
25The Magazine for Professional Testerswww.testingexperience.com

100%

Pantone 295

80% 60% 40% 20%

Pantone 279

100% 80% 60% 40% 20%

c:100
m:56
y:0
b:34

cmyk

c:80
m:45
y:0
b:28

c:60
m:39
y:0
b:20

c:40
m:22
y:0
b:14

c:20
m:12
y:0
b:7

cmyk

c:64
m:34
y:0
b:0

c:55
m:27
y:0
b:0

c:41
m:20
y:0
b:0

c:28
m:14
y:0
b:0

c:14
m:7
y:0
b:0

Boon and Bane of GUI Test
Automation

by Mark Michaelis

© iStockphoto

Synopsis
In recent years the importance of well-designed
User Interfaces has increased a lot. If nothing
else, it is the rise of Web 2.0 applications, the
applications for everyone. Nowadays User In-
terfaces have to deal much more than before
with untrained people sitting in front of their
computers.
So it is no wonder that not only the “auto-
mation behind the scenes” (Unit Testing for
example) gained in importance, but also the
automation of User Interface Tests with all its
boon and bane.
This article describes the advantages and dis-
advantages of automatic GUI testing and tells
you some lessons I have learned during my
career as GUI tester. You will also get to know
some selected tools I used for automated GUI
Tests. A very personal insight into my work
rather than a good comparison of all available
GUI testing applications.

Bane
Let me start with the Bane of GUI Test Auto-
mation. This was the first contact I ever had
with automatic GUI tests. The developers of
the company I worked for before were well
aware of the importance of GUI Tests, but
they also knew of their problems. They used
the Netbeans Jemmy Module.

Jemmy
Jemmy is no capture and replay tool, a quite
common approach for GUI Testers nowadays.
You develop your tests just as JUnit Tests in
Java Source Code. This means you are actu-
ally blind when developing your tests. This
has some disadvantages:

There is no (implicit) additional testing •
by the author of the test.
The author of the test has to know Java •
(in this case), although he does not need

to have this knowledge from the perspec-
tive of his domain.
Maintainability very much depends on •
the capabilities of the author. This is
true as well for the identification of GUI
components and for the actual error mes-
sages.

The result was obvious: Once developed, the
tests were hard to maintain and it was rather
hard to find anyone willing to dig into the
code.
Nevertheless, experiences at this company
paved my way into Quality Assurance. I
changed to CoreMedia AG, Hamburg where I
had the opportunity, no, the challenge to main-
tain GUI Tests for another Java Application,
created with HP WinRunner, formerly known
to be developed by Mercury Interactive.

WinRunner
Unlike Jemmy, WinRunner is a capture and
replay tool. This means that while recording
you actually see your application and you have
an additional test through this for free. Win-
Runner does an important step: It separates
the Map of the User Interface from the actual
tests. This results in a database describing your
GUI elements like this:

Now the tests will refer to the GUI elements
via this map. This has two advantages:

Test execution script and GUI Maps can 1.
be maintained separately. As a conse-

quence: If only the layout changes, you
only have to adapt the GUI Map at one
specific location.
Depending on the keys (here: FileOpen-2.
Window, FileLoadButton) you choose,
your tests might be easier to read.

I will return to this example later. Because it is
actually a boon, not a bane. The banes about
the tests I adopted were:

The GUI Maps were actually too rich. •
Think of a button which should be at co-
ordinate 100,345 and has a label “Load”.
If one attribute does not match anymore,
the test will fail. It would have been
enough to just say that the button has the
label “Load”. That was enough to make
the button unique.
The test execution is described in a pro-•
prietary language called TSL (=Test
Scripting Language), which in itself has
some disadvantages:

No developer of the application (im-•
plicitly) knows about this special
language.
GUI test developers again had to •
dive into a different non-GUI me-
dium.
There is only little information •
about this language you can find e.
g. in forums.

The test scripts were not written to fail. In •
the case of an error, they did neither give
clear statements of what failed or why,
nor were they able to leave the applica-
tion in a stable state so that other tests
could continue.
Tests depended on the results of other •
tests. This is actually no WinRunner
problem, but I got aware of this while de-
bugging the scripts. With one failed test
at the root, all successors also failed of
course.
Tests were not rerunnable. Just think of •

