case are password
fields. Those fields have the generic class TextField, but they have that specific
characteristic to enter passwords, so they get an additional generic type
TextField:PasswordField. Using those types makes the recognition of generic
classes for certain categories stricter and more appropriate.

A great advantage of these generic classes, especially when testing web applications
is that a user can freely assign these generic classes to components. Later on these
mappings may get reduced onto other generic classes. An example how this can be
done may be found in the manual chapter CustomWebResolver – Tables(1021).

Using generic classes has the following advantages:

• It is possible to record additional component recognition features, depending on
the generic class. Often, depending on the generic class, it makes sense to
change the recorded Feature and/or the recorded Extra features, e.g. the
qfs:label.

• Depending on the generic class, class specific checks may be provided, e.g. the
check to check a complete table row if the generic class equals Table.

• The indexing of sub-elements during recording, this means that e.g. during click
recording on a table cell only a Component for the table gets recorded, while the
exact cell is referenced via indices.

61.1. Accordion 1245

• The recording of the generic type, as far as reasonable.

• With generic classes it becomes decidable whether the exact position or the most
suitable position should get record for mouse clicks.

• Simply by assigning a recorded component to a generic class, component recog-
nition gets sharpened compared to non-specific HTML classes.

The following sections list which information is saved in particular.

61.1 Accordion

Can be used as navigator between components. Components can be expanded and
collapsed.

For the HTML mapping of accordions please refer to section 51.1.8(1032).Web

Kind: Component

Coordinates for mouse click: Sub-items or exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
All items All items of the accor-

dion
items All

Selected item Currently selected item current_item All
All items with selection All items of the accor-

dion including their se-
lection state

items_with_selection At the moment not in
web

Table 61.1: Checktypes for Accordion

61.2 BusyPane

Is drawn over other components to lock them.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Exact co-ordinates

61.3. Button 1246

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks: None

61.3 Button

Raises an action, once it is clicked. It normally doesn’t have a defined state.

Kind: Component

Coordinates for mouse click: Most appropriate position or center

Feature: Own text, tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Own text, Tooltip, Description of icon, Label close to it

qfs:type:

qfs:type Description
Button:CalendarButton Button inside a Calendar
Button:ComboBoxButton Button inside a ComboBox
Button:PaginatorButton Button to switch pages like in aPaginator
Button:ScrollBarButton Button to modify the current scrolling value

Table 61.2: Special qfs:type values for Buttons

Additional checks: None

61.4 Calendar

Can be used to select a date or time.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip

qfs:type: None

Additional checks: None

61.5. CheckBox 1247

61.5 CheckBox

Has a dedicated state. Usually you can check and un-check those components.

Kind: Component

Coordinates for mouse click: Most appropriate position or center

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Own text, Label close to it, Tooltip, Description of icon

qfs:type:

qfs:type Description
CheckBox:ComboListItemCheckBox CheckBox inside a ComboListItem
CheckBox:ListItemCheckBox CheckBox inside a ListItem
CheckBox:MenuItemCheckBox CheckBox inside a MenuItem
CheckBox:TableCellCheckBox CheckBox inside a TableCell
CheckBox:TreeNodeCheckBox CheckBox inside a TreeNode

Table 61.3: Special qfs:type values for CheckBoxes

Additional checks:

Name in Popup Description Name of checktype Engine
Checked Check the current se-

lection of that check-
box.

checked All

Table 61.4: Checktypes for Checkbox

61.6 Closer

Closes a component, e.g. the ’X’ button of a window.

Kind: Component

Coordinates for mouse click: Most appropriate position or center

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Own text, Label close to it, Tooltip, Description of icon

qfs:type:

61.7. ColorPicker 1248

qfs:type Description
Closer:AccordionCloser Closer for accordion items
Closer:TabPanelCloser Closer for tabs of a TabPanel
Closer:WindowCloser Closer for window components

Table 61.5: Special qfs:type values for Closer

Additional checks: None

61.7 ColorPicker

Can be used to select a certain color.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip

qfs:type: None

Additional checks: None

61.8 ComboBox

Consists of a textfield and a list of selectable options.

For the HTML mapping of a combobox please refer to section 51.1.7(1030).Web

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: Associated label, tooltip; for web components see Feature for web
components(65)

qfs:label*: Associated label, Label close to it, Tooltip, Prompt

qfs:type: None

Additional checks:

61.9. Divider 1249

Name in Popup Description Name of checktype Engine
Current value The current value of

that combobox
value All

Available values All available vales of
that combobox

value All

Table 61.6: Checktypes for ComboBox

61.9 Divider

Splits areas of certain components. It can be moved.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks: None

61.10 Expander

Is used to expand or collapse a component, e.g. for a node of a tree.

Kind: Not recorded SmartID: Class must be included

Coordinates for mouse click: No recorded

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type:

qfs:type Description
Expander:TreeNodeExpander Toggle of expanded/collapsed state of a tree

node.

Table 61.7: Special qfs:type values for Expander

Additional checks: None

61.11. FileChooser 1250

61.11 FileChooser

Can be used to select a file. Usually it consists of a textfield, a list of files and a button
to choose.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks: None

61.12 Graphics

Shows a graphics or a diagram. Clicks could raise an action, but that’s not mandatory.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip, Description of icon

qfs:type: None

Additional checks: None

61.13 Icon

Shows an image. Clicks could raise an action, but that’s not mandatory.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip, Description of icon

qfs:type:

61.14. Indicator 1251

qfs:type Description
Icon:ComboListItemIcon Icon of a ComboListItem
Icon:IndicatorIcon Icon of an Indicator
Icon:ListItemIcon Icon of a ListItem
Icon:MenuItemIcon Icon of a MenuItem
Icon:TableCellIcon Icon of a TableCell
Icon:TreeNodeIcon Icon of a TreeNode

Table 61.8: Special qfs:type values for Icon

Additional checks: None

61.14 Indicator

Shows a message after an input event. Typically they appear after entering something
into textfields, could also contain an icon.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: Associated label, Own text, Label close to it, Tooltip, Description of icon

qfs:type:

qfs:type Description
Indicator:ErrorIndicator Shows an error
Indicator:InfoIndicator Shows an information
Indicator:WarningIndicator Shows a warning

Table 61.9: Special qfs:type values for Indicator

Additional checks: None

61.15 Item

Sub-item of a list, can be selectable.

Kind: Item or syntax SmartID: Class must be included

61.16. Label 1252

Coordinates for mouse click: Most appropriate position or center

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type:

qfs:type Description
Item:AccordionItem Selectable tab of an accordion
Item:ComboBoxListItem Item of a list of a combobox
Item:ListItem Item of a list
Item:TabPanelItem Selectable tab of a TabPanel.

Table 61.10: Special qfs:type values for Item

Additional checks:

Name in Popup Description Name of checktype Engine
Item Text Check for the shown

text
item All

Item visible Check, whether item is
visible

item_visible All

The item’s selected
state

Check, whether item is
selected

item_selected All

The item’s checked
state

Check, whether item is
checked

item_checked All

Item image Check for the image of
that item

item_image Not for web

Table 61.11: Checktypes for Item

61.16 Label

Shows some text, like a caption. Clicks could raise an action, but that’s not necessary.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Own text, Label close to it, Tooltip, Description of icon

qfs:type:

61.17. Link 1253

qfs:type Description
Label:CalendarLabel Inside a Calendar
Label:Caption A caption of any figure or component
Label:PaginatorLabel Shows the current page inside a paginator
Label:PanelTitle A title of a panel
Label:WindowTitle A title of a window

Table 61.12: Special qfs:type values for Labels

Additional checks: None

61.17 Link

Allows the user to navigate to another area of the application.

Kind: Component

Coordinates for mouse click: Most appropriate position or center

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Own text, Label close to it, Tooltip, Description of icon

qfs:type:

qfs:type Description
Link:BreadcrumbLink Special links for navigating inside a Breadcrumb

navigation area.

Table 61.13: Special qfs:type values for Links

Additional checks: None

61.18 List

Shows multiple values. Values could be selectable as well.

For the HTML mapping of a list please refer to section 51.1.6(1028).Web

Kind: Component

Coordinates for mouse click: Sub-items or exact co-ordinates

61.19. LoadingComponent 1254

Feature: None; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip

qfs:type:

qfs:type Description
List:ComboBoxList List of a ComboBox

Table 61.14: Special qfs:type values for List

Additional checks:

Name in Popup Description Name of checktype Engine
All items All items of the list items All
All items with selection All items of the list in-

cluding their selection
state

items_with_selection At the moment not in
web

Selected item Currently selected item current_item All

Table 61.15: Checktypes for List

61.19 LoadingComponent

Is used to show that your application is busy, e.g. if something is getting loaded by your
application.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks: None

61.20 Maximizer

Maximizes the size of a component, e.g. of a window.

Kind: Component

61.21. Menu 1255

Coordinates for mouse click: Most appropriate position or center

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip, Description of icon

qfs:type:

qfs:type Description
Maximizer:WindowMaximizer Maximizer button for a window

Table 61.16: Special qfs:type values for Maximizer

Additional checks: None

61.21 Menu

Contains multiple menu items.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type:

qfs:type Description
Menu:MenuBar A menu bar

Will be shown as MenuBar in the tree node of a
Component in some engines for historical reasons,
even when setting the option Show class or type
of components(460) to ”Class only”.

Menu:PopupMenu A menu is popping up and disappearing again

Table 61.17: Special qfs:type values for Menu

Additional checks: None

61.22 MenuItem

Is shown in menus. A click normally raises an action or changes the application’s state.

61.23. Minimizer 1256

Kind: Component

Coordinates for mouse click: Most appropriate position or center

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Own text, Label close to it, Tooltip, Description of icon

qfs:type: None

Additional checks: None

61.23 Minimizer

Minimizes the size of a component, e.g. of a window.

Kind: Component

Coordinates for mouse click: Most appropriate position or center

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip, Description of icon

qfs:type:

qfs:type Description
Minimizer:WindowMinimizer Minimizer button for window

Table 61.18: Special qfs:type values for Minimizer

Additional checks: None

61.24 ModalOverlay

Represents the interaction-blocking background of a pseudo modal dialog
implemented at DOM level. Interactions with components that are positioned behind a
ModalOverlay component trigger a ModalDialogException(897).

Pseudo modal dialogs differ from actual modal dialog windows (Window:Dialog). NoteNote
that the ModalOverlay component is not the dialog itself but rather another element
used to intercept mouse events outside the dialog. You can use the the UI-Inspector to
find the best candidate for this.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Exact co-ordinates

61.25. Panel 1257

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks: None

61.25 Panel

Contains various components. Can be used to organize the UI.

Kind: Component SmartID: Class must be included except for Panel:TitledPanel

Coordinates for mouse click: Exact co-ordinates

Feature: Title, if existing; for web components see Feature for web components(65)

qfs:label*: Title

qfs:type:

qfs:type Description
Panel:AccordionContent Contains components of an Accordion.
Panel:Breadcrumb Contains Breadcrumb-Links for quick navigation.
Panel:CollapsiblePanel Can be expanded and collapsed.
Panel:Footer Used to show a dedicated footer area.
Panel:Form Used for entering values as a form.
Panel:Header Used to show a dedicated header area.
Panel:Legend Contains components which act as a legend of

graphics.
Panel:MainPanel Unique main panel of an application.
Panel:Paginator Contains buttons to switch pages.
Panel:OptionGroup Contains several RadioButtons.
Panel:ScrollPanel Is scrollable and contains a ScrollBar.
Panel:TabPanelContent Contains components of the selected TabPan-

elItem of a TabPanel.
Panel:TitledPanel Has a dedicated title.

Table 61.19: Special qfs:type values for Panel

Additional checks: None

61.26. Popup 1258

61.26 Popup

Shows components, which are only shown after a click on certain buttons and which
belong to that button, e.g. the list after clicking on a button of a combobox.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: Title

qfs:type:

qfs:type Description
Popup:CalendarPopup Contains a Calendar
Popup:ColorPickerPopup Contains a ColorPicker
Popup:ComboBoxPopup Contains a list of a combobox

Table 61.20: Special qfs:type values for Popup

Additional checks: None

61.27 ProgressBar

Shows the current progress of an action.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: Tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
Value The current value value All

Table 61.21: Checktypes for ProgressBar

61.28. RadioButton 1259

61.28 RadioButton

Stands for a selectable option. It is typically used for selecting a state, if various states
are allowed.

Kind: Component

Coordinates for mouse click: Most appropriate position or center

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Own text, Label close to it, Tooltip, Description of icon

qfs:type:

qfs:type Description
RadioButton:ComboListItemRadioButton RadioButton inside a ComboListItem
RadioButton:ListItemRadioButton RadioButton inside a ListItem
RadioButton:MenuItemRadioButton RadioButton inside a MenuItem
RadioButton:TableCellRadioButton RadioButton inside a TableCell
RadioButton:TreeNoradioButton RadioButton inside a TreeNode

Table 61.22: Special qfs:type values for RadioButtons

Additional checks:

Name in Popup Description Name of checktype Engine
Checked Check the current se-

lection of that radiobut-
ton.

checked All

Table 61.23: Checktypes for RadioButton

61.29 Restore

Re-creates the original size of a component, e.g. of a window.

Kind: Component

Coordinates for mouse click: Most appropriate position or center

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip, Description of icon

qfs:type:

61.30. ScrollBar 1260

qfs:type Description
Restore:WindowRestore Restore button for a window

Table 61.24: Special qfs:type values for Restore

Additional checks: None

61.30 ScrollBar

Is used for scrolling a component. Usually it contains a something like a thumb.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks: None

61.31 Separator

Splits areas of certain components. It cannot be moved.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks: None

61.32 Sizer

Modifies the size of a component, e.g. of a window.

Kind: Component

Coordinates for mouse click: Most appropriate position or center

61.33. Slider 1261

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip, Description of icon

qfs:type:

qfs:type Description
Sizer:WindowSizer Sizer button of a window

Table 61.25: Special qfs:type values for Sizer

Additional checks: None

61.33 Slider

Allows the user to select a value via a thumb.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: Tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
Value The current value value All

Table 61.26: Checktypes for Slider

61.34 Spacer

Acts as some kind of indentation, e.g. for nodes of a tree.

Kind: Not recorded SmartID: Class must be included

Coordinates for mouse click: Not recorded

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

61.35. Spinner 1262

qfs:type:

qfs:type Description
Spacer:TreeNodeSpacer Spacer component of a TreeNode

Table 61.27: Special qfs:type values for Spacer

Additional checks: None

61.35 Spinner

Allows the user to select a value via arrow-buttons combined with a textfield.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: Tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
Value The current value value All

Table 61.28: Checktypes for Spinner

61.36 SplitPanel

Shows components. Those components are located in resizable areas.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks: None

61.37. Table 1263

61.37 Table

Shows multiple values. It has several dimensions columns. Values could be selectable
as well.

For the HTML mapping of a table please refer to section 51.1.3(1021).Note

Kind: Component

Coordinates for mouse click: Sub-items or exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
Column All values of a certain

column
column All

Column visible Check, whether col-
umn is visible

column_visible All

Column with selection All values of a cer-
tain column including
the cell’s selected state

column_with_selection All

Column title Check for the column’s
title

header All

Row All values of a certain
row

row All

Table 61.29: Checktypes for Table

For the two check types column and row you can specify a subset of items to be
checked. Please have a look at Check type identifier(767) for the respective syntax.

61.38 TableCell

A value of a table. It is identified by its column and its position in the row.

Kind: Item or syntax SmartID: Is referenced as table sub-item via syntax

Coordinates for mouse click: Most appropriate position or center

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

61.39. TableFooter 1264

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
Cell Text of that cell item All
The cell’s visible state Check whether table

cell is visible.
item_visible All

The cell’s selected
state

Check whether table
cell is selected.

item_selected All

The cell’s editable state Check whether table
cell is editable.

item_editable All

The cell’s checked
state

Check whether content
inside the tablecell is
checked, e.g a Check-
Box.

item_checked All

Cell image Check for the image of
that cell.

item_image All

Table 61.30: Checktypes for TableCell

61.39 TableFooter

Footer row of a table.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks: None

61.40 TableHeader

Header row of a table.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Sub-items or exact co-ordinates

Feature: None; for web components see Feature for web components(65)

61.41. TableHeaderCell 1265

qfs:label*: None

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
All items All items of the table

header
items All

Table 61.31: Checktypes for TableHeader

61.41 TableHeaderCell

Name of a column.

Kind: Item or syntax SmartID: Is referenced as table sub-item via syntax

Coordinates for mouse click: Most appropriate position or center

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
Title Text of that header cell item All
Title visible Check whether header

cell is visible.
item_visible All

Title image Check for the image of
that header cell.

item_image All

Table 61.32: Checktypes for TableHeaderCell

61.42 TableRow

Row of a table.

Kind: Not recorded SmartID: Not accessible as SmartID

Coordinates for mouse click: Sub-items or exact co-ordinates

Feature: None; for web components see Feature for web components(65)

61.43. TabPanel 1266

qfs:label*: None

qfs:type: None

Additional checks: None

61.43 TabPanel

Can be used to navigate between components. Those components are shown in dedi-
cated cards (”tabs”). Only one tab can be visible at once.

For the HTML mapping of a tab panel please refer to section 51.1.8(1032).Note

Kind: Component

Coordinates for mouse click: Sub-items or exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
All tabs All tabs of that panel items All
Selected tab Currently selected tab current_item All

Table 61.33: Checktypes for TabPanel

61.44 Text

Shows common text with multiple rows. A user can’t enter any value.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip, Prompt

qfs:type:

61.45. TextArea 1267

qfs:type Description
Text:IndicatorText Text of an Indicator
Text:ToolTipText Text of a tooltip

Table 61.34: Special qfs:type values for Text

Additional checks: None

61.45 TextArea

Allows the user to enter text, even with multiple lines. It is able to show that text as well.

Kind: Component

Coordinates for mouse click: Sub-items or exact co-ordinates

Feature: Associated label, tooltip; for web components see Feature for web
components(65)

qfs:label*: Associated label, Label close to it, Tooltip, Prompt

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
All lines All lines of a TextArea items All
Editable Check whether area

could be modified
editable All

Table 61.35: Checktypes for TextArea

61.46 TextField

Allows the user to enter single-line text. It is able to show that text as well.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: Associated label, tooltip; for web components see Feature for web
components(65)

qfs:label*: Associated label, Label close to it, Tooltip, Prompt

61.47. Thumb 1268

qfs:type:

qfs:type Description
TextField:CalendarTextField Inputfield of a Calendar
TextField:ComboBoxTextField Inputfield of a ComboBox
TextField:PasswordField Inputfields for passwords
TextField:SpinnerTextField Inputfield of a Spinner

Table 61.36: Special qfs:type values for TextField

Additional checks:

Name in Popup Description Name of checktype Engine
Editable Check whether textfield

could be modified
editable All

Table 61.37: Checktypes for TextField

61.47 Thumb

Can be used to thumb through certain values on a slider component.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Most appropriate position or center

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks: None

61.48 ToggleButton

Can be clicked like a button and has a certain state as well. Sometimes clicks also raise
actions.

Kind: Component

Coordinates for mouse click: Most appropriate position or center

Feature: Own text or tooltip; for web components see Feature for web components(65)

61.49. ToolBar 1269

qfs:label*: Associated label, Own text, Label close to it, Tooltip, Description of icon

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
Checked Check the current se-

lection of that button.
checked All

Table 61.38: Checktypes for ToggleButton

61.49 ToolBar

Stands for a toolbar. It typically contains several menu items and important buttons to
raise most common actions.

Kind: Component SmartID: Class must be included

Coordinates for mouse click: Exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks: None

61.50 ToolBarItem

Stands for a clickable component inside a toolbar.

Kind: Component

Coordinates for mouse click: Most appropriate position or center

Feature: Own text or tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Own text, Tooltip, Description of icon, Label close to it

qfs:type: None

Additional checks: None

61.51. ToolTip 1270

61.51 ToolTip

A window, which gets opened as some kind of hint. Normally shown, if the user moves
the mouse over a component.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: Own text, tooltip; for web components see Feature for web components(65)

qfs:label*: Associated label, Own text, Label close to it, Tooltip

qfs:type: None

Additional checks: None

61.52 Tree

Shows content as tree. Can be used to show values in certain categories.

For the HTML mapping of a tree please refer to section 51.1.4(1023).Note

Kind: Component

Coordinates for mouse click: Sub-items or exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
All visible nodes All visible nodes in the

tree
items All

All visible nodes with
selection

All visible nodes in the
tree including their se-
lection state

items_with_selection All

All nodes with nesting All nodes in the tree
including their nesting
level

nested_nodes All

All visible nodes with
nesting

All visible nodes of
the tree including their
nesting level

visible_nested_nodes All

Table 61.39: Checktypes for Tree

61.53. TreeNode 1271

61.53 TreeNode

Sub-item of a tree.

Kind: Item or syntax SmartID: Is referenced as table sub-item via syntax

Coordinates for mouse click: Sub-items or exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: None

qfs:type: None

Additional checks:

Name in Popup Description Name of checktype Engine
Node Text of the node item All
Node visible Check whether node

exists
item_visible All

The node’s selected
state

Check whether node is
selected

item_selected All

The node’s checked
state

Check whether node is
checked

item_checked All

Sub-nodes with nesting The node and all its
child nodes including
their nesting level

nested_nodes All

Visible sub-nodes with
nesting

The node and all its vis-
ible child nodes includ-
ing their nesting level

visible_nested_nodes All

Node image The image of that node item_image All

Table 61.40: Checktypes for TreeNode

61.54 TreeTable

Shows content as tree. Can be used to show values in certain categories. Values
normally consist of several columns like in a table.

For the HTML mapping of a tree table please refer to section 51.1.5(1026).Web

Kind: Component

Coordinates for mouse click: Sub-items or exact co-ordinates

Feature: None; for web components see Feature for web components(65)

qfs:label*: Associated label, Label close to it, Tooltip

61.55. Window 1272

qfs:type: None

Additional checks:

All checks of both Table and Tree objects are possible.

61.55 Window

Stands for a usual window.

Kind: Component

Coordinates for mouse click: Exact co-ordinates

Feature: Title, if existing; for web components see Feature for web components(65)

qfs:label*: Title

qfs:type:

qfs:type Description
Window:Dialog An independent window, used for entering values

or to confirm a message.
Will be shown as Dialog in the tree node of a
Component in some engines for historical reasons,
even when setting the option Show class or type
of components(460) to ”Class only”.

Window:EmbeddedWindow Window of an external application, embedded to
the current SUT.

Window:InternalWindow Window showing content of another area of the
SUT.

Window:Notification Showing notifications

Table 61.41: Special qfs:type values for Window

Additional checks: None

Chapter 62

Doctags

Besides node attributes QF-Test also supports doctags to influence the behavior of
nodes during test execution or for report generation. Each doctag can be specified in a
separate line in the Comment attribute of a node in the form @teststep or @noreport
node. They must be placed after the general description of the node.

62.1 Doctags for reporting and documentation

Doctags used for formatting test documentation of Test sets and Test cases are described
in section 24.2(310), doctags for formatting of the documentation of Packages and Proce-
dures in section 24.3(312).

The doctags described below influence the reprensation of nodes in the report.

62.1. Doctags for reporting and documentation 1274

Doctag Nodes Description
@teststep [name] All nodes If this doctag is set, the node

will be treated as Test step in the
report. You can specify an op-
tional name.

@report Check nodes, Sequence with time
limit and Server HTTP request
nodes

If this is set the node will be re-
ported as check in the report in
any case.

@noreport [type],[errorlevel] All sequences like Test case, Test
set or Test step, all Checks, Se-
quence with time-limit, request
steps or procedure calls

If this doctag is set, the node
won’t be mentioned in the re-
port. See section 62.1.1(1272) for
details.

@link [filePath/url] All nodes This doctag can be used - mul-
tiple times if desired - to link
to an external resource or file.
The target can then be opened
in an associated application or
shown in the system file man-
ager by right-clicking and se-
lecting the respective entry in
the popup menu (Open link

or Show file in explorer). Files
are resolved relative to the cur-
rent test suite.

Table 62.1: Doctags for reporting and documentation

62.1.1 @noreport Doctag
4.2+

You can use the @noreport doctag to filter several nodes from the reports. You
can make use of two optional parameters to specify the filtering. Those
parameters are type and errorlevel. Example of a valid syntax: @noreport
tree;errorlevel<=WARNING.

type
You can use either ’tree’ or ’node’. ’tree’ is the default in case nothing is specified.
Using ’tree’ filters the entire node and all children from the report. ’node’ filters
just that particular node from the report. The children will be in the report.

errorlevel
This parameter is only activate for sequence nodes like Test set,Test case or Test

step. Using this parameter enables you to filter nodes only if dedicated error level
have been reached. You can configure the error levels EXCEPTION, ERROR,
WARNING or MESSAGE. For comparison you can use >,<,<= or >=.

62.2. Doctags for Robot Framework 1275

errorlevel<ERROR filters the node only if no error and no exception occurred.
That’s the default setting. errorlevel>=MESSAGE filters the node in any case.
That’s very dangerous of course and should only be used if there are very good
reasons.

62.2 Doctags for Robot Framework

The following doctags are used to designate QF-Test Procedures(627) or entire Packages(635)

for use with Robot Framework. See chapter 30(382) for further information about the Robot
Framework integration.

Doctag Nodes Description
@keyword [name] Procedures When used in a Procedure node,

the name of the procedure or
the optional name specified af-
ter the doctag is provided as
keyword to Robot Framework.
It is sufficient to provide one
of the formats supported by
Robot Framework which will au-
tomatically convert from other
variants, so that, for example,
a Procedure named doClick
can automatically also be called
via the keywords ”Do Click” or
”do_click”. The doctag can be
used multiple times in order to
map the procedure to several
different keywords. The implicit
parameter ”__keyword” always
holds the current keyword being
called in the form specified by
QF-Test.

@keyword Packages In Package nodes the @key-
word doctag can be used with-
out argument to designate all
directly or indireclty contained
Procedures as keywords based
on their name.

@tag [name] Procedures Names specified with the @tag
doctag in Procedure nodes
are passed through to Robot
Framework as tags.

Table 62.2: Doctags for Robot Framework integration

62.3. Doctags for test execution 1276

62.3 Doctags for test execution

Using those doctags influences the execution of tests.

Doctag Nodes Description
@scope [QF-Test component
ID|SmartID]

All nodes Upon node entry the given com-
ponent scope is pushed and ap-
plied to all subsequent compo-
nent resolution based on Smar-
tID until the node is exited. See
section 5.7(80) for details.

@rerun [parameters] All nodes You can configure the instant re-
run in case of errors. Please
see section 25.3.2(329) for details.

@outputFilter keep [regexp],
multiple times possible

All SUT client starter nodes Only those lines in the output of
the process started by the node
that match the specified regular
expression are shown in the QF-
Test terminal.

@outputFilter drop [regexp],
multiple times possible

All SUT client starter nodes Lines in the output of the pro-
cess started by the node that
match the specified regular ex-
pression are not shown in the
QF-Test terminal.

@dontcompactify All nodes Designate the node as rele-
vant for the run log so it will
not get removed during com-
pactification (see option Create
compact run log(549)).

@option [option name] [value]
All nodes, multiple times possi-
ble

Set an option to the given
value during the execution of the
node. Effective for QF-Test it-
self and all active SUT clients.
If a new client gets started while
such an option is in effect, it will
inherit that option’s value as its
default setting and thus keeps it
even after execution leaves the
current node and the option gets
reset.

Table 62.3: Doctags for test execution

62.4. Doctags for Editing 1277

62.4 Doctags for Editing

Using those doctags can influence the behavior of QF-Test during editing.

Doctag Nodes Description
@blue All nodes Add a blue mark when loading

the test suite the next time.
@breakpoint All nodes Add a breakpoint when loading

the test suite the next time.
@green All nodes Add a green mark when loading

the test suite the next time.
@red All nodes Add a red mark when loading

the test suite the next time.
@yellow All nodes Add a yellow mark when loading

the test suite the next time.

Table 62.4: Doctags for editing

62.5 Doctags influencing the procedure builder

The doctags for use in the definition file for the procedure builder are described in
chapter 56(1212). In chapter 27(341) you will find general information on the procedure
builder.

1278

Appendix A

FAQ - Frequently Asked Questions

Evaluation and licensing
1. Is an evaluation version available for download?

Yes. Please visit www.qftest.com/en/qf-test/download.html.

2. Do I need anything else?

Normally a license file is required to run QF-Test. It will run without a license, but it will
not let you save any files or load any files that were not provided by Quality First Software
GmbH. This is sufficient for getting a first impression, working through the tutorial and
making a first attempt at running your application under QF-Test. To go beyond that,
you’ll need a license file.

3. So how do I get a license?

You can obtain a free trial license valid for two weeks by filling in the request form at
services.qftest.com/en/license/request/.

4. How much does QF-Test cost?

License types and prices for QF-Test are listed at
www.qftest.com/en/qf-test/pricing.html.

5. Does QF-Test need an additional license server?

No, not necessarily. QF-Test handles multi-user license management for local networks
by itself, provided that IP multicast works. For floating licenses across multiples sites and
in case of restricted networks, a dedicated license server is available. The license server
itself is free of charge and server licenses are very reasonably priced. For further infor-
mation about the license server, please get in touch with QFS via sales@qftest.com.

Support, training and feedback
6. Where do I get help troubleshooting?

FAQ - Frequently Asked Questions 1279

• Before asking for help, please read through this FAQ or the general FAQs
www.qftest.com/en/qf-test/faq.html to see if your question has already been
answered.

• For beginners the learning-by-doing tutorial
www.qftest.com/doc/tutorial/en/firsthelpweb.html or the instructions for getting
started with QF-Test www.qftest.com/en/get-started-with-qf-test.html should
prove useful. Further questions might also be answered by the manual.

• Videos for beginners and advanced learners can be found at
www.qftest.com/en/support/videos.html.

• There is also a blog at www.qftest.com/en/blog.html containing lots of helpful post-
ings (full text search is possible).

• During evaluation of QF-Test you are entitled to free support. Navigate to the
QF-Test ”Help” menu and choose ”Contact the support team...” or use the web
form.

• Customers holding a Software Maintenance Agreement with QFS also profit from
above support options. (For details refer to our website).

7. What about training for QF-Test?

QF-Test trainings for beginners and advanced users in German and English language
take place regularly here at QFS. There is also the option for webinar-based or on-site
consulting and training. Details can be found on our website.

8. How can I request an enhancement to QF-Test?

Enhancement requests are welcome anytime at support@qftest.com.

9. Where do I report a QF-Test bug?

Simply contact our support team and we will have a look. Please be sure to provide as
much information as possible, especially test suites and run logs.

Test execution
10. Why do tests fail today that were OK yesterday though nothing changed in
the meantime?

As the first step, please ensure that really nothing has changed as automatic updates
of Java or browser versions may happen without being recognized.

Irrespective of changes there can be tests that fail only occasionally for no apparent
reason. This may sound like a bug in QF-Test, but that’s rarely the case. In complex,
multithreaded environments, many actions and interactions depend on timing. The first

FAQ - Frequently Asked Questions 1280

thing to try is to introduce delays at critical points. If that helps you can focus on min-
imizing the delay by using Check nodes with a timeout or Wait for component to appear
nodes to wait for a certain condition.

If delays don’t help you need to dig deeper and try to understand what’s happening.
It’s not unlikely that the root cause is a bug in your application - typically a tricky one
that shows only occasionally depending on timing or other circumstances. The blatant,
obvious bugs are typically found earlier - these tricky ones are part of what testing
is all about. The detailed logs and screenshots that QF-Test creates help analyzing
such situations. Our support can help you interpret the data and isolate the relevant
information to forward to development.

11. How do I run a test automatically from the command line, a test management
tool or some other kind of script?

You can run QF-Test in batch mode through the command line argument -batch(913).
Many other command line arguments can be used to configure the test run. The exit
code of QF-Test reflects the outcome of the test. See Test execution(314), Command line
arguments(913), Exit codes for QF-Test(931) and Interaction with Test Management Tools(346)

for details.

12. Is it possible to test two applications running at the same time in two different
JVMs?

Yes, just start two SUT clients with different names. You can then control both of them.

13. I’ve got a long-running test and QF-Test runs out of memory. How can I
prevent that?

To increase the available memory, start QF-Test with the argument -J-Xmx1280m (or
an even greater value; QF-Test uses up to 1024 MB by default). On Windows you
can alternatively use the QF-Test Java Configuration tool, available from the Windows
system menu. On Linux rerunning the QF-Test setup script (setup.sh) also lets you
adapt memory usage. Of course the amount of memory you can use depends on your
computer. Please refer also to chapter 1(2) for further details.

There are a number of ways to reduce the memory use of QF-Test:

• Make sure that the option Create compact run log(549) is checked so that all irrele-
vant nodes are removed from run logs.

• QF-Test keeps 4 run logs accessible from the Run menu by default. Keep the
option Automatically save run logs(540) active so that QF-Test can save these run
logs to files and release their memory.

• Close run log windows that you no longer need so that the memory for these run
logs can be reclaimed.

• For long-running tests the best option is to create split run logs (which QF-Test

FAQ - Frequently Asked Questions 1281

uses as default) so QF-Test can save partial run logs to files instead of holding the
entire run log in memory. See section 7.1.6(129) for details.

• If the option Don’t create run log(550) is checked, no run log will be generated at all.
This should also be used with caution since it can be extremely difficult to interpret
what happened without the help of the run log. Use split run logs instead.

• If your SUT prints lots of output you can reduce the number of old clients that are
kept around by changing the option Number of terminated clients in menu(499).

14. Hard mouse events and drag-and-drop operations do not work flawlessly,
components cannot be found, the run log contains black or corrupt screenshots.
What do I have to take care about for test execution?

GUI testing requires an unlocked, active desktop. That is the only way to ensure that
the SUT behaves the same as if a normal user interacts with it.

To make sure that your test environment complies with this requirement, you’ll probably
need to tweak its setup. This holds true notably for continuous integration and build tools
like Jenkins (c.f. chapter 29(370)). Otherwise, you might run into serious trouble during
Test execution(314), for example black screenshots in the run log (c.f. section 7.1(124)), fail-
ing drag-and-drop operations, non-working hard mouse events or even problems during
component recognition (c.f. chapter 5(42)). Java WebStart applications fail to start up.
Chapter Hints on setting up test systems(443) contains useful tips and tricks to set up your
test systems.

Before running a GUI test, check whether the following conditions are met:

• QF-Test and the SUT have to run within an active, unlocked user session.

• The Test must not be executed within the Windows service session. It also must
not run without an user session.

• During the Test execution(314) with Jenkins you have to ensure that the Jenkins
Windows node does not get started as service. It has to be started either via
Windows Autostart or Windows Task Scheduler within a real user session. Please
ensure that you select a valid user account at the ’Security options’ and that you
have ’Run with highest privileges’ disabled. The selected user must be logged in
during test execution, e.g. by automatically logging in, and the desktop must not
be locked in any way.

• RDP connections must not be minimized or closed, that would result in a locked
session. Instead of RDP you should use VNC, Teamviewer or similar tools to
observe the running tests. RDP must not be used for the initial user login and start
of the related session.

On Windows 10 or Windows Server 2016 systems you can makeNote

FAQ - Frequently Asked Questions 1282

use of RDP if you modify the Registry. Therefore navigate to
HKEY_CURRENT_USER\Software\Microsoft\Terminal Server Client
or HKEY_LOCAL_MACHINE\Software\Microsoft\Terminal Server
Client and add a new value RemoteDesktop_SuppressWhenMinimized as
DWORD having the value 2. Once that setting has been set you are allowed to
minimize RDP connections, but you have to keep the connection alive. The tests
will still fail if you disconnect or close the session You can find further details
about setting up your test systems in the manual at chapter 39(443) and chapter
25(314).

Technical background:
The keywords are ’session 0 isolation’. This means that every user has its own session
ID, starting with 1. The session with ID 0 is reserved for services and applications
without user context. It is restricted in its functionality and applications which run in this
session are isolated from other sessions. Applications with GUI cannot be displayed
within this session. When running a GUI application in the service session, it will not be
rendered correctly and thus may not behave as expected. If you search for ’session 0
isolation’ with your preferred search engine you will get extensive information, especially
for Windows Vista and newer.
Due to security reasons, the well-known workaround for Windows XP and Windows
2000 via tscon.exe and redirection of session 0 is not working anymore since Windows
Vista.

To get round all that problems you should consider to work with virtual machines, es-
pecially from a security point of view. If you execute the tests on a virtual machine, the
above-mentioned requirements apply for this virtual machine only, not for the host. You
can lock the host and don’t care about session management on the host.

Scripting
15. How can I access objects in my application that are not components?

You cannot get an object out of the blue, some kind of registry must exist
that returns the object from a class static method. Typical examples in the
standard Java API are java.lang.Runtime.getRuntime() or
java.awt.Toolkit.getDefaultToolkit().

16. Fine, but how do I use these from Jython, Groovy or JavaScript respectively?

This is standard Jython stuff: Simply import the class and call its methods, e.g.
from java.lang import Runtime
runtime = Runtime.getRuntime()
In Groovy the package java.lang gets imported even automatically:
def runtime = Runtime.getRuntime()
You can access any class of your application the same way, provided the class is de-
clared public. Note that you must use an SUT script node, not a Server script node.

FAQ - Frequently Asked Questions 1283

17. How can I access additional Java classes from a script?

To make additional Java classes available to Jython, Groovy and JavaScript, put them
in a jar file and place that in QF-Test’s plugin directory (see section 50.2(962)).

18. How can I throw an exception from a script?

There are two ways to do that:

• Jython:
raise UserException(”Some arbitrary message”)
Groovy:
import de.qfs.apps.qftest.shared.exceptions.UserException
throw new UserException(”Some arbitrary message”)
JavaScript:
import {UserException} from
’de.qfs.apps.qftest.shared.exceptions’
throw new UserException(”Some arbitrary message”)

• rc.check(condition, ”Message”, rc.EXCEPTION)
will raise an exception only if the condition is false.

19. Which external editor should I use?

That’s a matter of taste, to some even religion. A comprehensive list of editors for all
kinds of operating systems that support Python syntax highlighting and other goodies
is available at https://wiki.python.org/moin/PythonEditors. There are probably dozens
of suitable editors with syntax highlighting for Jython, Groovy and JavaScript - jEdit
(www.jedit.org) is only one of them.

Web
20. How do I know which web UI toolkit is used for my web application and what
do I do if it is not directly supported by QF-Test?

If possible, please ask your developers about UI toolkits or JavaScript components used.
Alternatively, activate the auto-detection mode in the Setup sequence creation(29) when
creating your start sequence. Then QF-Test recognizes supported toolkits automatically
and prints a respective message in the terminal.
If the toolkit is unsupported or remains unknown you might want to ask our support
team to take a look at your web application’s HTML code. New or custom toolkits can
be integrated with the help of a CustomWebResolver with little effort - either by your-
self (Improving component recognition with a CustomWebResolver(1004)) or using our
services.

21. Why is this small file upload/download dialog showing up before the real file
selection dialog gets displayed?

FAQ - Frequently Asked Questions 1284

Before a file selection dialog is displayed the QF-Test browser is showing up a small
dialog with an OK/Cancel button. This helper dialog is needed by QF-Test to get the
data out of the file selection dialog since this dialog is created natively by the operating
system. After clicking the OK button in the helper dialog the native file selection dialog
is displayed and you can enter the filename or select the file directly.

22. Why does the replay of an already recorded file upload/download sequence
fail if I use another browser and how can I bypass that issue?

Depending on the implementation of the file upload/download on a specific page
the replay might get a bit complicated and even vary between different
browsers. The QF-Test standard library qfs.qft contains a special procedure
qfs.web.input.fileUpload to handle this. Please use this procedure instead of
your recorded sequence if you encounter problems during replay.

23. I get an error page notifying me about untrusted certificates. Unfortunately
the standard dialog to add an exception is not working properly. How can I solve
this problem?

This problem won’t occur in QF-Test version 3.5.1 and higher, because SSL certificates
are now accepted automatically. Please use the following workaround if you are using
an older version of QF-Test.

There are different approaches to add a certificate using firefox.

Solution 1:

• Open the URL chrome://pippki/content/certManager.xul in a QF-Test
browser window.

• This will show the certificate manager where you can add the certificate.

• After pressing OK the whole browser window will close.

• When loading the URL which needs a certificate again the page will load without
a certificate error.

Solution 2:

• You can run a normal firefox from the command line with the following parameters
firefox -profile ”[path to your
userprofile]/.qftest/mozprofile”
(e.g.: firefox -profile
”c:/Users/user1/.qftest/mozprofile”)
(Please close all other running firefox instances before executing this command.)

• Load the URL in the browser and add the certificate to the trusted certificates.

FAQ - Frequently Asked Questions 1285

• When loading the URL which needs a certificate again the page will load without
a certificate error.

24. I’m getting an OutOfMemoryError for the browser. How to increase memory
for the QF-Test browser?

In general it is recommended to create the setup sequence by use of the quickstart
wizard. In the resulting sequence within the step ”Start browser without window” there
is a ”Start browser” node in which you can specify the maximum memory as part of the
Java VM parameters via e.g. -Xmx384m, which means 384 MB maximum memory. The
current default is 256 MB.

Figure A.1: Set browser maximum memory

FAQ - Frequently Asked Questions 1286

25. The web application opens a popup window. If I try to close this window
using a Window event ”WINDOW_CLOSING” the main window is closed instead of
the popup window at times. How can I ensure that the correct browser-window is
closed ?

In order to distinguish those windows QF-Test requires additional information. This in-
formation specifies which window should be used for replaying events. It has to be set
at the Wait for document to load node as well as for the recorded Web page in the attribute
Name of the browser window. You can reach the recorded Web page quite fast via right
mouse click at the Wait for document to load node and selecting Locate component .

We recommend to set that attribute to ${default:windowname:}.

Specifying the attribute Name of the browser window allows QF-Test to evaluate the con-
tent of that attribute in addition to the web page’s URL for recognizing the web page
itself and all underlying components. That’s why QF-Test is able to distinguish between
both windows during replay. Setting that value for the attribute at the Wait for document
to load node assigns a new name to that window from QF-Test’s perspective. You can
see that name in the titlebar of the browser as well.

Before replaying the respective Wait for document to load and events for that popup win-
dow you need to set the variable windowname to an arbitrary value, e.g. ”popup”. You
could also use a dedicated Set variable node in order to set that variable value. A more
convenient way might be to pack all events into a sequence and define the variable
windowname at the ”Variable definitions” table of that sequence.

Now you can replay those events.

It is recommended to reset the variable windowname after executing those event nodes
again. Otherwise QF-Test will try to replay all subsequent events on that popup window
again. Afterward you can use another Set variable node for windowname with an empty
”Default value”. In case of specifying the variable at the sequence node the variable will
disappear after that sequence.

If you have already recorded some tests, you should update your test suite using a global
replacement action for the attribute Name of the browser window. This action should set all
values of that attribute from empty to ${default:windowname:}. Therefore choose
Edit→Replace from the menu and change to the advanced replacement mode via

pressing the two golden arrows at the dialog’s toolbar. Now leave the ”Search for” field
blank and specify ${default:windowname:} at the ”Replace with” field. Then select
Name of the browser window for ”attribute” and check the checkbox ”Whole attribute”.

You need to repeat that replacement action for any test suite which contains event and
component nodes for that web page.

1287

Appendix B

Release notes

B.1 QF-Test version 9.0

B.1.1 Version 9.0.4 - June 11, 2025

Version updates:

• Support was added for testing applications based on Java 25.

• Groovy has been updated to version 4.0.27.

• QF-Test now supports tests for applications based on Eclipse/SWT 4.36 aliasSWT
”2025-06”.

• Support for Electron has been updated to Electron versions 35.5.0 and 36.4.0.Electron

• Support for JxBrowser has been updated to JxBrowser version 7.43, 8.6, 8.7 andWeb
8.8.

• The bundled cdp4j library has been updated to version 7.1.10.Web

• The CustomWebResolver provided with QF-Test now also supports tests for An-Web
gular Material version 20 and for ZK version 10.1.0.

• The embedded JUnit library was updated to version 5.13.1.

• The embedded device agent for iOS was updated to WDA version 10.14.1.iOS

Bugs fixed:

B.1. QF-Test version 9.0 1288

• A new option allows to define object types which should not be shared between
processes in variables (see Object classes to exclude from serialization(553)). The
default java.awt.Component is used to work around issues in serializing Swing
components.

• The rounded corners introduced in recent versions of the Edge browser interferedWeb
with the location detection algorithm of QF-Test which has now been updated to
compensate for that effect.

• For web tests with several browser tabs that all match the same component orWeb
SmartID QF-Test now always prefers the active tab.

• Hard mouse clicks with modifiers other than shift or control were not always per-Mac
formed correctly.

• When clearing the browser cache for Chrome QF-Test now also removes synchro-Web
nization data because malformed data can lead to Chrome crashing upon startup.

• On Windows an SUT client can now again be started using a UNC path as theWindows-
Tests executable.

B.1.2 Version 9.0.3 - April 29, 2025

Version updates:

• The JRE distributed with QF-Test has been updated to Temurin OpenJDK version
17.0.15.

Bugs fixed:

• Starting with QF-Test 9.0.2, opening Chrome in QF-Driver mode on WindowsWeb
could trigger an error dialog. Even though the dialog did not block test execution it
was still annoying.

• The workaround from QF-Test 9.0.2 for a Java bug on Windows caused an issue
itself in case the working directory of QF-Test was a UNC path.

• In Jython scripts, a BigDecimal object retrieved via rc.getNum could not be
compared to numbers of other types.

• Trying to retrieve a return value via expansion of ${qftest:return} caused a
MissingPropertyException in case a procedure terminated without explicit
return. Now the empty string is returned again in this case.

B.1. QF-Test version 9.0 1289

• In accessibility tests, trying to take screenshots of components without a valid sizeWeb
could lead to an exception.

• For Windows applications on Windows 11, trying to record a check or inspect aWindows-
Tests component could lead to a temporary freeze of the SUT.

B.1.3 Version 9.0.2 - April 9, 2025

New features:

• Data drivers now preserve known object types. Data tables allow to specify object
types explicitly via the context menu of a cell or a header as well as by using the
special group ’as’.

• A new debug icon for the ”run” toolbar button now indicates that debug mode is
active.

• Clean text field input in Firefox is now automatically retried if it was not successfullyWeb
executed by the browser.

Version updates:

• The Vaadin CustomWebResolver now also supports Vaadin 24.7.Web

• Support for Electron has been updated to Electron versions 34.5.0 and 35.1.3.Electron

• Support for JxBrowser has been updated to JxBrowser version 8.5.1.