How to get the most from GUI Test Automation

FileOpenWindow {
 class: window,
 label: Open
}

FileLoadButton {
 class: button,
 label: Load
}

26
100%

Pantone 295

80% 60% 40% 20%

Pantone 279

100% 80% 60% 40% 20%

c:100
m:56
y:0
b:34

cmyk

c:80
m:45
y:0
b:28

c:60
m:39
y:0
b:20

c:40
m:22
y:0
b:14

c:20
m:12
y:0
b:7

cmyk

c:64
m:34
y:0
b:0

c:55
m:27
y:0
b:0

c:41
m:20
y:0
b:0

c:28
m:14
y:0
b:0

c:14
m:7
y:0
b:0

The Magazine for Professional Testers www.testingexperience.com

a read-only file to be created at a specific
location. If you rerun the test, it will fail
because the file already exists. While this
is no problem during automatic test ex-
ecution, it is a problem when debugging:
Testers always have to reset their envi-
ronment before a test can be rerun.
Common actions (like “create document”) •
occurred, step-by-step, at multiple loca-
tions in the scripts. As the creation steps
in the application slightly changed, all of
them had to be adapted
WinRunner is for Microsoft Windows •
platforms. And most Microsoft Windows
applications are not Java applications.
This bears (at least) two other disadvan-
tages:

WinRunner cannot run on multiple 1.
platforms like MacOS, Linux, etc.
WinRunner has severe problems, 2.
especially when it comes to support-
ing newer releases of Java.

Boon
Discussing the boon of any automatic test first
starts at the ROI, the return-on-investment.
Shura from Sun has written an interesting ar-
ticle about this topic titled “Automation Effec-
tiveness Formula”. Shura sets the investment
to be equal with development time, which of
course is not true in every way, but it is a good
start. Shura points out that there are many vari-
ables to take into account when talking about
effectiveness:

The only alternative to automatic testing •
(if you want to test at all) is manual test-
ing.
Tests have to be run at least on every re-•
lease.
Tests have to run on all supported plat-•
forms.

Manual Testing
Shura already stated that the only alternative
to automatic testing is manual testing. The sce-
nario I know is that you have a couple of test
plans which describe step by step what to do
on the user interface. Testers replay these test
plans and mark the different test steps as failed
or success.
This should be done on all platforms the appli-
cation supports, and it must be done on every
release. This already rings a bell of warning,
but let us first face the advantages of manual
testing:

It is obvious that the tester and the cus-•
tomer have the same view on the applica-
tion. So it is a perfect acceptance test.
Testers have no problems dealing with •
changing GUI layouts between versions.
And if they have problems, their custom-
ers might stumble across them, too.
Testers can do more explorative testing •
besides the actual test plan.
GUI testing can be easily outsourced, as •
the testers do not need to know more than
the customer.
Manual GUI tests can be done by “Eating •
your own Dog Food”: Use your product.
This is the best and cheapest test you will
ever get.

However, there are also disadvantages:
Each release, each platform multiplies •
the costs.
Test cases tend to explode easily. You •
have to manage carefully and use appro-
priate selection schemes to find the right
tests.
Manual testing between releases (nightly •
tests) is impractical. So you have no early
reports on possible problems. Therefore,
time has to be reserved for bug-fixing af-
ter the GUI tests are completed. In most
cases, this will be short before the actual
release date.
Testers tend to become blind. If one and •
the same tester executes a test case mul-
tiple times, he will very likely start to
skip test steps or at least not check the
surrounding application not directly in-
volved in the test path. This is especially
true if he does the same just on different
platforms.
Manual tests are most likely to be skipped •
when the project runs out of time.
The tests are not reproducible, as tes-•
ters tend to forget the actual steps they
have taken until an error occurred. Only
recording the manual steps might help
here.

Automation
My experiences with Automatic GUI Testing
are more like a boon than a bane. Still, there
are some WinRunner tests which need to be
maintained (and they really break with each
new release). They are the bane I am trying
to get rid of. The boon started with a reboot
from scratch.
This reboot was initiated by a new GUI testing
application which was recommended to me.
It is QF-Test developed by Quality First Soft-
ware. This tool finally formed my expectations
of a good GUI testing tool.

Expectations of the perfect GUI testing tool
Capture and Replay1.
This means that you can press the record
button, do some clicks and then replay
these clicks by the tool. This is perfect
to use in short-time projects with a short
maintenance phase. It is inappropriate for
product development, as your application
will change over time and maintenance of
such captured scripts is time-consuming.
However, you can still use Capture and
Replay to get to know the testing tool’s
language better.
Test Scripts saved as text2.
This might also only be important for
product development, and if a version
control system is used. For binaries (such
as commonly used Excel tables for data-
driven testing) you will have no support
to see differences.
Testing Language offers Try/Catch/Fi-3.
nally statements
This is important so that you are able to
react to exceptions which might break
your tests. If you don’t know such a state-
ment:

“Try” will contain the code to be •

executed.
“Catch” will contain the code to •
handle exceptions, such as clicking
away error dialogs.
“Finall” will contain the code which •
will always be executed irrespective
of whether the try-code was suc-
cessful or failed with an exception.
Typically, some cleanup is achieved.
For the CMS Editor tests I wrote,
it closes for example documents I
opened during the test.