• The embedded device agent for iOS was updated to WDA version 9.3.3.

• The bundled cdp4j library has been updated to version 7.1.8.Web

Bugs fixed:

• Changing system variables in the QF-Test options caused a failure leading to a
defect system configuration file.

• QF-Test now works around a Java bug on Windows that could cause startup of an
SUT client to fail in case the path to the QF-Test agent library contained spaces.

• The dependency cleanup was not shown in the run log when executing tests via
’-batch -calldaemon -stopclean’.

• You can now change the user agent of a browser at runtime when using QF-Driver.Web

• In macOS, project directories can now be opened via the file selection dialog.Mac

B.1. QF-Test version 9.0 1290

B.1.4 Version 9.0.1 - March 12, 2025

New features:

• The design and functionality of the HTML manual have been further improved.

Version updates:

• The bundled cdp4j library has been updated to version 7.1.7.Web

• Support for JxBrowser has been updated for JxBrowser version 8.4.0.Web

• The bundled GeckoDriver has been updated to version 0.36.0.Web

Bugs fixed:

• Screenshots in reports for accessibility tests are now more consistent, even ifWeb
heavy scrolling is required. Also, scaling is now correctly taken into account when
drawing the frames.

• The ’editable’ check for the Select component in Vaadin now correctly returnsWeb
’false’ because the only possible interaction is to choose an entry from the given
list of options.

• On macOS 15.3 QF-Test was sometimes not able to take screenshots, despiteMac
correct privacy settings.

• Calling rc.callProcedure in an SUT script could cause an exception if one of
the parameters was not serializable.

• Trying to open the UI Inspector while the ”High contrast” UI theme was active failed
with an exception.

B.1.5 Changes that can affect test execution

• After deprecation in QF-Test 8.0, support for JavaScript-only ”WebResolvers” hasWeb
now been removed. This does not affect the definition or execution of ”CustomWe-
bResolvers” or resolvers implemented via the resolvers module.

• After deprecation in QF-Test 7.1, support for WebStart in Oracle Java has nowSwing
been removed. This does not affect OpenWebStart which remains supported.

• With the updated HTML version of the QF-Test manual and tutorial, which now
includes a fast, local full text search engine, the need for a PDF variant is gone.
The PDF version is now deprecated for removal in a future QF-Test version.

B.1. QF-Test version 9.0 1291

• QF-Test now respects the ARIA CSS attribute aria-disabled by default.Web
Elements with this tag are now considered disabled even if they are
effectively functional. This can cause tests that used to work to run into a
DisabledComponentException. However, such cases are rare and with
respect to accessibility, such a state should be considered an error in the
application or UI toolkit and ideally fixed.

As a quick remedy, the feature can be disabled with the following SUT script:

rc.setOption(Options.OPT_WEB_IGNORE_ARIA_DISABLED, true)

B.1.6 Version 9.0.0 - February 20, 2025

New features:

• With this version QF-Test introduces accessibility testing for web applications to
ensure compliance with WCAG and other standards. QF-Test integrates the
proven axe-core library but also introduces new features like testing the color
contrast of graphical elements. A special focus is on informative HTML reports
including overview and individual screenshots for the errors that occurred. The
quickstart assistant, an example test suite and the procedures in the package
qfs.accessibility.web of the standard library qfs.qft may serve as entry
points.

• Variables in QF-Test are now no longer limited to strings but can be set to
arbitrary objects. Object values can be accessed in scripts using the new
rc.getObj(...) methods while $-expansion converts the values to strings
during final expansion. Forwarding values - e.g. client = $(client) retains
their type. Some procedures in the standard library qfs.qft now return objects
instead of strings and a variable of type List<String> can now be used to
define several parameters at once in a Start process(684) node. All of these
fundamental changes are fully backwards-compatible. For further information,
see chapter 6(104), section 11.3.3(173) and the new Explicit object type(816) attribute of
Set variable(814) and Return(633) nodes or read the blog about object variables.

• The HTML version of the QF-Test documentation has undergone a major overhaul.
With a beautiful new layout including a sidebar for quick navigation as well as a
dark mode it now also comes with a fast, local full text search engine.

• The HTML report now also has a dark mode and improved navigation. By
default, thumbnails for report screenshots are now created with a
different algorithm based on maximum width and height (see
-report-scale-thumbnails <percent>(924)).

B.1. QF-Test version 9.0 1292

• The visual UI inspector now has a search field for filtering the nodes in the tree
display. It can now also be opened via a keyboard shortcut. Its default value�� ��Shift-Ctrl-F11 can be changed via the option Hotkey for opening the UI
inspector(536).

• File names for included test suites can now reference environment variables or
system properties via the syntax ${env:...} or ${system:...}. This also works for
entries in the Directories holding test suite libraries(469) option.

• The new option Test suites included in a new test suite(470) can be used to specify
test suites to automatically add to the Include files(556) when creating a new test
suite.

• The new doctag @option sets a QF-Test option temporarily to the given value.
See section 62.3(1274) for further information.

• Via the new ”decrypt” variable group QF-Test can now use encrypted data wher-
ever variable expansion is possible. To improve confidentiality QF-Test never im-
plicitly logs variable expansion for this group.

• The new option Maximum length of logged variable values(547) now defines a limit
for the size of run log entries for variable expansion or definition.

• Steps in a run log can now be removed, e.g. to purge confidential data in screen-
shots or messages before passing the run log on. For transparency reasons and
to retain the total number of errors, placeholders are inserted instead.

• The new option Default algorithm for image checks(507) can be used to define a
default algorithm for image checks.

• The new package qfs.pdf.file in the standard library qfs.qft contains pro-
cedures for handling attachments in PDF files.

• The specific QF-Test Docker images are now available for both x64 and arm64 ar-
chitectures on Dockerhub. This enables seamless use on a wider range of devices
and platforms, including modern ARM-based systems such as Apple Silicon.

• Executing a Component(869) node no longer causes an error but instead highlights
the component in the SUT, similar to the context menu action.

• The new option Show class or type of components(460) determines what to show for
a Component(869) node in the tree - its class, the more specific type or a combination
of both.

• When copying nodes from a test suite or run log the text variant in the clipboard is
now more consistent and useful.

B.1. QF-Test version 9.0 1293

• The YAML syntax in Install CustomWebResolver(842) nodes now makes it easier toWeb
define ancestor relations via ancestor. Existing configurations remain valid but
can be migrated to the new syntax via ”Reformat”. Also, it is now possible to
combine css and attribute in a genericClasses mapping.

Version updates:

• The JRE distributed with QF-Test for Linux and macOS has been updated to
Temurin OpenJDK version 17.0.14.

• QF-Test now supports tests for applications based on Eclipse/SWT 4.35 aliasSWT
”2025-03”.

• Jython was updated to version 2.7.4.

• The embedded Chrome browser used for QF-Driver mode has been updated toWeb
CEF version 131.

• The Vaadin resolver has been updated for Vaadin versions from 24.6.Web

• The bundled cdp4j library has been updated to version 7.1.6.Web

• Support for JxBrowser has been updated for JxBrowser version 7.42.0 and 8.3.0.Web

• The embedded JUnit library was updated to version 5.11.4.

• The JSch library provided with QF-Test has been updated to version 0.2.13 and
now supports rsa-sha2-256 and rsa-sha2-512.

Bugs fixed:

• The value of ${qftest:project.dir} was occasionally unavailable.

• A JavaFX Spinner control is now mapped to the generic class Spinner and itsJavaFX
increment and decrement buttons are now recorded as Button components.

• On macOS, the target folder for a report could not be selected from the file chooser.Mac

• On the latest Windows version QF-Test failed to reliably terminate headless Edge
browser instances.

B.2. QF-Test version 8.0 1294

B.2 QF-Test version 8.0

B.2.1 Version 8.0.2 - December 05, 2024

New features:

• Support was added for testing applications based on Java 24.

• The JRE distributed with QF-Test for Linux and macOS has been updated to
Temurin OpenJDK version 17.0.13.

• Groovy has been updated to version 4.0.24.

• QF-Test now supports tests for applications based on Eclipse/SWT 4.34 aliasSWT
”2024-12”.

• Support for JxBrowser has been updated for JxBrowser version 8.2.0.Web

• The bundled cdp4j library has been updated to version 7.1.5.Web

• The Vaadin resolver has been updated with improved mappings of Accordion andWeb
Calendar for Vaadin versions from 14 and corrected mapping of HierarchicalMenu
for Vaadin versions from 24.4.

• The Smart GWT resolver has been updated for Smart GWT version 13.1p.Web

• The embedded device agent for iOS was updated to WDA version 8.11.1.iOS

Bugs fixed:

• Reading CSV files with a CSV data file(620) node was broken in QF-Test versions
8.0.0 and 8.0.1: The character sequence ’\t’ was inadvertently treated as a TAB
character.

• Clients from sub processes of the SUT could get the same name in some cases.

• For some special Trees the Vaadin resolver could not determine the correct inden-Web
tation of nodes.

B.2.2 Version 8.0.1 - September 11, 2024

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.33 aliasSWT
”2024-09”.

B.2. QF-Test version 8.0 1295

• The bundled cdp4j library has been updated to version 7.1.4.Web

• Support for JxBrowser version 7.41 was added.Web

• The embedded device agent for iOS was updated to WDA version 8.9.1.iOS

Bugs fixed:

• The JRE distributed with QF-Test for Windows has been rolled back to TemurinWindows
OpenJDK version 17.0.11 because the current Java version contains a bug that
breaks virtual screen handling and can cause HeadlessExceptions.

• Importing components with an extra suite view open could cause an exception.

• A UI Automation element of type SpinButton is now recorded as Button. ExistingWindows-
Tests recordings remain valid.

• On some macOS systems, execution of web, PDF, iOS or Android tests couldMac
become extremely slow after running for a while.

• If the specified browser could not be found on macOS, QF-Test showed a mislead-Web
ing error message.

B.2.3 Changes that can affect test execution

• QF-Test itself now requires at least Java version 17. This is independent of the
Java version for the SUT, where compatibility with Java back to version 8 is still
being maintained. An SUT application based on Java Swing, JavaFX or SWT
should always be started with its own, dedicated JRE and not the one from QF-
Test.

Except for special cases like the need to use a plugin that requires a higher Java
version, QF-Test should be run with the JRE provided during installation.

The JRE used for QF-Test no longer includes the JavaFX modules. The modulesNote
required for running the JavaFX demos for QF-Test are provided separately.

• Upon startup QF-Test now ignores the environment variable CLASSPATH. If nec-
essary, QFTEST_CLASSPATH can be used instead.

• Support for 32 bit software was deprecated in QF-Test 7.0 and is now removed
completely with the following exceptions:

– Testing of native 32 bit Windows applications on 64 bit Windows systems with
the QF-Test Windows engine remains fully supported.

B.2. QF-Test version 8.0 1296

– Testing of Swing or JavaFX applications running in a 32 bit Java VM still works
but is no longer officially supported.

For testing other 32 bit software please use QF-Test version 7.1.

• In QF-Test versions before 8.0, the ID attribute of DOM nodes in web applicationsWeb
was used as the name of a component only if the ID was ”unique enough” in
the hierarchical context. For compatibility reasons this was maintained even after
better and more efficient methods for handling non-unique names were introduced.

With the new variant of the option Use ID attribute as name(528) the default is to
always use ID attributes as names, irrespective of uniqueness. To maintain com-
patibility for tests with older components the option is set to ”Only if unique” when
migrating from an existing configuration.

• The separate option for the font size for the shared terminal in the QF-Test work-
bench has been replaced with the general option Font size (pt)(460).

• The outdated GNU regexp library has been removed from QF-Test along with the
option ”Use old-style GNU regexps”.

• Working without workbench view - i.e. with a separate window for each test suite
- has been deprecated. The respective option has been moved from the View
menu to the options dialog.

• The support for JavaScript-only ”WebResolvers” has been deprecated. This doesWeb
not affect the definition or execution of ”CustomWebResolvers” or resolvers imple-
mented via the resolvers module.

• The timeout for most requests in CDP-Driver connection mode has been reducedWeb
from 10 to 3 seconds for alignment with WebDriver connection mode.

B.2.4 Version 8.0.0 - August 8, 2024

New features:

• The new iOS engine adds support for testing iOS applications in a simulator run-iOS
ning on macOS or a real device connected to a macOS system. See chapter 17(247)

for further information.

• Support for JPro was greatly improved and updated to the current JPro versionJavaFX
2024.3. JPro brings JavaFX applications into the browser and QF-Test can simul-
taneously interact with both technologies in a way that ensures that tests written
for JavaFX can run almost identically against JPro and the browser. See chapter

B.2. QF-Test version 8.0 1297

20(283) for an explanation of the concepts and the demo test suite for JPro, ac-
cessible via the menu Help→Explore sample test suites... , entry ”JPro JavaFX
CarConfig Suite”.

• The new UI theme ”Solarized” is a standard theme based on the concept of using
the same well-balanced foreground colors in dark and light mode that many people
find pleasing. It can be activated via the menu View→UI theme .

• QF-Test now includes its own assertion library for scripting, inspired by Chai.js.

• The new JSON module simplifies handling of JSON objects in Groovy and Jython
scripts as well as serialization to QF-Test variables.

• QF-Test now runs as a native ARM process on macOS systems with Apple SiliconMac
processors, leading to significant performance improvements.

• The JRE distributed with QF-Test has been updated to Temurin OpenJDK version
17.0.12.

• The embedded Chrome browser used for QF-Driver mode has been updated toWeb
CEF version 126.

• Support for Webswing has been updated for the current Webswing version 24.1.

• Support for JxBrowser has been updated for JxBrowser version 7.40 as well as forWeb
the upcoming version 8.

• Groovy has been updated to version 4.0.22.

• The bundled cdp4j library has been updated to version 7.1.3.Web

• The bundled GeckoDriver has been updated to version 0.35.0.Web

• QF-Test now supports the new object type BaseWindow of Electron version 30.Electron

• The embedded WebP image compression library has been updated to version
1.4.0.

• The embedded Apache Commons IO library has been updated to version 2.16.1
and Apache Commons CSV to 1.11.0.

• The option Use ID attribute as name(528) now has a third value. The new defaultWeb
is to always use ID attributes as names, irrespective of uniqueness. Where back-
wards compatibility is required, use the former default setting ”Only if unique”. See
Changes that can affect test execution(1293) for further information.

• Generic class mappings in the Install CustomWebResolver(842) step can now mapWeb
multiple alternative HTML tag names and CSS classes in a single mapping.

B.2. QF-Test version 8.0 1298

• Mapping a suitable component to the new generic class ModalOverlay preventsWeb
QF-Test from bypassing the modal overlay and executing mouse events on ele-
ments covered by it.

• The new interface TreeIndentationResolver can be implemented to assistWeb
QF-Test in determining the structure of tree nodes in a web application. See
section 54.1.24(1104) for details.

• The layout of the HTML report is now better suited for smaller screens and printing.

• The new command line argument -noplugins(921) can be used to temporarily
suppress the use of plugins in order to find out whether a given problem might be
caused by a plugin.

• The menu has been reorganized with recent files move to a sub menu and default
bookmarks added for important library and sample suites.

Bugs fixed:

• The sort order of attributes in the XML files for test suites and run logs is now
independent of the system locale.

• When intercepting the IO streams System.out and System.err of the SUT
QF-Test now takes extra care not to interfere with their implicit encoding.

• The apk file required by QF-Test for interacting with the accessibility interface onAndroid
Android devices has been updated and signed for compatibility with newer Android
versions.

• The default installation of Firefox on Linux no longer accepts profile directoriesWeb
located outside of the ∼/.mozilla directory. QF-Test now detects and works
around that situation by creating a dedicated Firefox testing profile directory in
∼/.mozilla instead of the in QF-Test user directory.

• On Windows systems headless browsers are now always started unscaled, inde-Web
pendent of the scaling factor of the current desktop session.

• The emulated web File System API for Electron applications can now read andElectron
write multiple files in parallel.

• In some special cases QF-Test might have blocked on macOS systems when try-Mac
ing to bring one of its application windows to the front.

• The procedure qfs.autowin.acrobat.saveAsText in the standard library
qfs.qft now also works for the English Acrobat Reader version 24.512 and up.

• The QF-Test Gradle plugin now correctly forwards the ”license” property to QF-
Test.

B.3. QF-Test version 7.1 1299

B.3 QF-Test version 7.1

B.3.1 Version 7.1.5 - July 16, 2024

New features:

• The visual UI Inspector is now also available for Eclipse/SWT applications andSWT
thus for all QF-Test UI engines.

• The bundled cdp4j library was updated to version 7.1.2.Web

• The search engine selection dialog in Chrome is suppressed.Web

Bugs fixed:

• Using an item as scope could lead to false positive component resolution if the
target element didn’t exist inside the scope.

• Components inside a FRAME in a second browser window were not detectedWeb
reliably.

B.3.2 Version 7.1.4 - June 12, 2024

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.32 aliasSWT
”2024-06”.

• Support for JxBrowser version 7.37, 7.38 and 7.39 was added.Web

Bugs fixed:

• When running the Windows installer in silent mode, older QF-Test versions are no
longer uninstalled.

• Saving PDF files via the procedure qfs.autowin.acrobat.savePDF was not
possible when the Acrobat option ”show online storage when saving files” was
deactivated.

• When creating testdoc documentation with the option for test steps deactivated,
teststeps are now also removed from the XML variant, not just the HTML version.

• Webdrivers for newer versions of Microsoft Edge are now downloaded automati-Web
cally again.

B.3. QF-Test version 7.1 1300

• Automatic scrolling in web applications has been improved for special cases,Web
where intermediate ancestors in the component hierarchy are invisible.

• In web applications with multiple documents the QF-Test UI inspector sometimesWeb
failed to retrieve the detail information for a node.

• In some cases importing node.js modules in JavaScript scripts didn’t work.

B.3.3 Version 7.1.3 - April 24, 2024

New features:

• Support was added for testing applications based on Java 23.

• The JRE distributed with QF-Test has been updated to Temurin OpenJDK version
17.0.11.

• Groovy was updated to version 4.0.21.

• The bundled cdp4j library was updated to version 7.1.1.

• The visual UI Inspector is now also available for JavaFX applications and hasJavaFX
received a few minor improvements for all supported engines.

• The special variable group ”qftest” now provides additional values for client prop-
erties (see section 6.8(114)).

• When starting Chrome from QF-Test, its new privacy banner is now disabled byWeb
default.

Bugs fixed:

• When increasing the value of the option Font size (pt)(460), attributes like Condition(648)

in If(647)-nodes were not displayed correctly.

• The @noreport doctag now also works with Procedure call(630) nodes.

• The skipped test counter was incorrect when a Test case(558) with a forced depen-
dency cleanup was exited from a script with skipTestCase.

• Injecting a JavaScript function via the deprecated procedureWeb
updateCustomWebResolverProperties in the standard library qfs.qft
was broken in Firefox.

B.3. QF-Test version 7.1 1301

B.3.4 Version 7.1.2 - March 14, 2024

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.31 aliasSWT
”2024-03”.

• Improved detection of new windows in Electron applications.Electron

• For improved clarity the interactive terminal windows for the various script lan-
guages in QF-Test and the SUT are now labelled as consoles.

Bugs fixed:

• The recording button in the toolbar is now correctly displayed when changing the
toolbar icon size.

B.3.5 Version 7.1.1 - February 27, 2024

The only change to this version is the removal of three executable files from the embed-
ded cdp4j library that were suddenly flagged as malicious by various scanners. Those
files were part of QF-Test since version 6.0.4 (November 2022), have never been used
by QF-Test and should be harmless. Further information will be provided when we know
more.

B.3.6 Changes that can affect test execution

• Support for WebStart in Oracle Java 8 is now deprecated and has been marked
for removal in a future QF-Test version. This does not affect OpenWebStart.

• Support for applets has been removed from QF-Test. Internet Explorer was the
last browser to support applets and support for Internet Explorer was deprecated
in QF-Test version 6.0 and removed in QF-Test version 7.0.

• The start of QF-Test with a JRE other than the bundled one, especially with Java
8, is now deprecated. This has no impact on the java versions supported for the
SUT.

• The embedded cdp4j library was updated to version 7. This implies a namespace
change of the cdp4j classes from io.webfolder.cdp to com.cdp4j. If such
classes are directly referenced in SUT scripts, the imports have to be adapted
accordingly.

B.3. QF-Test version 7.1 1302

CustomWebResolver

After replacing the hard-to-digest qfs.web.ajax.installCustomWebResolver
call with the Install CustomWebResolver(842) node in QF-Test 7.0 the underlying code has
now been further optimized and cleansed. In some cases, adjustments may be
required. Please contact our support team if you need any help with this. Specifically,
the following points are affected:

• The evaluation order of the CustomWebResolver categories ”genericClasses” andWeb
”redirectClasses” is now well-defined: The first match wins, based primarily on the
order of entries in the Install CustomWebResolver(842) node (see section 51.1.2(1008) for
details). For existing CWR configurations it is possible that entries apply that were
not taken into account before.

• The Install CustomWebResolver(842) step no longer supports the outdated categoriesWeb
”indirectFeatureClasses”, ”insertClassesFront”, ”textRedirectInFetch” and
”goodClasses” as well as any previously deprecated categories including
”ieHardClasses” and ”ieSemiHardClasses”.

B.3.7 Version 7.1.0 - February 20, 2024

New features:

• QF-Test now also provides a high contrast theme in light and dark mode.

• The visualization of steps in the trees for test suites and run logs has been fresh-
ened to a more condensed style that is highly configurable. See Display(458) for the
various new options.

• Support was added for testing applications based on Java 22.

• Web applications built with modern Vaadin frameworks (from 14 on) are now sup-Web
ported out of the box. Also included is support to enable basic testability for Flutter-
Web-based applications as well as generic component recognition for web appli-
cations implementing the WCAG ARIA guidelines for accessibility.

• The visual UI Inspector is now also available for Windows and Swing/AWT applica-Swing
tions, as well as web views embedded in Java applications (see section 5.12.2(97)).

• The UI inspector now provides an easy way to copy a suggested SmartID.

• Conditions in If(647) and other nodes can now be implemented in any scripting lan-
guage, not just Jython. The default scripting language for new nodes can be de-
fined in the option Default script language for conditions(453).

B.3. QF-Test version 7.1 1303

• The steps Error(799), Warning(803) and Message(809) can now optionally print the mes-
sage to the QF-Test terminal.

• Empty arguments in steps starting an SUT client are now ignored by default (see
option Ignore empty argument lines when starting a client (498) for details).

• The Windows installer for QF-Test now directly supports uninstalling older QF-TestWindows
versions.

• The JRE distributed with QF-Test has been updated to Temurin OpenJDK version
17.0.10.

• Groovy was updated to version 4.0.18.

• The embedded Chrome browser used for QF-Driver mode was updated to CEFWeb
version 120.

• The embedded cdp4j library was updated to version 7.0.1. This also updates theWeb
Chrome Devtools Protocol API to r1245094.

• The bundled GeckoDriver was updated to version 0.34.0.Web

• The various CarConfigurator applications used for demos and trainings have been
filled with new data and updated to a new look. The demo test suites for these
applications now contain further examples of SmartID usage.

• Added newer mobile devices specifications to mobile emulation mode.Web

• The attribute Method(851) in the Server HTTP request(848) node now also supports vari-Web
able values and the new attribute Additional headers(851) can be used to define addi-
tional headers on a textual basis which is easier to address at script level than the
Headers(851) table.

• The new package qfs.utils.json in the standard library qfs.qft provides
utility procedures for comparing JSON files.

• The mail handling procedures in the package qfs.utils.email.pop3 of the
standard library qfs.qft now support SSL encrypted connections.

• With the new package qfs.autoscreen.android it is now possible to createAndroid
image based tests for Android applications.

• The recording button in the toolbar now indicates whether SmartID recording is
active.

• The new class ImageRepDrawer adds support for simple drawing operations on
ImageRep objects at script level (see section 54.9.3(1153)).

B.3. QF-Test version 7.1 1304

• The flexibility of the CustomWebResolver configuration has been improved in theWeb
categories ”redirectClasses”, ”abstractCoordinatesClasses”, ”ignoreTags”, and
”browserHardClickClasses”, for example it is now more often possible to use
regular expressions in the definitions.

• Calls to the procedureWeb
qfs.web.ajax.updateCustomWebResolverProperties can now also be
converted into Install CustomWebResolver(842) nodes.

• It is now possible to use a procedure with an installCustomWebResolver callWeb
as ”base” of an Install CustomWebResolver(842) step configuration.

• The QF-Test pseudo DOM API was extended by the callJS method to executeWeb
JavaScript code in the web document context without implicitly calling
window.eval().

Bugs fixed:

• When replaying events the timeout values from the two options Wait for
non-existent component (ms)(517) and Wait for non-existent item (ms)(517) are now
taken into account individually and not just as a simple summation.

• It is now possible to use a ’QF-Test component ID’ as String parameter for the
ImageWrapper.grabImage method.

• After a tabulator character was pasted into a script editor field, moving the cursor
could lead to an exception.

• A modal JavaFX window is now recorded with class name ’Dialog’.JavaFX

• It is now possible to send MOVED and SIZED events to the HTML component ofWeb
a web page (using the Component event(740) step) to define the position and size of
the inner browser area.

• In component recording mode for web applications QF-Test now ignoresWeb
invisible DOM nodes. The old behaviour can be restored via
rc.setOption(Options.OPT_WEB_RECORD_INVISIBLE_ELEMENTS, true).

• In some cases automatic Chromedriver download failed due to Chrome printingWeb
an unexpected error message during version detection.

• Regular expressions in the CustomWebResolver category ”ignoreTags” are nowWeb
correctly parsed.

• Elements with CSS class ”visually-hidden” are now treated as invisible compo-Web
nents in QF-Test.

B.4. QF-Test version 7.0 1305

• In some special cases QF-Test could not connect to the Edge browser upon start.Web

• CSS styling informationen contained in STYLE tags could mistakenly get inter-Web
preted as text content.

B.4 QF-Test version 7.0

B.4.1 Version 7.0.8 - December 5, 2023

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.30 aliasSWT
”2023-12”.

• Support for JxBrowser version 7.36 was added.Web

Bugs fixed:

• Report nodes created with an empty @teststep doctag are now shown with ex-
panded variable values.

• On macOS QF-Test was sometimes freezing during startup in case the WebPMac
image compression library was not available.

• In electron applications, popup menu item clicks could not be replayed unless aWeb
pulldown menu item was clicked beforehand.

• The Microsoft Edge browser crashed when a new empty tab was opened manually.Web

• The SUT client for android did not terminate automatically after closing the emula-Android
tor if the recording window was open at that time.

B.4.2 Version 7.0.7 - October 11, 2023

New features:

• The embedded Chrome browser used for QF-Driver mode has been updated toWeb
CEF version 117 which fixes the WebP security vulnerability.

• The embedded websocket library was updated to Undertow 2.2.26.Web

B.4. QF-Test version 7.0 1306

• The script method rc.overrideElement now also supports overriding
nested SmartIDs. It is now complemented by the new method
rc.getOverrideElement. See section 11.3.7(179) and section 50.5(963) for
details.

Bugs fixed:

• Test reports created in batch mode with QF-Test versions from 7.0.4 to 7.0.6 could
show broken HTML when opened by navigating from the summary to a detail
report.

B.4.3 Version 7.0.6 - September 29, 2023

Bugs fixed:

• The embedded WebP library used for image compression in testsuites and run
logs was updated to version 1.3.2. In this version a severe security vulnerability
(CVE-2023-4863) was fixed.

B.4.4 Version 7.0.5 - September 20, 2023

New features:

• The procedures qfs.autowin.acrobat.savePDF and
qfs.autowin.acrobat.saveAsText in the standard library qfs.qft were
updated for Acrobat Reader versions 23 and higher.

• Support for JxBrowser version 7.35 was added.Web

• QF-Test now supports capture and replay of clicks on popup menus in ElectronWeb
applications.

Bugs fixed:

• Interactive QF-Test failed to start if a plugin contained an incompatible version of
org.w3c.css.sac helper classes.

• QF-Test now uses the new headless Chrome mode also on Linux. Without thatWeb
headless Chrome version 117 and higher failed to start.

B.4. QF-Test version 7.0 1307

B.4.5 Version 7.0.4 - August 30, 2023

New features:

• The JRE distributed with QF-Test has been updated to Temurin OpenJDK version
17.0.8.1_1.

• QF-Test now supports tests for applications based on Eclipse/SWT 4.29 aliasSWT
”2023-09”.

• Support for JxBrowser version 7.34 was added.Web

• On Apple Silicon devices, browsers connected via CDP-Driver are now launchedMac
with native ARM support, noticeably improving performance.

• Most toolbar buttons now have a ”What’s this?” entry in their context menu, leading
to the respective documentation in the manual.

Bugs fixed:

• The jackson.jar library for YAML and JSON parsing no longer creates conflicts
if another Jackson library is added to the QF-Test plugin directory.

• Highlighting the scope component via the context menu of the node or the @scope
doctag now works correctly again.

• Automatic download of ChromeDriver and WebDriver binaries for Google ChromeWeb
and Microsoft Edge now works again. In both cases the respective URL and/or
site layout changed.

• When starting an Electron application, QF-Test occasionally waited for the fullElectron
timeout even if the connection could be established quickly.

B.4.6 Version 7.0.3 - Juli 13, 2023

Bugs fixed:

• In rare cases a test run was aborted with an exception when QF-Test tried to save
a split run log and encountered an incorrectly created empty screenshot.

• Recognition of components via the old qfs:label algorithm could fail in special
cases where an ExtraFeatureResolver was registered.

• Variables in doctags of Execute shell command(687) nodes are now expanded cor-
rectly.

B.4. QF-Test version 7.0 1308

• In rare cases addressing a line as a sub item in a JTextArea could cause aSwing
NullPointerException.

• When replaying a Fetch geometry node on a non-existing sub item in a web appli-Web
cation, the geometry of the parent component was mistakenly returned. Now the
correct IndexNotFoundException is thrown instead.

• The procedureAndroid
qfs.android.adbUtils.appPackage.getCurrentPackage in the
standard library qfs.qft now also works on Android devices that don’t provide a
grep program.

B.4.7 Version 7.0.2 - June 22, 2023

New features:

• Support for JxBrowser version 7.33 was added.

Bugs fixed:

• When starting QF-Test version 7.0.1 to only show a run log and later opening a
test suite the previous session was not restored.

• On Windows with a scaled monitor the PDF client now displays a scaled document
with frames and check highlights correctly aligned. Image checks are created at
100% resolution and thus should remain compatible with image checks from a
non-scaled monitor.

• The installation of a CustomWebResolver lead to an exception in case it containedWeb
erroneous JavaScript commands. Now an error is logged instead.

• The Install CustomWebResolver(842) node failed if some jar file in the plugin folderWeb
provided a conflicting Jackson library.

B.4.8 Version 7.0.1 - May 31, 2023

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.28 aliasSWT
”2023-06”.

• Support for testing clients running with an ARM Java on macOS was added.Mac

B.4. QF-Test version 7.0 1309

• Support for JxBrowser version 7.32 was added.Web

• Startup of QF-Test is now noticeably faster, in interactive mode as well as batch
mode.

• The new special variable ${qftest:suite.name} expands to the name of the
test suite as defined in the root node.

• New CWR node mappings and categories are now inserted at the cursor positionWeb
instead of at the very end.

• When using compact run logs (see option Create compact run log(549)) it is now
possible to exclude nodes from compactification via the doctag @dontcompactify
(see chapter 62(1271)).

Bugs fixed:

• QF-Test now starts with the system property -Dsun.io.useCanonCaches=true to
enable canonical filename caches for Java version 17 in order to avoid perfor-
mance degradation caused by large projects on slow file systems. This restores
the behavior of previous Java versions.

• Some procedures in the standard library failed when called with a SmartID due to
use of ${qftest:engine.$(id)}. SmartIDs that don’t include an explicit GUI engine
now use the GUI engine ”default”.

• Entries in configuration files were no longer sorted if QF-Test was running with
Java 17.

• Occasionally check mode remained activated in a Browser even after stoppingWeb
recording, thus blocking further interaction.

• If a website was used as scope for a SmartID, the scope was not updated correctlyWeb
when navigating.

• Deleting a file via the File System Access API could throw an exception in specialWeb
cases.

• Duplicated categories in a CWR configuration are no longer ignored and triggerWeb
an error instead.

• Screenshots of Swing windows are now taken with higher quality.Swing

• On Windows with a scaled monitor the PDF client now displays a scaled document
with frames and check highlights correctly aligned. Image checks are created at
100% resolution and thus should remain compatible with image checks from a
non-scaled monitor.

B.4. QF-Test version 7.0 1310

B.4.9 Changes that can affect test execution

New Java version for QF-Test

QF-Test is now distributed with Java 17 as its own JRE. Running QF-Test with Java 8 is
deprecated, meaning it is still supported for QF-Test version 7.0 but may get removed
at some later point.

This change can affect Java application tests which rely on using QF-Test’s Java version
instead of explicitly specifying a Java binary for starting the SUT. If you run into problems
due to this you have two options:

Short-term workaround: You can switch back to Java 8 via the QF-Test Java configura-
tion or the command line.

Long-term solution: The preferred solution is to explicitly specify a dedicated Java ver-
sion matching the application’s requirements in the Start Java SUT client(677) node or, bet-
ter yet, use a Start SUT client(681) node to launch the application via a script or executable
that ensures the correct environment including the Java version.

New algorithm for determining associated labels

In most cases label resolution should continue to work out of the box. The most notableNote
exceptions are ExtraFeatureResolvers working with the qfs:label ExtraFeature.
These will need to be updated as described in section 54.1.11(1087). For help with updates
or for means to disable the new algorithm entirely, please get in touch with our support
team.

The algorithm for determining the associated label for a component has been rewritten
from scratch for better performance, clarity and increased flexibility. The new qfs:label*
variants like qfs:labelLeft or qfs:labelText can be used to designate specific label vari-
ants, with qfs:labelBest as the new counterpart for the legacy extra feature qfs:label.
Please see section 5.4.4(66) for detailed information about the many new options.

In order to maximize backwards compatibility, the legacy algorithm is still maintained and
used to resolve the qfs:label extra feature so tests based on recorded Component(869)

nodes should not be negatively affected. If desired, recording can be switched to the
legacy algorithm and qfs:label via the option Recording of qfs:label* variants(523).

For replay with SmartIDs the situation is slightly different. Without explicit qualifier or with
the qualifier ”label=” or ”qlabel=”, SmartIDs are resolved based on the new algorithm
with qfs:labelBest. In most cases this should work as before. In case it fails you can
either re-record the affected SmartID or change its qualifier to ”qfs:label=” to enforce
using the old algorithm.

Further breaking changes:

• Support for Internet Explorer was deprecated in QF-Test version 6.0 and has nowWeb
been removed, as it has reached End of Life. The IE-specific procedures

B.4. QF-Test version 7.0 1311

qfs.web.browser.settings.enableCompatibilityMode and
qfs.web.browser.general.isIE6 were removed from the standard library
qfs.qft.

• Support for Firefox version 43 and older using connection mode QF-Driver wasWeb
deprecated in QF-Test version 6.0 and has now been removed.

• Support for 32bit software is now deprecated for removal in a future QF-Test ver-
sion. This applies to the Java versions QF-Test runs on as well as all supported
SUT versions. In case you still need to support tests for specific 32bit applications,
please get in touch with our support team.

• The format of HTTP headers returned by the Server HTTP request(848) node was
updated for easier parsing. Examples are provided in the procedures
checkHttpResponseHeader and getHeaderValue in the web services demo
suite, accessible via the menu item Help→Explore sample test suites... .

• For faster startup IPv6 is now disabled in QF-Test, where it is not needed. This
has no impact on the SUT and in case IPv6 is required for a QF-Test plugin it can
be reactivated via the command line argument -ipv6(918).

• When resolving a nested or scoped SmartID the already resolved parent or scope
component was wrongly taken into account again, so that e.g. #Panel:Some
title@#Panel:<0> would target the Panel ”Some title” instead of its first child
Panel.

• Options like SmartID recording(521) that have an effect in both QF-Test and the SUT
can now be set in a Server script(670) node and will get automatically forwarded to all
SUT clients.

B.4.10 Version 7.0.0 - April 27, 2023

New features:

• The new dark mode is just the most visible aspect of the streamlined UI with slightly
larger fonts and icons and more spacing in general. See menu View→UI Theme
and option Font size (pt)(460).

• The development of SmartIDs has left the preview stage. Based on the reimple-
mentation of the algorithm for finding the associated or nearest label of a compo-
nent, they combine simplicity with precise and efficient component recognition in
many situations. The new qfs:label* variants also apply to classic Component(869)

nodes. For detailed information please see section 5.6(72) and section 5.4.4(66) as
well as the various options described in section 41.4(520).

B.4. QF-Test version 7.0 1312

• The new Install CustomWebResolver(842) node for implementing aWeb
CustomWebResolver for web applications replaces the rather cryptic
Procedure call(630) to qfs.web.ajax.installCustomWebResolver. Existing
calls will of course continue to work, but can also easily be transformed into the
new node via the context menu item Transform node into as described in
section 51.1.2(1008).

• There is now a visual UI Inspector for web and Android applications (see sectionWeb
5.12.2(97)).

• With the help of the new nodes Error(799), Warning(803) and Message(809) it is now pos-
sible to directly log errors, warnings or plain messages anywhere in the test suite
with the added bonus of configurable screenshots and diagnostic logs.

• QF-Test based tests can now easily be integrated into JUnit 5 tests. This simplifies
the execution of QF-Test based tests from an IDE like IntelliJ or Eclipse. Also, a
Gradle plugin is now available for including QF-Test based tests in build pipelines
controlled by Gradle. See section 29.5(380) for details.

• The XML format for saving test suites is now configurable. For example, new
test suites are now saved with UTF-8 encoding by default and with longer lines.
Existing suites are not changed by default, but can be converted in one go. The
new format can still be read by older QF-Test versions. Further information is
provided in section 41.1.2(456) and section 44.1(908).

• XML reports are now saved with UTF-8 encoding by default.

• Support was added for testing applications based on Java 21.

• Groovy was updated to version 4.0.11.

• The embedded Chrome browser used for QF-Driver mode has been updated toWeb
CEF version 108.

• Support for JxBrowser version 7.31 was added.Web

• The embedded JUnit library was updated to version 5.9.2.

• Support was added for the web framework Fluent UI React version 8.Web

• QF-Test now supports accessing local files from tested web applications using theWeb
File System Access API in WebDriver and CDP-Driver connection mode so that
capture and replay for this use case should now work out-of-the-box.

• Pseudo attributes can be used to simplify resolvers using JavaScript to retrieveWeb
values from a browser. In certain cases they can improve performance. For a
closer look see Web – Pseudo Attributes(1055).

B.4. QF-Test version 7.0 1313

• QF-Test now provides readily accessible templates for frequently used scripts like
resolvers via the Templates(675) popup in Server script(670), SUT script(673) and Unit test(836)

nodes. It is also possible to define additional templates that show up in the list.

• Via the new option Show step types for named tree nodes(459) it is possible to hide
redundant parts of the tree node descriptions in test suites and run logs.

• Clicking on a line number in a script step now selects the whole line.

• If the new option Automatically open created nodes(463) is activated, new nodes are
already expanded after insertion.

• The name of the result variable of a Procedure call(630) node is now shown in the
tree. The result of the call can also be displayed in the run log after the name of
the procedure by activating the new option Show return values of procedures(541).

• The buttons in the QF-Test toolbar can now be rearranged by dragging with the
mouse. The original layout can be restored via the menu View→Toolbar .

• The new special variable ${qftest:language} expands to the current lan-
guage of the QF-Test user interface.

• The new special variable ${qftest:project.dir} expands to the directory of
the project to which the current test suite belongs.

• Tree items in the SUT can now be addressed by a combination of numerical, tex-
tual and regular expression indices.

• A Data driver(603) node below a Test step(580) node can now be packed into a nested
Test step.

• A Comment(797) node can now be inserted above the currently selected node via the
Insert menu or the keystroke

�� ��Shift-Ctrl-7 .

• If a Wait for client to connect(709) node is used to wait for a dedicated engine, that
engine is now displayed in the tree.

• The QF-Test application icon for macOS was adapted to modern standards.Mac

• Many new mobile device specifications were added for mobile emulation mode.Web

Bugs fixed:

• An exception was thrown in the procedure qfs.utils.xml.compareXMLFiles
if one of the two files was empty.

B.5. QF-Test version 6.0 1314

• Jython scripts that rely on the system property
python.security.respectJavaAccessibility=false for accessing
private class members now also work with Java 9 and higher.

• Check and component recording could not be properly activated in parallel in webWeb
tests with CDP-Driver or WebDriver connection mode.

• Running a mobile emulation test with CDP-Driver connection mode was updatedWeb
for newer Chrome versions.

• In special cases the execution speed of tests for web applications can be no-Web
ticeably improved via MainTextResolver or WholeTextResolvers variants
without default parameter.

• In rare cases, use of the @:: syntax in the genericClasses parameter of theWeb
procedure qfs.web.ajax.installCustomWebResolver could lead to a CSS
class being inadvertently mapped to the class of the node.

• Text input has been improved for Android devices with API level 33 and higher.Android

B.5 QF-Test version 6.0

B.5.1 Version 6.0.5 - March 15, 2023

New features:

• Support was added for testing applications based on Java 20.

• QF-Test now supports tests for applications based on Eclipse/SWT 4.27 aliasSWT
”2023-03”.

• The JRE distributed with QF-Test has been updated to Zulu OpenJDK Version
8_362.

• Groovy was updated to version 4.0.10.

• The embedded JUnit library was updated to version 5.9.2.

• QF-Test now uses the ”new headless mode” of Chromium-based browsers.Web

• Support for JxBrowser versions 7.29 and 7.30 was added.Web

• The bundled GeckoDriver was updated to version 0.32.2.Web

B.5. QF-Test version 6.0 1315

• QF-Test can now also intercept starting an external browser viaWeb
Desktop.open().

Bugs fixed:

• Jython now also works with Java 9 or higher if the system property
python.security.respectJavaAccessibility is set to false in order to
directly access private class members.

• The SAX variant of the procedure qfs.utils.xml.compareXMLFiles in the
standard library qfs.qft now ignores leading and trailing whitespace in the
noCheck parameter.

• When using the WebDriver connection mode, alert dialogs originating fromWeb
IFRAMEs might not have been displayed.

• With CDP-Driver connection mode on Windows QF-Test did not switch browserWeb
tabs correctly before replaying a hard mouse event. Also, empty tabs from down-
loads could remain open.

• It is now possible to set the working directory for the start of an Electron applica-Electron
tion.

• The module qf is now also available in JUnit Groovy Scripts.

B.5.2 Version 6.0.4 - November 29, 2022

New features:

• The JRE distributed with QF-Test has been updated to Zulu OpenJDK Version
8_352.

• For the SUT QF-Test now also supports the Semeru OpenJDK from IBM.

• QF-Test now supports tests for applications based on Eclipse/SWT 4.26 aliasSWT
”2022-12”.

• The QF-Test manual now references the official QF-Test docker images in chapter
32(406).

• With the new methods rc.pushOption and rc.popOption it is now possible
to temporarily override an option without disturbing existing settings. Procedures
in the qfs.qft standard library now use these methods instead of the less suited
setOption/unsetOption.

B.5. QF-Test version 6.0 1316

• When recording SmartIDs (see section 5.6(72)) the option Always record class for
SmartID(521) now determines whether the class is always prepended. It is active
by default. Besides readability this can have a significant impact on replay perfor-
mance.

• The embedded JUnit library was updated to version 5.9.1.

• The bundled cdp4j library was updated to version 6.2.0.Web

• Support for JxBrowser version 7.28 was added.Web

• The bundled GeckoDriver was updated to version 0.32.0.Web

• The CustomWebResolver for Angular Material has been updated for the latestWeb
release of the framework.

• In web tests with CDP-Driver connection mode it is now possible to control theWeb
print dialog with QF-Test.

• The selection event of type ”reload” can now be used as an alias for ”refresh” toWeb
reload the displayed web page.

• The procedures in the package qfs.web.browser.external of the standardElectron
library qfs.qft, which can be used to intercept the start of an external browser
process from the SUT and redirect it to QF-Test, now also work with Electron
applications.

Bugs fixed:

• The automated mapping of Tables and TreeTables in the web resolver for Prime-Web
faces was updated to support Primefaces version 12.0.

• Chrome with QF-Driver connection mode could crash in special cases after a failedWeb
navigation.

• In rare cases special characters in the text of Android components could terminateAndroid
the connection to an Android device.

B.5.3 Version 6.0.3 - September 6, 2022

New features:

• The JRE distributed with QF-Test has been updated to Zulu OpenJDK version
8_345.

B.5. QF-Test version 6.0 1317

• QF-Test now supports tests for applications based on Eclipse/SWT 4.25 aliasSWT
”2022-09”.

• Support for JxBrowser version 7.27 was added.Web

• The methods getFirstChild, getNextSibling, getPreviousSibling,
getFirstElementChild,getNextElementSibling and
getPreviousElementSibling were added to the QF-Test pseudo DOM API.
See section 54.10.1(1172) for details.

Bugs fixed:

• When performing an upload with CDP-Driver connection mode, a TestExceptionWeb
is now thrown in case the specified file does not exist.

• In rare cases the information about sub-items was lost when recording a mouseWeb
click in a web application.

• In some cases a browser window was mistakenly closed in case of a WebDriverWeb
timeout triggered for a different frame.

• Overlays in web applications driven by the Angular framework might not have beenWeb
recognized correctly.

• For SWT applications on Linux, replaying a selection on a ToolItem in a verticalSWT
ToolBar could trigger the wrong item.

B.5.4 Version 6.0.2 - July 20, 2022

New features:

• Clean shutdown of running QF-Test instances - especially in batch mode -
has been greatly improved. With the new command line arguments
-allow-shutdown [<shutdown ID>](914) and -shutdown <ID>(926) it is now
possible to target individual QF-Test processes based on their process ID or a
previously specified shutdown ID. The former command line arguments
-allowkilling(914) and -kill-kunning-instances(919) still work but are now
deprecated.

• The command line argument -clearglobals(916) now also works for calldaemon
mode (see section 25.2.2(321)). To that end the DaemonRunContext API has two
new methods, setGlobals and clearGlobals (see section 55.2(1194)).

• Support for JxBrowser version 7.26 was added.Web

B.5. QF-Test version 6.0 1318

• The faster variant of the procedure qfs.utils.xml.compareXMLFiles in the
standard library qfs.qft now also supports sorting.