GUI elements are recorded as mappings4.
This is what I mentioned before: In the
testing code, only references to the keys
exist. Keys which point to the identifying
descriptions of GUI elements.
Screenshots can be made5.
Ideally they are automatically made in
case of failed tests. However, it would be
sufficient if you have the chance e. g. to
make a screenshot in the catch statement.
This really makes the first error analysis
much easier.
Test scripts can be modelled in a GUI6.
This is important because the GUI Tes-
ters can use their domain knowledge (of
GUIs) to write the tests. And if you can
choose your statements at the GUI, they
are just easy to learn. All this is possible,
because actually most steps for GUI Test-
ing (about 90%) are quite simple and do
not require a rich language. Another pos-
sibility is to use FitNesse, which allows a
high abstraction level from the actual test
execution steps. The tests themselves are
modelled in a Wiki and are nearly as easy
to read and understand as the customer-
readable test cases.
There is a non-proprietary fallback lan-7.
guage
If there really should be a case where the
language elements of the GUI testing tool
are not sufficient. you need a fallback
language. In case of QF-Test, it’s Jython
for example (a mix of Java and Python).
These scripts should be easy to hide in
the test scripts modelled in the GUI, so
that only a small selected group of testers
need to know about these scripts. Non-
proprietary, because it is always good to
be able to get help from communities on
the web.

Of course, there are many more expectations,
such as the quality of the generated reports,
availability of a debugger or that tests can be
started from the shell (for automatic nightly
tests). But these seven checks I would take
with me the next time I had to evaluate a GUI-
Testing Tool. Needless to say that QF-Test
passes all these checks with ease.

Restart from Scratch
The restart from scratch was important and
easy. We had existing WinRunner tests which
already covered some aspects of the applica-
tion under test. This gave us time to concen-
trate on a new concept and on the learnings
from previous GUI test banes.

GUI Maps: • All needed GUI elements
got collected into extra files which could

28
100%

Pantone 295

80% 60% 40% 20%

Pantone 279

100% 80% 60% 40% 20%

c:100
m:56
y:0
b:34

cmyk

c:80
m:45
y:0
b:28

c:60
m:39
y:0
b:20

c:40
m:22
y:0
b:14

c:20
m:12
y:0
b:7

cmyk

c:64
m:34
y:0
b:0

c:55
m:27
y:0
b:0

c:41
m:20
y:0
b:0

c:28
m:14
y:0
b:0

c:14
m:7
y:0
b:0

The Magazine for Professional Testers www.testingexperience.com

be easily shared between all tests. Only
the ones needed, this is important: Un-
used mapped GUI elements just blow up
your files and once you need them it is
most likely that they won’t match any ex-
isting component anymore. And instead
of relying on coordinates, component
hierarchies etc. I gave every tested GUI
element a name via setName(). A nice
anecdote is that even a partner of Core-
Media got aware of this when he had to
test extensions to the GUI. He was very
pleased by this fact, told it to one of our
developers who then told it to me. As you
can see QA processes sometimes have
surprising results.
Framework:• To get around duplicated
code, I decided to build up a framework.
The goal was to create a framework to
get as fast as possible to the test case you
want to execute. If you need some kind
of document to write to, no matter what it
is: the framework will offer a function for
this. The result is quite obvious: Nowa-
days I can create many new test cases
within minutes. Not much more time than
a manual tester would need – for execut-
ing it once on one platform.
Facade:• For some checks the old and the
new tests had to dig deeper beneath the
GUI and access the API of the application
directly. In the old tests this had not been
made obvious to the application develop-
ers. And when developers changed the
API, the GUI tests had to be adapted too.
For the new tests I bundled this GUI Test
API into a Facade. On refactorings with
some IDE support, they will be automati-
cally adapted to internal API changes. On
the QF-Test side, I created a stub for this
facade which made using the facade in-
side QF-Test rather transparent.
Fail-safe:• Especially for newly created
regression tests, it was ensured that they
failed with unfixed versions and that they
left the application in a stable state.

Web-Test-Automation
I have to add this section, as I mentioned web
testing as an important requirement for the fu-
ture where web applications are increasing and
even Office applications can suddenly be run
within your browser.
At CoreMedia we are currently using Sahi
which allows to write the tests in JavaScript,
which of course has the benefit that you have
full access to your web application. The prob-
lem of Sahi is that it is easy to write unmain-
tainable code, as there is no concept of GUI-
Maps. But with some coding guidelines this
can be enhanced. They include such things as
to bundle access to GUI elements and keep
them separate from the test scripts, and to
write the top-level-code in a way which makes
it easy for a human reader to see the relation to
the user test cases.
So a test like this:

is easier to read than a test like this:

(taken from an example provided by Stringy-
Low in the Sahi Forum).
A good alternative seems to be Selenium,
which uses FitNesse at highest level to de-
scribe the tests. It was recommended to me
quite often. And I am currently keenly fol-
lowing the further development of QF-Test, as
they will also support web testing with the new
3.0 release.