• For SmartIDs the prefix of special features like ”Tab: some tab” or ”Label: some
label” is now optional. See section 5.6(72) for details about SmartID syntax.

Bugs fixed:

• When logging screenshots of individual windows, QF-Test mistakenly also used to
create images for embedded windows from different GUI engines.

• When editing options, assigning duplicate hot keys is no longer allowed.

• The pseudo DOM method DomNode.getElementsByTagName now also returnsWeb
slotted elements.

• Text from slotted elements was not taken into account when determining the fea-Web
ture of web components.

• In direct download mode existing files are no longer overwritten by default butWeb
saved with a unique name.

• Replay of TAB keystrokes is now significantly faster for SWT on Windows.SWT

B.5.5 Version 6.0.1 - June 9, 2022

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.24 aliasSWT
”2022-06”.

• There is a new variable group to conveniently escape special characters in Smar-
tIDs. ${quotesmartid:...} deals with the item syntax characters ’@’, ’&’ and
’%’ as well as the SmartID special characters ’:’, ’=’, ’<’ and ’>’.

Bugs fixed:

• Replay of text input for android applications has been improved.Android

• In web applications a GenericClassNameResolver registered on ”DOM_NODE”Web
was not called correctly.

• Replaying text input as single events for SWT applications running on Ubuntu 22SWT
could lead to garbled text with the order of some characters changed. QF-Test
now replays these events with improved synchronisation.

B.5. QF-Test version 6.0 1319

B.5.6 Changes that can affect test execution

• Support for testing Firefox using QF-Driver connection mode, which is limited toWeb
Firefox versions 43 and lower, has been deprecated for removal in a future QF-Test
version. Please consider using current Firefox versions with WebDriver connection
mode instead.

• Support for testing Internet Explorer, which has officially reached end-of-life, hasWeb
been deprecated for removal in a future QF-Test version.

• Support for testing Opera using WebDriver connection mode has been deprecatedWeb
for removal in a future QF-Test version. Please use CDP-Driver connection mode
instead.

• When testing web applications in CDP-Driver or WebDriver connection mode, slot-Web
table nodes are no longer referenced as direct children of the WebComponent
node, but as children of their assigned slot node. This is unlikely to break existing
tests, but if it does, please contact QFS support.

• The way QF-Test internally addresses table columns in a Swing JTable wasSwing
changed from model-based to view-based. This has no effect if table columns or
cells are addressed with a textual index @... or %... or if the order of the
columns in the table view and model is identical. In case a test based on
numeric column indexes &... fails you can either update the column index
or restore the previous functionality with an SUT script of the form
rc.setOption(Options.OPT_SWING_TABLE_USE_VIEW_COLUMN,
false).

• The internal API of the UI automation library has been reworked to simplify classWindows-
Tests names (e.g. ”AutomationWindow” became ”Window”). If you use the uiauto

module directly in your scripts and reference class names directly, you may need
to adapt the class names according to the supplied JavaDoc.

B.5.7 Version 6.0.0 - May 17, 2022

New features:

• The new Android engine adds support for testing Android applications in an emu-
lator or a real device. See chapter 16(225) for further information.

• Though the embedded JRE of QF-Test is still version 8 - currently at relase 8_332
- QF-Test can now also be started with Java 17 (see command line argument
-java <executable> (deprecated)(914)). This provides crisp display on scaled
monitors and enables support for plugins that require newer Java versions.

B.5. QF-Test version 6.0 1320

• Support was added for testing applications based on Java 19.

• In order to reduce the chances of creating screenshots showing sensitive data
during a test run QF-Test now takes screenshots only from relevant monitors that
show a window that belongs to QF-Test or a connected SUT. While this default
setting is useful for personal workstations it may be preferable to turn it off for
dedicated test systems via the new option Limit screenshots to relevant screens(548).

• The HTML report has undergone a major overhaul. Readability is improved thanks
to many subtle details with a more pleasant design and screenshots and error
messages are shown as an overlay when clicked, including navigation between
screenshots.

• Report creation can now also be triggered via a new toolbar button in the run log
window.

• In reports, the name of a test suite, which can be specified in the Name attribute
of the root node, is now used in place of the file name of the test suite. This can
be configured in the report creation dialog or in batch mode via the new command
line argument -report-include-suitename(924).

• Display of duration indicators for a better understanding of the run-time behaviour
of a test run can be turned on for run logs via a new toolbar button and the View
menu. See section 7.1.3(127) and the options Show relative duration indicators(540)

and Duration indicator kind(540) for further information.

• Activating the new option Create screenshots for warnings(549) causes screenshot
creation for warnings in the run log in addition to those for errors and exceptions.

• It is now possible to link nodes in a test suite to external resources or docu-
ments via the @link doctag. Via a right-click the target can then be opened in
a browser or the application associate with the file type. See Doctags for reporting
and documentation(1271) for further information.

• Groovy was updated to version 4.

• The new parameters warningDelay and errorDelay in the procedure
qfs.utils.logMemory in the standard library qfs.qft are used to introduce
a short delay in case the warningLimit or errorLimit are exceeded,
followed by an additional garbage collection and another check.

• The performance and memory consumption of the qfs.qft procedure
qfs.utils.xml.compareXMLFiles have been improved.

• Display and responsiveness of the highlights in check mode were significantly im-Web
proved for CDP-Driver and WebDriver connection mode.

B.5. QF-Test version 6.0 1321

• The handling of WebComponents using ShadowDOMs and slots has been im-Web
proved for testing web application in CDP-Driver or WebDriver connection mode
(QF-Driver support is still pending): The shadow root node is now accessible as
the only child of its host node and slotted nodes are referenced as children of their
assigned slot node.

• Text retrieval with CDP-Driver connection mode has been greatly improved andWeb
the DOM hierarchy is now consistent with other connection modes.

• Performance of image checks in headless browsers has been improved.Web

• QF-Test now supports multiple parallel downloads in web-tests with CDP-DriverWeb
connection mode.

• The new procedure qfs.web.browser.settings.setDirectDownload inWeb
the standard library qfs.qft allows to download files directly into the directory
provided, suppressing the download dialog. Currently for CDP-Driver connection
mode only.

• The embedded Chrome browser used for QF-Driver mode has been updated toWeb
CEF version 100.

• Support for JxBrowser versions 7.23 and 7.24 was added.Web

• The bundled cdp4j library has been updated to version 5.5.0.Web

• The bundled GeckoDriver was updated to version 0.31.0.Web

• The method FrameNode.getFrameElement() was added to the pseudo-DOMWeb
API of QF-Test.

• Via the parameter consoleOutputValue in the proceduresWeb
qfs.web.browser.settings.doStartupSettings and
qfs.web.browser.settings.setTerminalLogs in the standard library
qfs.qft it is now possible to also set the type of the terminal logs.

• The embedded UI automation library has been updated to version 0.7.0.Windows-
Tests

• On macOS the occasionally showing message dialogs about Safari browser au-Mac
tomation are now handled automatically by QF-Test and no longer block test exe-
cution.

Preview features:

The following features are not yet complete, but development has reached a point where
they are already of great use and the released functionality can be relied upon without
concerns about backwards compatibility.

B.6. QF-Test Version 5.4 1322

• SmartIDs enable a flexible, easy recognition of components directly from the
QF-Test component ID without recording component information first. Please see
section 5.6(72) and Component nodes versus SmartID(46) for detailed information.

• Thanks to the new integration with Robot Framework, QF-Test procedures can be
used as Robot Framework keywords.

Bugs fixed:

• The mini-installer files for Windows - minisetup.exe andWindows
minisetup_admin.exe - can now be run in silent and very-silent mode, similar
to the full installation.

• QF-Test might crash when replaying hard key events on macOS.Mac

• When using split run logs, the maximum number of screenshots for a run log was
not always respected, if the option Count screenshots individually for each split
log(548) was turned off.

• The procedure qfs.autowin.acrobat.saveAsText in the standard library
qfs.qft now also works for Acrobat Reader version 22.1 and up.

• A call of rc.clearTestRunListeners() in a server script in batch mode broke
the output resulting from the command line argument -verbose [<level>](929).

• Detection of the Chrome window for semihard clicks has been improved.Web

• For current Opera versions in WebDriver connection mode QF-Test now supportsWeb
automatic download of the required ChromeDriver version.

• The window of an electron application was inadvertently resized upon startupElectron
when tested with CDP-Driver connection mode.

• Popups were not recognized when testing an Electron application in CDP-DriverElectron
connection mode.

B.6 QF-Test Version 5.4

B.6.1 Version 5.4.3 - March 11, 2022

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.23 alias
”2022-03”.

B.6. QF-Test Version 5.4 1323

• Support for JxBrowser 7.22 was added.

Bugs fixed:

• In very special cases instant rerun of a failed node, triggered via the @rerun doc-
tag, could lead to wrong values on the variable stack.

B.6.2 Version 5.4.2 - February 18, 2022

New features:

• QF-Test now supports testing with Opera 84.Web

• The Kendo UI and Smart GWT CustomWebResolvers have been updated for theWeb
latest release of the respective framework.

• The bundled cdp4j library has been updated to version 5.5.0.Web

• The method FrameNode.getFrameElement() was added to the pseudo-DOMWeb
API of QF-Test.

• In the procedure qfs.web.browser.settings.setTerminalLogs in theWeb
standard library qfs.qft it is now possible to set the type for terminal logs via
the consoleOutputValue.

Bugs fixed:

• Cookies were not properly reset upon browser start for Chrome and Edge versionWeb
98 and higher on Windows.

• When elements of a webpage were reordered QF-Test sometimes failed to syn-Web
chronize them correctly with the new order.

• The procedure qfs.daemon.startRemoteSUT in the standard library qfs.qft
did not work correctly if the QF-Test daemon was started with a keystore for se-
curing the communication via TLS.

• Feature resolution for Swing components had a subtle bug in QF-Test versionsSwing
from 5.3.4 to 5.4.1, resulting in a tool-tip having higher precedence than an explic-
itly associated label.

B.6. QF-Test Version 5.4 1324

B.6.3 Version 5.4.1 - January 20, 2022

New features:

• QF-Test now supports testing with Opera 83.Web

• The bundled cdp4j library has been updated to version 5.4.1.Web

Bugs fixed:

• When using CDP-Driver connection mode QF-Test 5.4.0 could sometimes not findWeb
elements added after page load.

• It is now possible to display non-string console log data from a browser started inWeb
CDP-Driver connection mode in the QF-Test terminal.

• The Chrome DevTools can now be detached when developing a web test in CDP-Web
Driver connection mode.

• In some situations, dialogs in Electron applications were not closed properly whenElectron
using WebDriver connection mode.

• Connection to an electron application on Windows failed in CDP-Driver connectionElectron
mode in case the application was starting slowly.

• The command automac.sendText made QF-Test crash on newer macOS sys-Mac
tems.

• ${qftest:os.version} now returns correct values for Windows 11 as well asMac
macOS 11 and up.

B.6.4 Changes that can affect test execution

• An error was fixed in the qftest launch script on Linux. While processing com-
mand line arguments with an escaped $-expression in the value of a -variable or
-option argument, the $-expression was inadvertently expanded.

• Components in a Swing JScrollPane, most notably JTree and JTable, wereSwing
assigned inconsistent qfs:label extra features.

• Testing with Microsoft Edge (legacy) is no longer supported because that versionWeb
of Edge is generally discontinued. This does not affect support for the current
Microsoft Edge browser.

B.6. QF-Test Version 5.4 1325

• Execution of the Wait for document to load(822) step has been fixed and the check forWeb
document reload improved. This may lead to errors in places where the testsuite
design relied on the malfunction. In such a case it is advisable to examine the
affected Wait for document to load(822) steps and possibly disable or remove them,
or replace them with a Wait for component to appear(818) step. Alternatively it is also
possible to reinstate the broken version via the option Reset web-document load
state during rescan (before 5.4)(534).

• For web applications the attributes ”aria-checked” and ”aria-selected” are now au-Web
tomatically taken into account for Boolean check(759) nodes with check type selected
or checked.

B.6.5 Version 5.4.0 - December 15, 2021

New features:

• Support was added for testing applications based on Java 18.

• Electron applications can now be tested using CDP connection mode which is farElectron
more effective and works without requiring inclusion of the problematic module
@electron/remote into the electron application.

• The dialog for the option settings of QF-Test now provides search functionality.

• It is now possible to copy and paste images from and to QF-Test, most notably for
Check image(775) nodes and screenshots in a run log.

• Mouse event(726) nodes with a Modifiers(728) attribute of 4, designating a right-button
click, are now shown in the tree as ”right-click”.

• The embedded Chrome browser used for QF-Driver mode has been updated toWeb
CEF version 95.

• Groovy was updated to version 3.0.9

• The JUnit library has been updated to version 5.8.1.

• QF-Test now supports tests for applications based on Eclipse/SWT 4.22 aliasSWT
”2021-12”.

• QF-Test now supports testing with Opera 80, 81 and 82.Web

• Support for JxBrowser 7.20 and 7.21 was added.Web

B.6. QF-Test Version 5.4 1326

• For a web application the attribute Check type identifier(761) of a Boolean check(759)Web
node can now be set to ”attribute:<name>” to check for the boolean value of the
attribute <name> in the target node.

• The new doctag @outputFilter can be used in client starter nodes in order to sup-
press unwanted messages in the QF-Test terminal. See section 62.3(1274) for de-
tails.

• If the Default value(816) attribute of a Set variable(814) is a QF-Test component ID in the
form ${id:...}, it is now possible to highlight or jump to the target component by
right-clicking and selecting the respective item in the context menu.

Bugs fixed:

• The search for unused callable nodes sometimes missed certain references and
thus could turn up nodes that were actually still in use.

• QF-Test now tries to avoid creating non-daemon threads in the SUT, including
implicitly created threads from the RMI sub-system. These threads could prevent
a process from terminating completely after closing the last window of the SUT.

• Performance and memory consumption have been improved in several places.

• The title of a JPanel with a TitledBorder is now correctly retrieved as its fea-Swing
ture.

• The order of the components in a Swing JSplitPane seen by QF-Test couldSwing
vary depending on the order of creation and replacement of those components.
QF-Test now uses left->right or top->bottom order irrespective of that.

• QF-Test now also supports automatic ChromeDriver download for the GoogleWeb
Chrome variants ”Dev” and ”Canary”.

• QF-Test sometimes failed to record events after frame navigation in CDP-DriverWeb
mode.

• An exception was fixed that could cause failures during document initialization inWeb
CDP connection mode.

• The ”label” attribute of an OPTION element is now taken into account when deter-Web
mining the name of the option.

• When a browser window crashes in CDP connection mode, an error is now re-Web
ported and the window is automatically closed.

• Handling of unload dialogs during web tests with CDP-Driver connection modeWeb
has been improved.

B.7. QF-Test Version 5.3 1327

• When running web tests on a headless browser with CDP-Driver connection modeWeb
QF-Test no longer attempts to show a temporary Swing dialog for file up- or down-
load. As a result, headless-only web tests with CDP-Driver should now run as
batch tests in a container with no X-server at all.

• Synchronization with animations in web applications has been improved for CDP-Web
driver connection mode.

• By default, console output of Firefox in Webdriver connection mode was redirectedWeb
to the process’ standard output so that QF-Test could check it for JavaScript errors.
Due to the potentially heavy load on CPU and memory this has been turned off
and can be re-enabled by setting the parameter consoleOutputValue to 1 in
the call to the procedure qfs.web.browser.settings.doStartupSettings
in the standard library qfs.qft.

B.7 QF-Test Version 5.3

B.7.1 Version 5.3.4 - September 30, 2021

New features:

• The bundled GeckoDriver was updated to version 0.30.0.

Bugs fixed:

• A memory leak in QF-Test, introduced in version 5.3.3 has been fixed.

• The procedure qfs.autowin.acrobat.saveAsText in the standard library
qfs.qft now also works for Acrobat Reader version 21.6 and up.

B.7.2 Version 5.3.3 - September 14, 2021

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.21 aliasSWT
”2021-09”.

• QF-Test now supports testing with Opera 78 and 79.Web

• Support for JxBrowser 7.17, 7.18 and 7.19 was added.Web

• The bundled cdp4j library was updated to version 5.4.0.Web

B.7. QF-Test Version 5.3 1328

Bugs fixed:

• The dialog for editing step details is now properly shown the range of visible
screens, even when a previously attached monitor gets removed or when switch-
ing a session to RDP.

B.7.3 Version 5.3.2 - July 21, 2021

Bugs fixed:

• Some websites containing custom HTML elements were not testable with CDPWeb
connection mode.

• In CDP connection mode whitespace was missing from fetched text in some cases.Web

• In CDP connection mode, the keyCode property of key events generated from textWeb
is now set correctly.

• In CDP connection mode the location of elements in nested IFRAMEs was calcu-Web
lated wrongly.

• The Name of the browser window(824) attribute of Wait for document to load(822) nodesWeb
was ignored.

B.7.4 Version 5.3.1 - June 15, 2021

New features:

• Support was added for testing applications based on Java 17.

• QF-Test now supports tests for applications based on Eclipse/SWT 4.20 aliasSWT
”2021-06”.

• Performance in CDP connection mode with dynamic content updates has been
improved.

• Support for JxBrowser 7.16 was added.

• QF-Test now supports applications built with Electron 14 or newer, if theElectron
@electron/remote is bundled with the app.

• QF-Test now supports testing with Opera 77.

Bugs fixed:

• Validity of text input to web applications via single events has been improvedWeb
through additional explicitly defined keycodes.

B.7. QF-Test Version 5.3 1329

B.7.5 Changes that can affect test execution

• Jython issues with character encoding have been reduced and it is now possible
to treat Jython literals as 16-bit unicode string which is the natural representa-
tion for Java and thus QF-Test. For compatibility reasons the new option Literal
Jython strings are unicode (16-bit as in Java)(453) is turned off by default if QF-Test
encounters an existing system configuration.

Please see section 11.4.5(182) for detailed information about why the option should
be turned on and how to trouble-shoot possible issues. Chances are high that your
Jython scripts will simply work and string handling will become much cleaner. If
not, either undo the option change or fix the resulting incompatibilities. We had to
do the latter in only a handful of places in our over 1600 test suites, some of which
date back over 20 years. The section Trouble shooting Jython encoding issues
11.4.5(184) explains the most common pitfalls and of course our support is always
there to help.

• The default folder name of the Firefox profile when executed in WebDriver connec-
tion mode has been renamed from mozProfile to firefoxProfile and it is
now used in place instead of copying it to a temporary directory. This behaviour
is now consistent with using QF-Driver but has the side-effect that preferences
from one test execution are preserved for the next execution and might have to
be overwritten during the next browser start. To restore the previous behavior,
set the OPT_WEBDRIVER_COPY_MOZPROFILE option to true before starting the
browser.

• The procedures in the package qfs.utils.ssh of the standard library qfs.qft
and the underlying Jython module ssh have been updated to default to RSA public
key authentication with the default private key file /.ssh/id_rsa instead of DSA
which is no longer supported by most current ssh servers.

• The option Create compact run log(549) is now deactivated by default in interactive
mode. Existing system configurations are not affected and the option has no effect
in batch mode where compactification is controlled via the command line attribute
-compact(916).

B.7.6 Version 5.3.0 - May 20, 2021

New features:

• The newly added browser connection mode CDP-Driver supplements QF-DriverWeb
and WebDriver for controlling Chromium based browsers via the Chrome DevTools
Protocol. By talking directly to the browser without the intervening WebDriver pro-
tocol, speed, stability and feature set of CDP-Driver are on par with QF-Driver

B.7. QF-Test Version 5.3 1330

(and that’s after the QF-Driver performance boost, see below). In addition, while
QF-Driver is limited to Chrome on Windows, CDP-Driver now supports Google
Chrome, Microsoft Edge and Opera on Windows, Linux and macOS, so this is a
real game-changer for web test automation with QF-Test.

• The performance of web tests with QF-Driver for Chrome has been significantlyWeb
improved. Observed speed-up ranges from 10% to over 500%.

• The user interface of QF-Test has been cleaned up and streamlined, using a uni-
form flat look with fewer lines and beautiful new icons that still maintain the existing
image language and are immediately recognizable. The HTML manual and tutorial
as well as report and test documentation have also received a face-lift.

• Use of international character sets in Jython scripts is now straightforward. If the
new option Literal Jython strings are unicode (16-bit as in Java)(453) is turned on,
literal strings (explicitly specified string constants like ”abc”) in Jython scripts are
treated as 16-bit unicode and are thus equivalent to strings in Java and the other
QF-Test scripting languages. Please see section 11.4.5(182) for detailed information.

• Detection of errors in the browser console has been improved and,Web
depending on the option How to handle errors in a web application(531),
they are logged in the QF-Test run log. Besides, the new procedure
qfs.web.browser.settings.setTerminalLogs in the standard library
qfs.qft can be used to define if and how messages from the browser console
are to be shown in the QF-Test terminal.

• The embedded Chrome browser used for QF-Driver mode has been updated toWeb
CEF version 89.

• The bundled GeckoDriver was updated to version 0.29.1.Web

• Support for JxBrowser 7.14 and 7.15 was added.Web

• QF-Test now supports testing with Opera 76.Web

• The JRE distributed with QF-Test has been updated to Zulu OpenJDK version
8_292.

• The quickstart wizard now has its own toolbar button. This - or any other unwanted
toolbar button - can now be removed from the toolbar via a right-click popup menu.

• The ’Wait for absence’ node now has a dedicated entry in the Insert menu and
its logic when applied to sub-items has been simplified: Execution of the node is
successful if either the parent component of the sub-item is absent or the sub-item
itself.

B.7. QF-Test Version 5.3 1331

• When running a test with the command line argument -verbose [<level>](929),
QF-Test now expands variables in node names for console output also.

• The default setting for the available Java memory for QF-Test has been increased
to 1024 MB. The configuration of existing QF-Test installations is not affected.

• Sub-items of Swing JComboBox components can now be addressed relative toSwing
the JComboBox without requiring identification of the popup list.

• The ability to bring windows of the SUT to the foreground when needed and setLinux
the input focus is crucial for automated testing. On Linux QF-Test now uses an
updated, more reliable method to bring a window on top regardless of desktop
settings if the option Force window to the top when raising(505) is not deactivated.

• Exception messages in the run log or an error dialog are now displayed using
word-wrap to break long lines. This can be turned off via the option Wrap lines in
exception messages(550).

Bugs fixed:

• Installing a resolver via the generic method resolvers.addResolver() did not
work in SUT scripts with the JavaScript language.

• The browser zoom level is now reset to 100% when clearing the browser cache.Web

• The procedure qfs.swing.startup.startWebstartSUT now ensures
proper quoting of the jnlp argument for use on the command line of Linux
systems in order to avoid side-effects from special characters it might contain.

• The qfs:label extra feature for elements within a TabPanel of a native WPF appli-Windows-
Tests cation was not determined correctly.

• Since QF-Test version 5.2.2 in very special cases elements in a web page wereWeb
mistakenly considered to be invisible.

• QF-Test now runs again on macOS versions older than 10.14.Mac

• Resolution of the qfs:label extra feature for a label located above the target com-
ponent is now slightly more tolerant about horizontal alignment.

• Fast replay of several mouse clicks onto the same location of a Webswing appli-Swing
cation could accidentally create double clicks when redirecting events through the
browser.

B.8. QF-Test version 5.2 1332

B.8 QF-Test version 5.2

B.8.1 Version 5.2.3 - March 9, 2021

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.19 aliasSWT
”2021-03”.

Bugs fixed:

• In special cases, unluckily placed comment nodes could lead to unwanted side-
effects during test execution like a ’Setup’ or ’Cleanup’ node run just for a com-
ment.

• Improved timing for client shutdown when ending batch mode execution.

• In WebDriver connection mode mutations on a website might have gone unnoticedWeb
in case the page contained too many elements.

B.8.2 Version 5.2.2 - February 12, 2021

New features:

• Support was added for testing applications based on Java 16.

• QF-Test now supports testing with Opera 74.Web

• The bundled GeckoDriver was updated to version 0.29.0.Web

• The new shortcuts
�� ��Ctrl-/ or

�� ��Ctrl-7 can be used to insert a new comment node in
the test suite tree.

Bugs fixed:

• Several performance bottlenecks for web tests have been fixed, most notably forWeb
Firefox on Linux with WebDriver.

• In very rare situations, Chrome was closed in case a JavaScript-execution inter-Web
vened with a frame reload.

• Delayed attachment of a shadow DOM is now recognized correctly.Web

B.8. QF-Test version 5.2 1333

• In special cases the improved event synchronization for Swing might have missedSwing
some events, causing slower test execution.

• If a Test case(558) with the Expected to fail if...(564) attribute set to true does not fail, it
should be treated as an error. That error was incorrectly reported as an expected
error itself.

• The sort order of parameters is now also automatically applied when changing the
target procedure of a Procedure call(630) node via the chooser dialog.

B.8.3 Version 5.2.1 - December 3, 2020

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.18 aliasSWT
”2020-12”.

• Support for JxBrowser 7.12 was added.

Bugs fixed:

• Due to wrong file permissions on Linux machines, Jython scripts would fail when
running QF-Test as a user other than the one that installed it.

• The JRE distributed with QF-Test has been changed back to Zulu OpenJDK. The
version remains 8_275.

• In some cases, showing an alert box on a web page lead to a browser deadlock.

• Several details for the Webswing integration have been improved, including cor-
rect filtering of KeyEvents, focus handling for embedded JavaFX components and
cleaner separation of client processes in the demo test suites.

• Daemon connection might have failed during handshake if different java version
where used on client and server side.

B.8.4 Changes that can affect test execution

• Testing applications running on Java 7 is no longer supported.

• Many procedures in the standard library package qfs.qft.autowin have beenWindows-
Tests deprecated in favor of the much better suited Windows engine.

B.8. QF-Test version 5.2 1334

• Due to the updated JRE in the QF-Test installation, graphical elements and graphs
in the PDF client may be painted with slightly different anti-aliasing. This can lead
to errors in Check image(775) nodes. Given that such problems cannot be ruled out for
future JRE updates you should set the Algorithm for image comparison(778) attribute
of affected nodes to ”algorithm=similarity;expected=0.98”.

B.8.5 Version 5.2.0 - November 10, 2020

New features:

• QF-Test now supports integrated testing of Swing and JavaFX applications that
are displayed in a browser using the technologies Webswing or JPro. See chapter
20(283) for an explantion of the concepts and the demo test suite for Webswing,
accessible via the menu Help→Explore sample test suites... , entry ”Webswing
SwingSet Suite”.

• QF-Test is now notarized by Apple and thus starts on modern macOS systemsMac
without showing a warning message.

• QF-Test now also supports testing with the Microsoft Edge browser on Linux.Web

• The JRE distributed with QF-Test has been updated to Liberica OpenJDK version
8_275.

• The embedded Chrome browser used for QF-Driver mode has been updated toWeb
CEF version 85.

• Groovy has been updated to version 3.0.6.

• Jython has been updated to version 2.7.2.

• Support for JxBrowser 7.11 was added.Web

• The embedded GeckoDriver has been updated to version 0.28.0.Web

• QF-Test now supports testing with Opera 72.Web

• Device specifications for many current mobile devices have been added to mobileWeb
emulation mode.

• The JUnit library has been updated to version 5.7.0.

• On Windows systems with a scaled display QF-Test now starts QF-DriverWeb
browsers in compatibility mode so that scaling is transparently handled by
Windows and tests work very similar to unscaled mode except for image checks.

B.8. QF-Test version 5.2 1335

• It is now possible to specify options on the command line via the argument
-option <name>=<value>(921).

• QF-Test command line arguments can now contain ”.” and ”-” characters in arbi-
trary places and upper or lower case characters at will.

• When testing Java applications, QF-Test can now intercept calls that open a na-
tive browser window in order to launch a browser controlled by QF-Test for the
given URL. An example is provided in the demo test suites ”CarConfig Swing
test project” and ”CarConfig JavaFX test project”, accessible via the menu item
Help→Explore sample test suites... .

• The new procedure qfs.utils.waitForClientOutput in the standard library
qfs.qft assists in synchronizing with terminal output of the SUT.

• Several more node conversions are now possible.

• The Server HTTP request(848) step now also supports the PATCH method.

• The two new procedures qfs.utils.sendKey and qfs.utils.sendText in
the standard library qfs.qft can be used to enter text into the currently focused
element of the active window.

• The ’No events were recorded’ dialog can now be suppressed via the new option
Show message if no events were recorded(474).

• When merging run logs in batch mode, the command line argument
-mergelogs-masterlog [<file>](920) can now be combined with
-mergelogs-mode [<mode>](920) set to ”append”. The appended run logs will
be stored as externalized thus minimizing memory use both during merging and
when opening the resulting run log.

• Similar to Jython, script steps for Groovy and JavaScript can now use common
exceptions without an explicit import.

• When propagating the parameters of a callable node to its callers, there are now
explicit choices for whether to add missing parameters, remove extraneous pa-
rameters and/or update the sort order.

Bugs fixed:

• Opening a run log with an automatic rerun still in progress could lead to an excep-
tion.

• Encrypted connections to the QF-Test daemon are now also supported by the
external daemon-API.

B.9. QF-Test version 5.1 1336

• When generating reports, thumbnail images were created even if
-report-thumbnails was not specified.

• The Unit test(836) step now correctly supports the self.assertEqual call in
Jython scripts.

• Text input on Swing and JavaFX components was slowed down if a browser em-
bedded into Java was detected.

• Event synchronization under heavy load for Swing based applications has beenSwing
improved.

• Text input with single events on a Swing JTextArea now handles newline charactersSwing
correctly.

• Elements of Windows applications may not have been scrolled visible correctly forWindows-
Tests hard events and image checks.

• With a browser in WebDriver mode a failed frame focus switch could lead to aWeb
StackOverflowException.

• In some cases the MSEdgeDriver was not downloaded correctly.Web

• Checks on elements inside a shadow DOM could not be recorded.Web

• Soft (invisible) hyphen characters are now implicitly ignored.Web

• In some cases, dialog boxes from Electron where displayed empty.Electron

• The visibility of JavaFX components embedded in Swing was sometimes not de-JavaFX
termined correctly.

• For SWT version 4.17 on Windows highlight rectangles on Menus were not re-SWT
stored correctly.

B.9 QF-Test version 5.1

B.9.1 Version 5.1.2 - September 15, 2020

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.17 aliasSWT
”2020-09”.

Bugs fixed:

• In rare cases QF-Test could crash during image compression if memory was tight.

B.9. QF-Test version 5.1 1337

B.9.2 Version 5.1.1 - August 26, 2020

New features:

• QF-Test now supports testing with Opera 70.Web

• The embedded GeckoDriver has been updated to version 0.27.0.Web

• For WebDriver based tests with Chrome/Chromium, site isolation is automaticallyWeb
deactivated.

• Support for JxBrowser 7.10 was added.Web

• A link to the JavaScript documentation was added to the help menu.

Bugs fixed:

• The Unit test(836) node now also searches for JUnit 5 (Jupiter) tests on the classpath.

• In some cases, native menu clicks on Electron applications were not properlyElectron
recorded.

• The cache of Chromium based browsers might not have been cleared properly.Web

• The option Enable ’Local variable’ attribute by default(552) will now be taken into
account when pasting a copied Procedure(627) node as a Procedure call(630), for node
conversions in general and also when recording checks.

• A deadlock could occur if embedded browser containers (e.g. JxBrowser) wereWeb
removed and added at the same time.

• Adding Comment(797) nodes to a procbuilder configuration file could break procedure
recording.

• On macOS, JVM options (starting with ”-J-”) are now handled correctly.Mac

• Text input in Windows applications may not have worked properly when the AltGrWindows-
Tests key was involved.

• When working with dialogs in headless browser tests, sometimes the invisible di-Web
alog was not closed properly.

• A ClassNotFoundException could be triggered when an SWTBrowser was underWeb
test.

• When creating procedures via the Procbuilder using FORCECREATION the sep-
aration dots for the package structure were replaced by underscores.

• When generating procedures via the Procbuilder values from the Extra features of
parent and grand parent nodes can now be used as fallback.

B.9. QF-Test version 5.1 1338

B.9.3 Changes that can affect test execution

• Due to the updated JRE in the QF-Test installation, graphical elements and graphs
in the PDF client may be painted with slightly different anti-aliasing. This can lead
to errors in Check image(775) nodes. Given that such problems cannot be ruled out for
future JRE updates you should set the Algorithm for image comparison(778) attribute
of affected nodes to ”algorithm=similarity;expected=0.98”.

The JRE update can also cause communication problems between QF-Test and
the QF-Test license server in case the license server is run with a very old Java
version that cannot cope with the key length required for SSL in current Java ver-
sions. In that case it is best to update the license server to the current QF-Test
version and use its included JRE.

• The library jniwrapper is no longer loaded by default because our old
jniwrapper version crashes QF-Test on newer JDKs. Modules with native
dependencies like autowin have been rewritten to no longer depend on it and all
references to jniwrapper have been removed from the standard library
qfs.qft.

If you still have script nodes in your test suites that depend on jniwrapper you
should try to reimplement these in order to remove that dependency. Please get
in touch with our support if you need help.

As an interim solution you can get such scripts to work again (on older JDKs where
jniwrapper does not crash) as follows:

– Copy the files from misc/jniwrapper in the QF-Test installation directory
to qftest in the QF-Test plugin directory. To locate those directories, open
the Help→Info dialog and look for dir.version and dir.plugin on the
’System info’ tab.

– Add either a Jython server script to your startup sequence with

from com.jniwrapper import DefaultLibraryLoader
from java.io import File
DefaultLibraryLoader.getInstance().addPath \
(File(rc.getStr("qftest", "dir.plugin") + "/qftest"))

or the following Groovy variant

import com.jniwrapper.DefaultLibraryLoader
DefaultLibraryLoader.getInstance().addPath

(new File(rc.getStr("qftest", "dir.plugin") +
"/qftest"))

B.9. QF-Test version 5.1 1339

• The ChromeDriver library for old Chrome versions (older than 72) is not bundled
wit QF-Test anymore.

• Testing applications running on Java 7 ist still supported in this QF-Test version.
However, support for Java 7 has been deprecated and will be removed in QF-Test
version 5.2.

B.9.4 Version 5.1.0 - July 8, 2020

Video:Video

QF-Test 5.1.0
https://www.qftest.com/en/yt/version-51-embedded-browsers-51.html

New features:

• Support was added for testing applications based on Java 15.

• The JRE distributed with QF-Test has been updated to Zulu OpenJDK version
8_252.

• Recording and replay of tests for embedded browsers has been significantly im-Web
proved.

• JxBrowser is now supported in version 7, embedded into Swing, JavaFX or
Eclipse/SWT applications.

• Support was added for handling native dialogs in Electron applications.Electron

• QF-Test now supports testing with Opera 69.Web

• Support for the web framework Qooxdoo has been updated for Qooxdoo versionWeb
6.

• HTML reports can now be customized via JavaScript in the form of a user.js.
See section 24.1.4(310) for details.

• The automac module now provides methods for simulating keyboard and mouse
events. See chapter 53(1069) for further information.

• The root node of a test suite now also has a Name(556) attribute that is shown in the
tree.

• The new option Enable ’Local variable’ attribute by default(552) determines, whether
the attribute ’Local variable’ gets pre-activated in newly created nodes.

B.10. QF-Test version 5.0 1340

• The procedure qfs.utils.dragAndDrop in the standard library qfs.qft has
a new optional parameter eventDelay to control replay speed.

• It is now possible to convert a CSV data file node into an Excel data file node and
vice versa.

• test suite tabs can be moved left or right using the keyboard shortcuts�� ��Shift-Ctrl-Page up and
�� ��Shift-Ctrl-Page down .

Bugs fixed:

• The procedure qfs.web.browser.settings.setLocale now also works forWeb
WebDriver connections to Chromium based browsers.

B.10 QF-Test version 5.0

B.10.1 Version 5.0.3 - June 17, 2020

New features:

• QF-Test now supports tests for applications based on Eclipse/SWT 4.16 aliasSWT
”2020-06”.

• The included jsch.jar library used by the qfs.utils.ssh package in the stan-
dard library qfs.qft has been updated to version 0.1.55 in order to add support
for modern Linux systems like Ubuntu 20.

Bugs fixed:

• The included WebP image compression library was rolled back to version 1.0.0 to
avoid incompatibilities.

• Component recognition might have failed when web components had non-integerWeb
sizes.

• In rare cases calling rc.callProcedure inside the parameters of a
Procedure call(630) node could lead to the global variables in the variable stack
getting lost.

• The special syntax ${qftest:engine.<componentid>} that can be used to determine
the engine of a component now also works if <componentid> contains a ’@’, ’%’
or ’&’ character.

• Selecting a single value in a run log’s error list and using ”Set value as filter” twice
caused an ArrayIndexOutOfBoundsException.

B.10. QF-Test version 5.0 1341

B.10.2 Version 5.0.2 - May 5, 2020

New features:

• The WebP image compression library has been updated to version 1.1.0.

• Keyboard event input in JX Browser is now more stable.

• Contrast of toolbar icons has been improved especially for disabled buttons.

• QF-Test now supports testing with Opera 68.

Bugs fixed:

• Angular 9 is now auto-detected correctly.

• The CSV data file(620) node now correctly handles UTF-8 encoded files with BOM
that start with an encapsulated complex expression.

• The Start windows application(696) node can again attach to a client via a given classWindows-
Tests name (-class) in the Window title attribute.

• Error handling and retry for automatic downloads of WebDriver libraries has been
improved.

• Recording elements with a flat hierarchy did not work.Windows-
Tests

• The PDF client is now able to check a Text component which contains only null
”\u0000” characters and treats it as an empty String.

B.10.3 Version 5.0.1 - March 2, 2020

New features:

• A new demo test suite was added for the Windows 10 Calculator.Windows-
Tests

• QF-Test now supports Opera 67 with Operadriver 80.0.3987.100.

• QF-Test now supports tests for applications based on Eclipse/SWT 4.15 aliasSWT
”2020-03”.

Bugs fixed:

• When recording components for the whole window, elements within a WPF Tab-Windows-
Tests Panel were omitted.

B.10. QF-Test version 5.0 1342

• The qfs.database.executeSelectStatement procedure now works again
for databases requiring an explicit db.commit() statement.

• When executing a Server HTTP request(848) node, the returned body was mistakenly
not stored in a variable in case of a server error.

• Processing JavaFX images in order to calculate a hash value could cause aJavaFX
NullPointerException; to get printed to the terminal.

• Fixed a bug where a TextField in a Windows application might not get clearedWindows-
Tests before input.

• Occasionally a ModalDialogException might get incorrectly thrown in WPF Win-Windows-
Tests dows applications.

B.10.4 Main new features in version 5

For a detailed list of new features please see the release notes below for QF-Test ver-Note
sions 5.0.0.

The following major new features have been implemented for QF-Test version 5:

Description Further info
New GUI engine: Windows Testing native Windows applications(215)

Modernized User Interface of QF-Test QF-Test looks more modern
Tests with Java 14 Applications based on Java 14 can be tested now
test suites with comments Comment(797) node directly in the tree of a test suite
Edge based on Chromium Tests with the final Edge based on Chromium are

now possible
File download via the Server HTTP request(848) node Attribute Save response to file(852)

Table B.1: New features in QF-Test 5

Changes that can affect test execution:

• The Server HTTP request(848) node now throws an exception if the status code is
greater than or equal to 400. This behavior can be changed with the new attribute
Error level if status code >= 400(853).

• The options Connect via QF-Test agent(554) and Instrument AWT EventQueue(554)

are no longer saved in the system config file and can only be changed at runtime
via a script. See section 41.13(553) for detail.

B.10. QF-Test version 5.0 1343

Software that is no longer supported:

Please see section 1.1(3) for a detailed list of system requirements and supported tech-Note
nology versions.

• Testing of applications based on Java 6 is no longer supported.

B.10.5 Version 5.0.0 - February 6, 2020

New features:

• With the new Windows engine QF-Test can now test native Windows applications.

• Support was added for testing applications based on Java 14.

• The new Comment(797) node can be used to improve the structure and readability of
test suites and run logs.

• It is now possible to download a file via the new Save response to file(852) attribute of
the Server HTTP request(848) node.

• A package for Windows applications has been added to the standard libraryWindows-
Tests qfs.qft.

• On Windows 10 QF-Test is now correctly displayed at scaled high resolution dis-
plays.

• In the manual the chapter Web testing(208) has been revisedWeb
and a section (section 51.1.2(1008)) describing the procedure
qfs.web.ajax.installCustomWebResolver of the standard library has
been added.

• The option Show message dialog after(495) now has a setting to show a message
dialog also when a test run finishes successfully.

• If the result dialog gets shown after a search the search dialog is now closed
automatically.

• The new procedure qfs.util.click in the standard library qfs.qft can be
used to click at an arbitrary position on the screen.

• You can now create an electron start sequence in the quickstart wizard that auto-
matically detects the required ChromeDriver.

• When copying a Procedure call(630), Test call(572) or Dependency reference(592) node the
name of the target node is now also copied as text to the clipboard.

B.10. QF-Test version 5.0 1344

• The bundled GeckoDriver has been updated to version 0.26.0.Web

• On Windows, tests with the Microsoft Edge 78 and newer are also possible inWeb
headless mode.

• QF-Test now supports Opera 66 with Operadriver 79.0.3945.79.Web

• The new variable engine.$(componentId) in the qftest special group makes
it possible to find out which GUI engine a component belongs to.

• The project tree view in QF-Test now uses a natural sort order, respecting indexes
and cases.

• Data for several new mobile devices was added to the Mobile Emulation setup in
the quickstart wizard.

Bugs fixed:

• An image might have been removed from the run log in low-memory situations.

• Fixed a sporadic exception that could appear when creating a test suite from a run
log.

• Finally(665) nodes inside a Try(658) now get executed even when an instant rerun gets
triggered from within the Try(658) node.

• ImageWrapper methods now log warnings whenever the method fails.

• In very rare cases the
�� ��Ctrl key might accidentally have stayed in pressed state

after finishing replay.

1345

Appendix C

Keyboard shortcuts

C.1 Navigation and editing

This table gives a useful overview of QF-Test’s basic and advanced navigation and edit-
ing keyboard shortcuts:

Windows/Linux macOS Function
File Navigation�� ��Control-N

�� ��-N New�� ��Control-O
�� ��-O Open�� ��Control-S
�� ��-S Save

-
�� ��- -S Save as

Basic Editing�� ��Control-Z
�� ��-Z Undo last change�� ��Control-Y
�� ��- -Z Redo last change

Search and Replace�� ��Control-F
�� ��-F Search�� ��F3
�� ��F3 Continue previous search�� ��Control-G
�� ��-G Search again�� ��Control-H
�� ��-H Replace

Workbench View�� ��Control-PageDown
�� ��- Next test suite�� ��Control-PageUp
�� ��- Previous test suite�� ��Control-Shift-PageDown
�� ��Control-Shift- Change current and next suite�� ��Control-Shift-PageUp
�� ��Control-Shift- Change current and previous suite�� ��Alt-1, 2, ... 9
�� ��-1, 2, ... 9 Switch to 1st, 2nd, ... 9th testsuite�� ��F5
�� ��-R Refresh project directory�� ��Shift-F5
�� ��- -R Rescan project directory

C.1. Navigation and editing 1346

�� ��F6
�� ��F6 Switch focus back and forth between suite and

project view�� ��Shift-F6
�� ��-F6 Select the current suite in the project tree,

showing the project if necessary�� ��Control-F6
�� ��-F6 Switch to previously active suite.

Keep
�� ��Control pressed and type

�� ��F6 again to
move further back. Simultaneously pressing�� ��Shift reverses the direction�� ��Control-L

�� ��-L Open latest run log
-

�� ��- -F Toggle Full Screen
-

�� ��-, Open Options
-

�� ��-W Close Testsuite�� ��Alt-F4
�� ��-Q Close QF-Test

Tree View�� ��Up /
�� ��Down /

�� ��Right /
�� ��Left

�� ��/ �� ��/ �� ��/ �� �� Basic navigation�� ��Alt-Up
�� ��- Jump to previous sibling of node�� ��Alt-Down
�� ��- Jump to next sibling of node�� ��Alt-Right
�� ��- Expand node recursively�� ��Alt-Left
�� ��- Collapse node recursively�� ��Shift-Up
�� ��- Extend selection upwards�� ��Shift-Down
�� ��- Extend selection downwards�� ��Control-Up
�� ��- Move upwards without affecting selection�� ��Control-Down
�� ��- Move downwards without affecting selection�� ��Control-Right
�� ��- Scroll tree right�� ��Control-Left
�� ��- Scroll tree left�� ��Space
�� ��Space Toggle selection of current node�� ��Control-Backspace
�� ��- Jump to last visited node�� ��Shift-Control-Backspace
�� ��- - Jump to next selected node�� ��Control-.
�� ��-. Clean tree�� ��Alt-Return
�� ��- Bring up node properties window�� ��Shift-F10 /�� ��Windows context menu key

�� ��-F10 Bring up node popup menu�� ��F2
�� ��F2 Mark name or QF-Test ID of node in order to

rename it
Tables�� ��Shift-Insert

�� ��- Insert new row�� ��Shift-Return
�� ��- Edit selected row�� ��Shift-Delete
�� ��- Delete selected row�� ��Shift-Control-Up
�� ��- - Move selected row up�� ��Shift-Control-Down
�� ��- - Move selected row down�� ��F2
�� ��F2 Edit selected value�� ��Return
�� �� Confirm changes

C.1. Navigation and editing 1347

�� ��Escape
�� �� Discard changes�� ��Shift/Control-Up/Down
�� ��/ - / Multi selection�� ��Control-X / C / V
�� ��-X / C / V Cut / Copy / Paste�� ��Shift-Control-Right
�� ��- - For variables: Forward parameters, i.e. x ->

$(x)

Code Editor�� ��Control-Space
�� ��-Space Open available QF-Test variables for scripts or

for dedicated nodes open a list of available
methods.�� ��Control-P

�� ��-P Find procedure definition (for lines which call
a procedure)�� ��Control-T

�� ��-T Find test definition (for lines which call a test)�� ��Control-W
�� ��-W Find component (for lines which refer to a

component)�� ��Alt-Up
�� ��- - Move line(s) up�� ��Alt-Down
�� ��- - Move line(s) down�� ��Shift-Return
�� ��- Insert an empty line after the current line

Multi-line Text Elements�� ��Control-TAB
�� ��- Move focus to next attribute�� ��Shift-Control-TAB
�� ��- - Move focus to previous attribute�� ��Control-Return
�� ��- Confirm changes

For Procedure call nodes�� ��Control-P
�� ��-P Find procedure definition

For nodes with a QF-Test component ID attribute�� ��Control-W
�� ��-W Find component

For Test call nodes�� ��Control-P
�� ��-P Find called test definition

For Dependency reference nodes�� ��Control-P
�� ��-P Find dependency definition

Run log�� ��Control-I
�� ��-I Open error list dialog�� ��Control-N
�� ��-N Find next error�� ��Shift-Control-N
�� ��- -N Find previous error�� ��Control-T
�� ��-T Find node in test suite�� ��Control-W
�� ��-W Find next warning�� ��Shift-Control-W
�� ��- -W Find previous warning�� ��Shift-Control-Return
�� ��- - Show text in external editor

-
�� ��-W Close run log

Advanced Editing�� ��Control-7
�� ��-7 Inserting a comment node�� ��Shift-Control-7
�� ��- -7 Inserting a comment node above the currently

selected node

C.3. Record and replay functions 1348

�� ��Control-A
�� ��-A Inserting a procedure call�� ��Control-D
�� ��-D Add selected node to bookmarks�� ��Shift-Control-D
�� ��- -D Toggle disabled state of selected nodes�� ��Control-I
�� ��-I Find references of node

Available for components, tests, dependen-
cies and procedures�� ��Shift-Control-I

�� ��- -I Pack selected nodes into if-sequence�� ��Shift-Control-P
�� ��- -P Transform selected nodes into procedure

Available only valid for sequence and similar
nodes�� ��Shift-Control-S

�� ��- -S Pack selected nodes into sequence�� ��Shift-Control-T
�� ��- -T Pack selected nodes into test step�� ��Shift-Control-Y
�� ��- -Y Pack selected nodes into try/catch

Table C.1: Shortcuts for navigation and editing

C.2 UI Inspector

The following table contains shortcuts for the UI Inspector(97). They work directly from the
SUT. If you want to change the default shortcuts please refer to UI Inspector options(536).

Windows/Linux macOS Function
UI Inspector�� ��Umschalt-Strg-F11 (config-

urable)

�� ��-F11 (configurable) Open the UI inspector�� ��Umschalt-Strg-F12 (config-
urable)

�� ��-F12 (configurable) Activate component selection in the UI inspec-
tor (open it as well if required)

Table C.2: Shortcuts for the UI inspector

C.3 Record and replay functions

The following table contains important shortcuts for record and replay functions, which
partly work also outside of QF-Test, i.e. directly in the SUT:

C.4. Keyboard helper 1349

Windows/Linux macOS Function
Replay�� ��Return

�� �� Play (execute current node)�� ��F9
�� ��F9 Pause�� ��Alt-F12 (configurable)
�� ��-F12 (configurable) Pause test run (”Don’t Panic” key)

Record�� ��F11 (configurable)
�� ��F11 (configurable) Toggle ”Record mode”

Record Checks�� ��F12 (configurable)
�� ��F12 (configurable) Toggle ”Check mode”�� ��Left Mouse Button
�� ��Primary Click Record default check�� ��Right Mouse Button
�� ��Secondary Click Show list with available checks

Record Components�� ��Shift-F11 (configurable)
�� ��-F11 (configurable) Toggle ”Record single component mode”�� ��Control-V
�� ��-V Paste recorded QF-Test component ID from

clipboard�� ��Control-Backspace
�� ��- Jump to last recorded component�� ��Control-F11 (configurable)
�� ��-F11 (configurable) Toggle ”Record multiple components mode”

Record Procedures�� ��Shift-F12 (configurable)
�� ��-F12 (configurable) Toggle ”Record procedures mode”�� ��Control-F12 (configurable)
�� ��-F12 (configurable) Toggle ”Record multiple procedures mode”

Debugger�� ��F7
�� ��F7 Step in�� ��F8
�� ��F8 Step over�� ��Control-F7
�� ��-F7 Step out�� ��Shift-F9
�� ��-F9 Skip over�� ��Control-F9
�� ��-F9 Skip out�� ��Control-F8
�� ��- -B Breakpoint on/off�� ��Control-J
�� ��-J Jump to run log�� ��Control-,
�� ��-, Continue execution from currently selected

node

Table C.3: Shortcuts for special record and replay functions

C.4 Keyboard helper

The following graphic may help to easily remember the assignment of functional keys
used by QF-Test. It is intended to be printed, cut out and fixed above the area of func-
tional keys F5 to F12 of your keyboard.

C.4. Keyboard helper 1350

Figure C.1: Keyboard helper

1351

Appendix D

Glossary

API
Application Programming Interface, a set of package, class and method

definitions that the programmer of an application can use. The Java API refers to
the interface of the standardized Java class library that is shipped with each JDK.

AWT
Abstract Windowing Toolkit, the part of the Java library responsible for the

display of windows and components as well as for the dispatch of events.

GUI
Graphical User Interface. An interface between a program and the user, usually

consisting of windows built from components for displaying information and
receiving input.

RMI
Remote Method Invocation, communication protocol/programming interface in

Java for calling a method of a remote object.

SUT
System Under Test, the application being tested with QF-Test.

VM
The Java Virtual Machine executes Java programs that have been compiled to

Java bytecode. It is responsible for the platform independence and compatibility
of Java programs across various kinds of machines and operating systems.

1352

Appendix E

Privacy

Processing of personal and other data

E.1 Server data for version query

Since QF-Test 4.3 it is possible to check for the availability of a new QF-Test version4.3+
via an encrypted HTTPS request to www.qftest.com, either automatically when starting
QF-Test or via explicit user action. This version information is compared to the current
QF-Test version and in case a newer version is available a notification is shown with
links to to the respective QFS web pages.

For technical reasons the following data among others are stored by our provider (in so
called server log files) when the latest available QF-Test version is retrieved from the
QFS web server:

• Your internet protocol (IP) address

In addition the following data may be transferred with the query to select the correct
update version:

• The QF-Test version currently used

• The operating system currently used

• The QF-Test language version currently used

• Type of the QF-Test license currently used

• Hash code of the QF-Test license currently used

E.2. Sending support requests from within QF-Test 1353

This anonymous data is stored separately from any personal data possibly provided at
a different time and does not allow drawing conclusion to a dedicated person. The data
may be used for statistical purpose to optimize our web presence and offers.

The legal basis for the temporary storage of data is Article 6 para. 1 point b and Article
6 para. 1 point c in conjunction with Article 32 GDPR.

The temporary storage of the IP address by the system is necessary to enable the
version information to be delivered to the user’s computer. For this the IP address of the
user must remain stored for the duration of the session.

Data will be deleted as soon as it is no longer needed to achieve the purpose for which
it was collected. In case of the collection of data for the provision of the version infor-
mation, this is the case when the respective session has ended. To detect web ser-
vice failures including security issues data is stored for 42 days and then automatically
deleted.

The collection of data for the provision of the version information and the storage of data
in log files is absolutely necessary for the operation of the web service. Consequently,
there is no possibility of objection on the part of the user. However, the version infor-
mation query and thus usage of the web service can be deactivated via QF-Test user
options (see section 41.1.10(472)).

E.2 Sending support requests from within QF-Test

QF-Test contains the option to send requests directly to the QF-Test support team.4.5+
When the action is selected in the ”Help” menu of the application, an encrypted web
form from www.qftest.com is opened in the default web browser of the user. All informa-
tion entered into the web form will be sent as email to our support team

For technical reasons the following data among others are stored by our provider (in
so-called server log files) when the latest available QF-Test version is retrieved from the
QFS web server:

• Your internet protocol (IP) address

• Browser type and version

• The web page you are visiting

• Date and time of your access

In addition the following data may be transferred with the query to improve the support
quality and to speed up the support process:

• The QF-Test version currently used

E.3. Context Information for Online Manual 1354

• The operating system currently used

• The QF-Test language version currently used

• The name and company of the QF-Test license currently used

• Hash code of the QF-Test license currently used

The legal basis for the temporary storage of data is Article 6 para. 1 point b and Article
6 para. 1 point c in conjunction with Article 32 GDPR.

The temporary storage of the IP address by the system is necessary to allow the transfer
of support request using the browser web form. For this the IP address of the user must
remain stored for the duration of the session.

Data will be deleted as soon as it is no longer needed to achieve the purpose for which
it was collected. In case of the collection of data for the provision of technical support,
this is the case when the business relation with the customer has ended. To detect web
service failures including security issues data is stored additionally on the web server
for 42 days and then automatically deleted.

The collection of data for the provision of technical support and the storage of data in log
files is absolutely necessary for the operation of the web service. Consequently, there
is no possibility of objection on the part of the user. However, it is possible for the user
to directly send an email to support@qftest.com instead of selecting the convenience
action from the ”Help” menu.

E.3 Context Information for Online Manual

QF-Test opens since 7.1, if the local version of the manual or tutorial is not available,7.1+
an online version of the document in the browser. To provide context dependent
help in QF-Test, the file doc/context/de/context.properties resp.
doc/context/en/context.properties is required. If (and only if) this file does
not exists, an online version of the file is requested from the QFS server. For technical
reasons the following data among others are then stored by our provider (in so called
server log files):

• Your internet protocol (IP) address

More information has already been described in the section ”Server data for version
query”.

E.4. Request Data on WebDriver Download 1355

E.4 Request Data on WebDriver Download

Since QF-Test 4.5.2 the webdriver file for certain browsers (e.g. Chrome) can be4.5.2+
downloaded and extracted automatically by QF-Test. To do so, QF-Test
downloads the required files from the servers www.qftest.com, github.com,
chromedriver.storage.googleapis.com, developer.microsoft.com and
their content delivery peers using an encrypted connection.

For technical reasons the following data is submitted along the requests:

• Your internet protocol (IP) address

• The name of the file to download, which includes the version number of the file to
download.

Please see the privacy policy of the aforementioned service providers for details on
their data processing. To deactivate the automatic webdriver download, you can
specify the webdriver to use explicitly in the ”Start Web Engine” node by pointing the
qftest.web.webdriver.driver Java property to the existing driver file.

E.5 Client data in QF-Test log files

The log files described below may be provided the Quality First Software GmbH supportNote
team via email or file upload in order to facilitate support services. There is no automatic
transfer of such logs by QF-Test to QFS or any third party.

QF-Test run logs are a critical tool for analyzing automated test runs in order to locate
errors in the test implementation of the system under test. Besides details about the
system environment and executed test steps a run log may also contain textual output
from the system under test, screenshots of connected monitors or virtual desktops, or
the HTML code of the page tested in a browser.

Type and amount of data to be stored in run logs can be adjusted via the QF-Test run
log options (see section 41.11(538)). Among those the number of automatically stored run
logs can be specified - older run logs are automatically deleted.

The default directory where run logs are stored depends on the operating system.
The current value can be retrieved via the menu Help→Info→System info shown as
dir.runlog. The directory can also be explicitly defined via the command line argu-
ment -runlogdir <directory>(925).

In addition to run logs QF-Test also creates internal logs for the purpose of diagnosis of
QF-Test itself or the connection to the system under test.

E.5. Client data in QF-Test log files 1356

Internal logging of QF-Test is done in five rotating text files named qftestN.log
with N = [,1,2,3,4]. Connection log data to the SUT are stored in the text file
qfconnect.log.

The default directory for internal logs is depending on the operating system. The
current value can be retrieved via the menu Help→Info→System info shown as
dir.log. The directory can also be explicitly defined via the command line argument
-logdir <directory>(920). An invalid directory parameter deactivates internal
logging.

Here we’d like to emphasize that QF-Test is originally meant as tool for software test
automation. There we always presume that our customers perform software tests within
designated test environments with special test data because use of real personal data
is not permitted according to data protection regulations, following the principles of ded-
ication to purpose, minimization of data as well as anonymization.

1357

Appendix F

Third party software

QF-Test makes use of the following software:

Apache Batik SVG Toolkit
Copyright © 2016 The Apache Software Foundation
Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0).
URL: https://xmlgraphics.apache.org/batik

Apache Commons IO
Copyright © 2009 The Apache Software Foundation
Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0).
URL: http://commons.apache.org/proper/commons-io

Apache Commons Imaging
Copyright © 2024 The Apache Software Foundation
Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0).
URL: https://commons.apache.org/proper/commons-imaging

Apache PDFBox
Copyright © 2009-2017 The Apache Software Foundation
Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0).
URL: https://pdfbox.apache.org/

Apache POI
Copyright © 2009 The Apache Software Foundation
Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0 and doc/licenses/poi-notice).
URL: http://poi.apache.org

Third party software 1358

API Guardian
Copyright © API Guardian Team
Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0).
URL: https://github.com/apiguardian-team/apiguardian

ASM
Copyright © 2000-2011 INRIA, France Telecom
Distributed under individual license (see doc/licenses/asm).
URL: http://asm.ow2.org

axe-core
Distributed under the Mozilla Public License 2 (see

doc/licenses/MPL-2.html), bundled dependencies under the MIT License
or ISC License (see doc/licenses/axe-core-3rd-party.txt)
URL: https://github.com/dequelabs/axe-core

Bean Scripting Framework (BSF)
Copyright © 1999 International Business Machines Corporation.
See the license doc/licenses/bsf
URL: http://www.alphaworks.ibm.com/tech/bsf

BasE91
Copyright © 2000-2006 Joachim Henke, 2011 Benedikt Waldvogel
See the license doc/licenses/base91
URL: https://github.com/bwaldvogel/base91

Bouncy Castle
Copyright © 2000 - 2017 The Legion of the Bouncy Castle Inc.
Part of Apache PDFBox.
Distributed under the Bouncy Castle License (MIT analog) (see
doc/licenses/bouncy-castle.txt).
URL: https://www.bouncycastle.org/java.html

Boxicons
Distributed under the Crative Commons Attribution 4.0 International Public

License (see doc/licenses/CC4.txt).
URL: https://boxicons.com/

Closure Compiler
Distributed under the Apache License, Version 2.0 (see

doc/licenses/apache-2.0).
URL: https://github.com/google/closure-compiler

cdp4j
Copyright © 2023 cdp4j Contributors

Third party software 1359

Distributed under the MIT License (MIT) (see
doc/licenses/license.cdp4j).
URL: https://github.com/cdp4j/cdp4j

Chromedriver
Distributed under the Modified BSD License (see

doc/licenses/chromium-bsd.txt).
URL: https://sites.google.com/a/chromium.org/chromedriver

Chromium Embedded Framework
Distributed under the Modified BSD License (see

doc/licenses/chromium-bsd.txt).
URL: https://bitbucket.org/chromiumembedded/cef

ClasspathSuite
Distributed under the Apache License, Version 2.0 (see

doc/licenses/apache-2.0).
URL: https://github.com/takari/takari-cpsuite

CommonJS Modules Support for Nashorn
Distributed under the MIT License (MIT) (see

doc/licenses/nashorn-commonjs-modules).
URL: https://github.com/coveo/nashorn-commonjs-modules

Cryptix library
Copyright © 1995, 1996, 1997, 1998, 1999, 2000 The Cryptix Foundation

Limited. All rights reserved.
See the license doc/licenses/cryptix
URL: http://www.cryptix.org

CSS Parser
Distributed under the Apache License, Version 2.0 (see

doc/licenses/apache-2.0).
URL: https://sourceforge.net/projects/cssparser/

dd-plist
Distributed under the MIT License (MIT) (see doc/licenses/dd-plist.txt).
URL: https://github.com/3breadt/dd-plist

dom4j
Copyright © 2001-2005 MetaStuff, Ltd. All Rights Reserved
See the license doc/licenses/dom4j
URL: dom4j.sourceforge.net

Eclipse Temurin
Distributed under the GNU General Public License version 2 with Classpath

Third party software 1360

Exception (see doc/licenses/gplv2ce).
URL: https://adoptium.net/de/temurin/releases/

elasticlunr.js
Copyright © 2017 Wei Song
Distributed under the MIT License (MIT) (see doc/licenses/elasticlunr).
URL: https://elasticlunr.com

Geckodriver
Distributed under the Mozilla Public License 2 (see

doc/licenses/MPL-2.html).
URL: https://github.com/mozilla/geckodriver

Ghostdriver
Distributed under the Modified BSD License (see

doc/licenses/ghostdriver-bsd.txt).
URL: https://github.com/detro/ghostdriver

Groovy scripting language
Distributed under the Apache License, Version 2.0 (see

doc/licenses/apache-2.0).
URL: http://groovy-lang.org/

InfluxDB 2.0 Java Client Library
Copyright © 2018 Influxdata, Inc.
Distributed under the MIT License (MIT) (see
doc/licenses/influxdb-client-java.txt).
URL: https://github.com/influxdata/influxdb-client-java

ini4j
Distributed under the Apache License, Version 2.0 (see

doc/licenses/apache-2.0).
URL: http://ini4j.sourceforge.net/

Jackson
Copyright © 2020 FasterXML.
Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0)
URL: https://github.com/FasterXML/jackson

JCommon
Copyright © 2007-2012 Object Refinery Limited and Contributors.
Distributed under the GNU Lesser General Public License (see
doc/licenses/LGPL).
URL: http://www.jfree.org/jcommon/index.html

Third party software 1361

jEdit Syntax Highlighting
Public domain
The jEdit 2.2.1 syntax highlighting package contains code that is Copyright ©
1998-1999 Slava Pestov, Artur Biesiadowski, Clancy Malcolm, Jonathan
Revusky, Juha Lindfors and Mike Dillon.
URL: http://syntax.jedit.org

JExcel
Copyright © 2002 Andrew Khan. All rights reserved.
Distributed under the GNU Lesser General Public License (see
doc/licenses/LGPL).
Source code included in misc/jexcelapi.tar.gz
URL: http://www.andykhan.com/jexcelapi/index.html

JFreeChart
Copyright © 2005-2012 Object Refinery Limited and Contributors.
Distributed under the GNU Lesser General Public License (see
doc/licenses/LGPL).
URL: http://www.jfree.org/jfreechart/index.html

JGoodies Looks
Copyright © 2001-2005 JGoodies Karsten Lentzsch. All rights reserved.
See the license doc/licenses/jgoodies-looks
URL: http://www.jgoodies.com

JIDE Common Layer
Copyright © 2002 - 2009 JIDE Software, Inc, all rights reserved.
Distributed under the GNU General Public License (see doc/licenses/GPL)
with Classpath Exception (see doc/licenses/Classpath).
URL: http://www.jidesoft.com/products/oss.htm

JNIWrapper
Copyright © 2000-2004 MIIK Ltd. All rights reserved.
URL: http://www.jniwrapper.com

JSch
Copyright © 2002-2015 Atsuhiko Yamanaka, JCraft,Inc. All Rights Reserved.
See the license doc/licenses/jsch
URL: https://github.com/mwiede/jsch

JUnit
Distributed under the Eclipse Public License 1.0 (see

doc/licenses/EPL-1.0).
URL: https://github.com/junit-team/junit4

Third party software 1362

Jython scripting language
Copyright © 2007 Python Software Foundation; All Rights Reserved.
See the license doc/licenses/jython
URL: http://www.jython.org

JZlib
Copyright © 2000-2011 ymnk, JCraft,Inc. All rights reserved.
See the license doc/licenses/jzlib
URL: http://www.jcraft.com/jzlib/

Hamcrest
Distributed under the BSD License (see doc/licenses/hamcrest-bsd.txt).
URL: https://github.com/hamcrest/JavaHamcrest/

lunr-languages
Copyright © 2017 Mihai Valentin.
Distributed under the Mozilla Public License (see
doc/licenses/MPL-1.1.html).
URL: https://github.com/MihaiValentin/lunr-languages

map-set-polyfill
Copyright © 2018 Dmitry Vibe
Distributed under the MIT License (MIT) (see doc/licenses/mit).
URL: https://github.com/Riim/map-set-polyfill

Mozilla
Copyright © 1998-2006 Contributors to the Mozilla codebase.
Distributed under the Mozilla Public License (see
doc/licenses/MPL-1.1.html).
URL: http://www.mozilla.org/projects/embedding/

Nashorn scripting language
Copyright © 2010, 2013, Oracle and/or its affiliates.
Distributed under the GNU General Public License version 2 with Classpath
Exception (see doc/licenses/gplv2ce).
URL: https://github.com/openjdk/nashorn

Netty
Copyright © 2009 Red Hat, Inc.
Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0).
URL: http://netty.io

Open Telemetry
Includes okhttp and kotlin-stdlib, all distributed under the Apache License,

Third party software 1363

Version 2.0 (see doc/licenses/apache-2.0).
URL: https://github.com/open-telemetry/opentelemetry-java

Operadriver
Use of the software in binary form for testing purposes is permitted.
URL: https://github.com/operasoftware/operachromiumdriver

PngEncoder
Copyright (c) 1999-2003 J. David Eisenberg. All rights reserved.
Distributed under the GNU Lesser General Public License (see
doc/licenses/LGPL).
Source code included in misc/PngEncoder.zip
URL: http://catcode.com/pngencoder/

Python library as distributed with Jython
Copyright © 2001-2008 Python Software Foundation; All rights reserved.
See the license doc/licenses/python
URL: http://www.python.org

Selenium and Drivers
Distributed under the Apache License, Version 2.0 (see

doc/licenses/apache-2.0)
URL: http://www.seleniumhq.org/projects/webdriver
Indirectly used libraries are partially distributed under different licenses, these are
directly referenced in the selenium.jar.

SendSignal.exe
Permission to use granted by the author Louis K. Thomas.
URL:
http://www.latenighthacking.com/projects/2003/sendSignal/

Sixlegs PNG library
Copyright © 1998, 1999, 2001 Chris Nokleberg
Distributed under the GNU Lesser General Public License (see
doc/licenses/LGPL).
URL: http://www.sixlegs.com

Source Code Pro font
Copyright © 2010-2019 Adobe
Distributed under the SIL Open Font License, Version 1.1. (see
doc/licenses/SIL-open-font-license.md).
URL: https://github.com/adobe-fonts/source-code-pro

STAX - Streaming API for XML
Copyright © 2003-2007 The Apache Software Foundation

Third party software 1364

Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0).
URL: http://geronimo.apache.org

TrueZIP Virtual File System API
Copyright © 2005-2007 Schlichtherle IT Services.
Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0).
Formerly: http://truezip.dev.java.net
New version:
https://christian-schlichtherle.bitbucket.io/truezip

UI-Automation
Distributed under the Apache License, Version 2.0 (see

doc/licenses/apache-2.0).
URL: https://github.com/mmarquee/ui-automation/

Undertow and dependent libraries
Copyright © 2017 Red Hat, Inc.
Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0)
URL: http://undertow.io/

webp-imageio
Copyright © 2018 Luciad, © 2010, Google Inc.
Distributed under the Apache License, Version 2.0 (see
doc/licenses/apache-2.0) and the WebP license (see
doc/licenses/webp)
URL: https://bitbucket.org/luciad/webp-imageio

WebDriverAgent
Copyright © 2015-present, Facebook, Inc.
Distributed under a BSD-style License (see ios/ida/LICENSE).
URL: https://github.com/appium/WebDriverAgent

wxActiveX - Library for hosting ActiveX controls within wxwidgets programs
Copyright © 2003 Lindsay Mathieson.
Distributed under the wxActiveX Library Licence (see
doc/licenses/wxActiveX).
URL: http://sourceforge.net/projects/wxactivex

wxMozilla - Embedding Mozilla in wxWindows
Copyright © 2003-2006 Jeremiah Cornelius McCarthy.
Distributed under the wxWindows Library Licence (see

Third party software 1365

doc/licenses/wxWidgets).
URL: http://wxmozilla.sourceforge.net/

wxWidgets GUI API
Copyright © 1998-2005 Julian Smart, Robert Roebling et al.
Distributed under the wxWindows Library Licence (see
doc/licenses/wxWidgets).
URL: http://www.wxwidgets.org/

XML Beans
Distributed under the Apache License, Version 2.0 (see

doc/licenses/apache-2.0 and doc/licenses/xmlbeans-notice).
URL: http://xmlbeans.apache.org

	I User manual
	Installation and startup
	System requirements
	Hard- and Software
	Supported technologies - QF-Test
	Supported technologies - System under Test

	Windows Installation
	Installing via the Windows setup file QF-Test-9.0.4.exe
	Unpacking the self-extracting archive QF-Test-9.0.4-sfx.exe
	Completing the installation and configuring Java

	Linux Installation
	macOS Installation
	The license file
	The configuration files
	Starting QF-Test
	Firewall Security Warning

	The user interface
	The test suite
	Basic editing
	Navigating the tree
	Insertion marker
	Moving nodes
	Transforming nodes
	Tables
	Packing and Unpacking
	Sorting Nodes

	Advanced editing
	Searching
	Replacing
	Complex searches and replace operations
	Multiple views
	Hiding toolbar buttons

	Quickstart your application
	Setup sequence creation
	Executing the setup sequence
	In case the client does not connect ...
	Program output and the Clients menu
	An application started indirectly from an already connected SUT

	Capture and replay
	Recording sequences
	Running tests
	Recording checks
	Fetching data from the UI
	Recording components
	Recording of HTTP requests (GET/POST)

	Components
	Components of a GUI
	Component nodes versus SmartID
	Improved readability of tests
	Test-driven development
	Keyword-driven testing
	Stability of recognition
	Maintainability
	Performance
	Combining Component nodes and SmartIDs

	How to achieve robust component recognition
	How to judge robust component recognition
	Opportunities for optimization

	Recognition criteria
	Class
	Name
	Feature
	Extra features
	Index
	Geometry
	Component hierarchy

	Component node
	SmartID
	Use cases for SmartIDs
	SmartID syntax for Class name
	SmartID syntax for Name
	SmartID syntax for Feature
	SmartID syntax for Extra features
	SmartID with index
	SmartID syntax for component hierarchies
	Recording and replaying SmartIDs
	Component QF-Test ID as SmartID

	Scope
	Generic components
	Sub-items: Addressing relative to a parent component
	Addressing via index
	Addressing via QPath
	Addressing via XPath and/or CSS selectors
	Addressing via Items nodes

	Troubleshooting component recognition problems
	Timing synchronisation
	Recognition

	Component tree maintenance
	Clean up the component tree
	Update Components

	 Inspecting components
	Show methods
	UI Inspector

	Variables
	Variable references
	Referencing simple variables
	Referencing group variables
	Referencing variables in scripts and script expressions

	Variable lookup
	Defining variables
	Variable levels
	Primary stack
	Seconday stack

	Displaying variables in debug mode – Example
	Data types of variables
	JSON data

	External data
	Special groups
	Immediate and lazy binding

	Problem analysis and debugging
	The run log
	Error states
	Navigating the run log tree
	Run-time behavior
	Showing return values
	Accepting values of failed checks as good
	Split run logs
	Run log options
	Creating a test suite from the run log
	Merging run logs

	The debugger
	Entering the debugger
	Displaying the current variable values
	Debugger commands
	Manipulating breakpoints
	The debugger window

	Organizing the test suite
	Test suite structure
	Test set and Test case nodes
	 Test management with Test set and Test case nodes
	Concept
	Variables and special attributes

	Sequence and Test step nodes
	Setup and Cleanup nodes
	Procedures and Packages
	Local Procedures and Packages
	Relative Procedures
	Inserting Procedure call nodes
	Parameterizing nodes
	Transforming a Sequence into a Procedure

	Dependency nodes
	Concept
	Usage of Dependencies
	Dependency execution and Dependency stack
	Characteristic variables
	Forced cleanup
	Rolling back Dependencies
	Error escalation
	Error handling
	Name spaces for Dependencies

	Documenting test suites

	Projects
	The standard library
	Scripting
	General
	Script expressions
	The run context rc
	Logging messages
	Performing checks
	Variables
	Accessing the SUT's GUI components
	Calling Procedures
	Setting options
	Override components

	Fundamentals of the Jython integration
	Jython Variables
	Modules
	Post-mortem debugging of Jython scripts
	Boolean type
	Jython strings and character encodings
	Getting the name of a Java class
	A complex example

	Scripting with Groovy
	Groovy packages

	Scripting with JavaScript
	JavaScript imports
	NPM modules
	Print statements
	Execution

	Unit Tests
	Java Classes as the Source for the Unit Test
	Basics of the Test Scripts
	Groovy Unit Tests
	Jython Unit Tests
	JavaScript Unit test

	Injections
	Component-Injections
	WebDriver-Injections

	Unit Tests in Report

	Testing Java desktop applications
	Web testing
	Supported browsers
	General approach
	Browser connection
	Recognition of web components and toolkits
	Cross browser tests
	Emulation of mobile browsers
	Web-Tests in headless mode
	Integrating existing Selenium web tests
	Selecting the browser installation

	Testing native Windows applications
	Getting started
	Technical background
	Launching/Attaching to an application
	Recording
	Components
	Playback and Patterns
	Scripting
	Options
	Windows scaling
	Visibility
	Attaching to a window with a given class
	Child count limitation

	(Current) Limitations
	Links

	Testing Android applications
	Preconditions and known restrictions
	Preconditions
	Known restrictions

	Emulator or real device
	Installing Android Studio, emulator and virtual devices (AVD)
	Android Studio installation
	Android Studio virtual device configuration

	Connecting to a real Android device
	Create a QF-Test setup sequence for Android testing
	Usage of an Android emulator
	Usage of a real Android device

	Record actions and checks for Android
	Android utility procedures

	Testing iOS applications
	Preconditions and known restrictions
	Preconditions
	Known restrictions

	Installing Xcode, Simulators and IDB
	Xcode Installation
	iOS Development Bridge (idb) Installation

	Testing on a real iOS device
	Create a QF-Test Setup sequence for iOS testing
	Record actions and checks for iOS
	iOS utility procedures

	Testing PDF documents
	PDF Client
	PDF Client start
	PDF Client window

	PDF events
	Open a PDF document
	Switch page

	Checks for PDF components
	Check text
	Check image
	'Check Font'
	'Check Font size'

	PDF component types
	PDF component recognition

	Accessibility Testing
	General parameters of the check functions
	Axe-checks with QF-Test
	Parameters of axe-checks
	Axe-core's ''impact'' rating

	Color contrast check for simple graphics
	Parameters of the color contrast check

	A11y run logs and reports
	Working with the run log
	Notes on generating reports

	Testing Java desktop applications in a browser with Webswing and JPro
	Technical concepts of JiB for Webswing and JPro

	Testing Electron applications
	Starting the Electron Client
	Electron settings for the quickstart wizard

	Electron specific functionality of QF-Test
	Native Menus
	Native Dialogs
	Extended Javascript-API

	Technical remarks on testing Electron applications in WebDriver connection mode

	Testing web services
	RESTful web services
	HTTP standards and web services
	HTTP request
	Examples

	Data-driven testing
	Data driver examples
	General use of Data drivers
	Examples for Data drivers
	Advanced use

	Reports and test documentation
	Reports
	Report concepts
	Report contents
	Creating reports
	Customizing reports

	Testdoc documentation for Test sets and Test cases
	Pkgdoc documentation for Packages, Procedures and Dependencies

	Test execution
	Test execution in batch mode
	Command line usage
	Windows batch script
	Groovy

	Executing tests in daemon mode
	Launching the daemon
	Controlling a daemon from QF-Test's command line
	Controlling a daemon with the daemon API

	Re-execution of nodes (Rerun)
	Triggering rerun from a run log
	Rerunning failing nodes immediately

	Distributed test development
	Referencing nodes in another test suite
	Managing Components
	Merging test suites
	Importing Components
	 Importing Procedures and Testcases

	Strategies for distributed development
	Static validation of test suites
	Avoiding invalid references
	Unused procedures

	Automated Creation of Basic Procedures
	Introduction
	How to use the Procedure Builder
	Configuration of the Procedure Builder
	The Procedure Builder definition file

	Interaction with Test Management Tools
	HP ALM - Quality Center
	Introduction
	Step-by-step integration guide
	Troubleshooting

	Imbus TestBench
	Introduction
	Creating QF-Test template from interactions
	Importing test execution results

	QMetry
	Introduction
	Sample Configuration

	Klaros
	Introduction
	Importing QF-Test results into Klaros

	TestLink
	Introduction
	Generating template test suites for QF-Test from test cases
	Execution of test cases
	Importing QF-Test results into TestLink

	Integration with Development Tools
	Eclipse
	Installation
	Configuration of the test nodes

	Ant
	Maven
	Jenkins
	Install and start Jenkins
	Requirements for GUI tests
	Install QF-Test Plugin

	JUnit 5 Jupiter
	TeamCity CI

	Integration with Robot Framework
	Introduction
	Prerequisites and installation
	Getting started
	Using the library
	Creating your own keywords

	Keyword-driven testing with QF-Test
	Introduction
	Simple Keyword-driven testing with QF-Test
	Business-related Procedures
	Atomic component-oriented procedures

	Keyword-driven testing using dynamic or generic components
	Behavior-driven testing (BDT)
	Behavior-Driven Testing (BDT) from technical perspective
	Behavior-Driven Testing (BDT) from business perspective

	Scenario files
	Custom test case description
	Adapting to your software

	Usage of QF-Test in Docker Environments
	What is Docker?
	QF-Test Docker Images

	Performing GUI-based load tests
	Background and comparison with other techniques
	Load testing with QF-Test
	Provision of test systems
	Conception of the test run
	Preparing test systems prior to the test run
	Test execution
	Evaluating results

	Hints on test execution
	Synchronization
	Measuring end-to-end response times

	Troubleshooting
	Web load testing with headless browsers

	Executing Manual Tests in QF-Test
	Introduction
	Step-by-step Guide
	Structure of the Excel file
	The ManualTestRunner test suite
	Results

	II Best Practices
	Introduction
	How to start a testing project
	Infrastructure and testing environment
	Location of files
	Network installation

	Component Recognition

	Organizing test suites
	Organizing tests
	Modularization
	Parameterization
	Working in multiple test suites
	Roles and responsibilities
	Managing components at different levels
	Reverse includes

	Efficient working techniques
	Using QF-Test projects
	Creating test suites from scratch
	The standard library qfs.qft
	Component storage
	Extending test suites
	Working in the script editor

	Hints on setting up test systems
	Using the task scheduler
	Remote access to Windows systems
	Automated logon on Windows systems
	Test execution on Linux

	Test execution
	Dependencies
	Timeout vs. delay
	What to do if the run log contains an error

	III Reference manual
	Options
	General options
	Project settings
	Saving test suites
	Display
	Editing
	Bookmarks
	External tools
	Backup files
	Library
	License
	Updates

	Recording options
	Events to record
	Events to pack
	Components
	Recording sub-items
	Recording Window
	Recording procedures

	Replay options
	Client options
	Terminal options
	Event handling
	Component recognition
	Delays
	Timeouts
	Backward compatibility

	SmartID und qfs:label
	Android
	iOS
	Web options
	HTTP Requests
	Backward compatibility

	SWT options
	UI Inspector options
	Debugger options
	Run log options
	General run log options
	Options for splitting run logs
	Options determining run log content
	Options for mapping between directories with test suites

	Variables
	Runtime only

	Elements of a test suite
	The test suite and its structure
	Test suite

	Test and Sequence nodes
	Test case
	Test set
	Test call
	Sequence
	Test step
	Sequence with time limit
	Extras

	Dependencies
	Dependency
	Dependency reference
	Setup
	Cleanup
	Error handler

	Data driver
	Data driver
	Data table
	Database
	Excel data file
	CSV data file
	Data loop

	Procedures
	Procedure
	Procedure call
	Return
	Package
	Procedures

	Control structures
	Loop
	While
	Break
	If
	Elseif
	Else
	Try
	Catch
	Finally
	Throw
	Rethrow
	Server script
	SUT script

	Processes
	Start Java SUT client
	Start SUT client
	Start process
	Execute shell command
	Start web engine
	Start PDF client
	Start windows application
	Attach to windows application
	Launch Android emulator
	Connect to Android device
	Connect to iOS device
	Wait for client to connect
	Wait for mobile device
	Open browser window
	Launch a mobile app
	Stop client
	Wait for process to terminate

	Events
	Mouse event
	Key event
	Text input
	Window event
	Component event
	Selection
	File selection

	Checks
	Check text
	Boolean check
	Check items
	Check selectable items
	Check image
	Check geometry

	Queries
	Fetch text
	Fetch index
	Fetch geometry

	Miscellaneous
	Comment
	Error
	Warning
	Message
	Set variable
	Wait for component to appear
	Wait for document to load
	Wait for download to finish
	Load resources
	Load properties
	Unit test
	Install CustomWebResolver

	HTTP Requests
	Server HTTP request
	Browser HTTP request

	Windows, Components and Items
	Window
	Web page
	Component
	Item
	Window group
	Component group
	Windows and components

	Deprecated nodes
	Test
	Procedure installCustomWebResolver

	Exceptions

	IV Technical reference
	Command line arguments and exit codes
	Call syntax
	Command line arguments
	Arguments for the starter script
	Arguments for the Java VM
	Arguments for QF-Test
	Placeholders in the filename parameter for run log and report

	Exit codes for QF-Test

	GUI engines
	Running an application from QF-Test
	Various methods to start the SUT
	A standalone script or executable file
	An application launched through Java WebStart
	An application started with java -jar <archive>
	 An application started with java -classpath <classpath> <class>
	 A web application in a browser
	Opening a PDF Document

	JRE and SWT instrumentation
	JRE deinstrumentation
	SWT instrumentation
	Preparation for manual SWT instrumentation
	Manual SWT instrumentation for eclipse based applications
	Manual instrumentation for standalone SWT applications

	Technical information about components
	Weighting of recognition features for recorded components
	Generating the component QF-Test ID
	SmartIDs - general syntax
	SmartIDs - special characters
	Android - list of trivial component identifiers

	Technical details about miscellaneous issues
	Drag&Drop
	Timing
	Regular expressions
	Line breaks under Linux and Windows
	Quoting and escaping special characters
	Include file resolution

	Scripting (Jython, Groovy and JavaScript)
	Module load-path
	The plugin directory
	Initialization (Jython)
	Namespace environment for script execution (Jython)
	Run context API
	The expand parameter

	The qf module
	Image API
	The ImageWrapper class

	The JSON module
	Natural Language Assertions
	Motivation
	API documentation
	Result handling

	Exception handling
	Debugging scripts (Jython)

	Web
	Improving component recognition with a CustomWebResolver
	General configuration
	The Install CustomWebResolver node
	CustomWebResolver – Tables
	CustomWebResolver – Tree
	CustomWebResolver – TreeTable
	CustomWebResolver – Lists
	CustomWebResolver – Combo boxes
	CustomWebResolver – TabPanel and Accordion
	Example for ''CarConfigurator Web'' demo

	Special support for various web frameworks
	Web framework resolver concepts
	Setting unique IDs

	Browser connection mode
	QF-Driver connection mode
	CDP-Driver connection mode
	WebDriver in general
	Known limitations of the WebDriver mode

	Web – Pseudo Attributes
	Accessing hidden fields on a web page
	WebDriver with Safari

	Controlling native Windows applications via the UIAuto module - without the QF-Test win engine
	Proceeding
	Starting the application
	Listing the GUI elements of a window
	Information on single GUI elements
	Identifiers for GUI elements
	Actions on GUI elements

	Example
	Starting the application
	GUI element information

	Controlling and testing native MacOS applications
	Proceeding
	Starting the application
	Listing the GUI elements of a window
	Information on single GUI elements
	Identifiers for GUI elements
	Actions on GUI elements

	Extension APIs
	The resolvers module
	Usage
	Implementation
	addResolver
	removeResolver
	listNames
	Accessing 'Best label'
	 The NameResolver Interface
	 The GenericClassNameResolver Interface
	 The ClassNameResolver Interface
	 The FeatureResolver Interface
	The ExtraFeatureResolver Interface
	 The ItemNameResolver Interface
	 The ItemValueResolver Interface
	The TreeTableResolver Interface
	The InterestingParentResolver Interface
	 The TooltipResolver Interface
	The IdResolver interface
	 The EnabledResolver Interface
	 The VisibilityResolver Interface
	 The MainTextResolver Interface
	 The WholeTextResolver Interface
	 The BusyPaneResolver Interfaces
	 The GlassPaneResolver Interfaces
	 The TreeIndentationResolver Interface
	 The EventSynchronizer Interface
	 The BusyApplicationDetector Interface
	Matcher
	External Implementation

	The ResolverRegistry
	 Implementing custom item types with the ItemResolver interface
	ItemResolver concepts
	The ItemResolver interface
	The class SubItemIndex
	The ItemRegistry
	Default item representations

	 Implementing custom checks with the Checker interface
	The Checker interface
	The class Pair
	 The CheckType interface and its implementation DefaultCheckType
	The class CheckDataType
	The class CheckData and its subclasses
	The CheckerRegistry
	Custom checker example

	 Working with the Eclipse Graphical Editing Framework (GEF)
	Recording GEF items
	Implementing a GEF ItemNameResolver2
	Implementing a GEF ItemValueResolver2

	Test run listeners
	The TestRunListener interface
	The class TestRunEvent
	The class TestSuiteNode

	ResetListener
	DOM processors
	The DOMProcessor interface
	The DOMProcessorRegistry
	Error handling

	Image API extensions
	The ImageRep class
	The ImageComparator interface
	The ImageRepDrawer class

	Pseudo DOM API
	The abstract Node class
	The DocumentNode class
	The FrameNode class
	The DomNode class
	The DialogNode class

	WebDriver SUT API
	The WebDriverConnection class

	Windows Control API
	The WinControl class

	Daemon mode
	Daemon concepts
	Daemon API
	The DaemonLocator
	The Daemon
	The TestRunDaemon
	The DaemonRunContext
	The DaemonTestRunListener

	Daemon security considerations
	Creating your own keystore
	Specifying the keystore
	Specifying the keystore on the client side

	The Procedure Builder definition file
	Placeholders
	Fallback values for placeholders

	Conditions for Package and Procedure Definition
	Interpretation of the Component Hierarchy
	Details about the @CONDITION tag

	The ManualStepDialog
	The ManualStepDialog API

	Details about transforming nodes
	Introduction
	Transformation with type changes
	Additional transformations below the Extras node
	Transformations without side-effects
	Transformations with side-effects

	Details about the algorithm for image comparison
	Introduction
	Description of algorithms
	Classic image check
	Pixel-based identity check
	Pixel-based similarity check
	Block-based identity check
	Block-based similarity check
	Histogram check
	Analysis with Discrete Cosine Transformation
	Block-based analysis with Discrete Cosine Transformation
	Bilinear Filter

	Description of special functions
	Image-in-image search

	Result lists
	Introduction
	Specific list actions
	All types of lists
	Replacing
	Error list

	Exporting and loading results

	Generic classes
	Accordion
	BusyPane
	Button
	Calendar
	CheckBox
	Closer
	ColorPicker
	ComboBox
	Divider
	Expander
	FileChooser
	Graphics
	Icon
	Indicator
	Item
	Label
	Link
	List
	LoadingComponent
	Maximizer
	Menu
	MenuItem
	Minimizer
	ModalOverlay
	Panel
	Popup
	ProgressBar
	RadioButton
	Restore
	ScrollBar
	Separator
	Sizer
	Slider
	Spacer
	Spinner
	SplitPanel
	Table
	TableCell
	TableFooter
	TableHeader
	TableHeaderCell
	TableRow
	TabPanel
	Text
	TextArea
	TextField
	Thumb
	ToggleButton
	ToolBar
	ToolBarItem
	ToolTip
	Tree
	TreeNode
	TreeTable
	Window

	Doctags
	Doctags for reporting and documentation
	@noreport Doctag

	Doctags for Robot Framework
	Doctags for test execution
	Doctags for Editing
	Doctags influencing the procedure builder

	FAQ - Frequently Asked Questions
	Release notes
	QF-Test version 9.0
	Version 9.0.4 - June 11, 2025
	Version 9.0.3 - April 29, 2025
	Version 9.0.2 - April 9, 2025
	Version 9.0.1 - March 12, 2025
	Changes that can affect test execution
	Version 9.0.0 - February 20, 2025

	QF-Test version 8.0
	Version 8.0.2 - December 05, 2024
	Version 8.0.1 - September 11, 2024
	Changes that can affect test execution
	Version 8.0.0 - August 8, 2024

	QF-Test version 7.1
	Version 7.1.5 - July 16, 2024
	Version 7.1.4 - June 12, 2024
	Version 7.1.3 - April 24, 2024
	Version 7.1.2 - March 14, 2024
	Version 7.1.1 - February 27, 2024
	Changes that can affect test execution
	Version 7.1.0 - February 20, 2024

	QF-Test version 7.0
	Version 7.0.8 - December 5, 2023
	Version 7.0.7 - October 11, 2023
	Version 7.0.6 - September 29, 2023
	Version 7.0.5 - September 20, 2023
	Version 7.0.4 - August 30, 2023
	Version 7.0.3 - Juli 13, 2023
	Version 7.0.2 - June 22, 2023
	Version 7.0.1 - May 31, 2023
	Changes that can affect test execution
	Version 7.0.0 - April 27, 2023

	QF-Test version 6.0
	Version 6.0.5 - March 15, 2023
	Version 6.0.4 - November 29, 2022
	Version 6.0.3 - September 6, 2022
	Version 6.0.2 - July 20, 2022
	Version 6.0.1 - June 9, 2022
	Changes that can affect test execution
	Version 6.0.0 - May 17, 2022

	QF-Test Version 5.4
	Version 5.4.3 - March 11, 2022
	Version 5.4.2 - February 18, 2022
	Version 5.4.1 - January 20, 2022
	Changes that can affect test execution
	Version 5.4.0 - December 15, 2021

	QF-Test Version 5.3
	Version 5.3.4 - September 30, 2021
	Version 5.3.3 - September 14, 2021
	Version 5.3.2 - July 21, 2021
	Version 5.3.1 - June 15, 2021
	Changes that can affect test execution
	Version 5.3.0 - May 20, 2021

	QF-Test version 5.2
	Version 5.2.3 - March 9, 2021
	Version 5.2.2 - February 12, 2021
	Version 5.2.1 - December 3, 2020
	Changes that can affect test execution
	Version 5.2.0 - November 10, 2020

	 QF-Test version 5.1
	 Version 5.1.2 - September 15, 2020
	 Version 5.1.1 - August 26, 2020
	Changes that can affect test execution
	 Version 5.1.0 - July 8, 2020

	 QF-Test version 5.0
	 Version 5.0.3 - June 17, 2020
	 Version 5.0.2 - May 5, 2020
	 Version 5.0.1 - March 2, 2020
	Main new features in version 5
	 Version 5.0.0 - February 6, 2020

	Keyboard shortcuts
	Navigation and editing
	UI Inspector
	Record and replay functions
	Keyboard helper

	Glossary
	Privacy
	Server data for version query
	Sending support requests from within QF-Test
	Context Information for Online Manual
	Request Data on WebDriver Download
	Client data in QF-Test log files

	Third party software