Conclusion
Automation of GUI tests is a bane if you do
not respect some rules, particularly with re-
gard to maintainability. However, it is always
a boon compared to manual GUI testing which
simply costs too much money if the tests are
executed regularly and perhaps even on mul-
tiple platforms.
My recommendation: Evaluate the application
you want to use to write tests carefully, and
carefully design your tests.
I hope I could give you some insight into the
rules I found for myself, which you can find
in the box “Mark’s Rules for GUI Testing Au-
tomation”.

Bibliography
JavaWorld: Automate GUI tests for •
Swing applications by Ichiro Suzuki
<http://www.javaworld.com/javaworld/
jw-11-2004/jw-1115-swing.html>, 2004-
11-15
NetBeans: Jemmy Module <http://jem-•
my.netbeans.org/>; last release January
2006
Automation Effectiveness Formula by •
Shura <http://jemmy.netbeans.org/Auto-
mationEffectiveness.html>
Fitness Acceptance Testing Framework •
<http://fitnesse.org/>
QF-Test by Quality First Software <http://•
www.qfs.de/>
Sahi Web Automation and Test Tool •
<http://sahi.co.in/>
Selenium – Web application testing sys-•
tem <http://selenium.openqa.org/>

enterSearchTerm(“Sahi”);
submitSearch();
checkResultsContain(“Sahi”);

_setValue(_textbox(“q”), “Sahi”);
_click(_submit(“Google Search”));
_assertNotNull(_link(“Sahi”));

Mark’s Rules for GUI Testing Automation

These are the rules derived from the boons and banes of this article. These are my very own rules – but you are free to adopt them.
Write your tests so that they are readable from top-level like a use case. This makes it easier for others to understand your tests, 1.
to get an overview of the use cases covered, and of course it eases the debugging in case your tests signal a failure.
GUI-Maps: Never address GUI components directly. Always use some kind of mapping.2.
Do not be too specific in describing your GUI components: Less is (often) more.3.
GUI-Element-IDs: If your application’s development language supports setting aids for components, use them and tell your devel-4.
opers to set them. For Java you should use setName() for example, for Web applications the ID attribute.
Write “Tests to Fail”. Be aware that your tests will fail sometimes. And then they have to deal with it: Report the failure, end the 5.
test in the best possible way and pave the way for the other tests to follow. In short: Cleanup!
(Of course) do not make tests dependent on the results of other tests.6.
If possible, create tests which can be run multiple times without the need to reset your application.7.
Use Capture & Replay only in short-time projects or for getting to know the testing application.8.
Use Data Driven Testing whenever possible.9.
Don’t store any automation control statements in binary objects such as Excel tables.10.
If you ever need to access the API of the application from the tests: Use a facade!11.
Build up a framework to cover common actions and to hide them from the actual testing code.12.

29The Magazine for Professional Testerswww.testingexperience.com

100%

Pantone 295

80% 60% 40% 20%

Pantone 279

100% 80% 60% 40% 20%

c:100
m:56
y:0
b:34

cmyk

c:80
m:45
y:0
b:28

c:60
m:39
y:0
b:20

c:40
m:22
y:0
b:14

c:20
m:12
y:0
b:7

cmyk

c:64
m:34
y:0
b:0

c:55
m:27
y:0
b:0

c:41
m:20
y:0
b:0

c:28
m:14
y:0
b:0

c:14
m:7
y:0
b:0

Mark Michaelis is ISTQB Certified Tester
and Software Engineer Quality Assur-
ance at CoreMedia AG, Hamburg since
2005. His main focus is on automation
of GUI Tests and automatic setup of test
environments.
After studying computer science at the
University of Ulm and writing his diploma
thesis on the automatic navigation of ro-
bots through reinforcement learning, he
started as Java Developer at H.U.T GmbH
in Hildesheim in 2000.
In 2003, he changed to Gentleware
AG, Hamburg developing on Poseidon
for UML (a UML modelling tool) and got
deeper into testing automation through
JUnit and Jemmy.

Biography

K O N Z E P T I O N T E X T M E H R& !&K O N Z E P T I O N T E X T M E H R

Anzeige in Testing Experience | Ausgabe 04/2008 Dezember | Motiv „expecco“
148,5 x 105 mm angeschnitten, 4c | 18.11.2008 | www.kutum.de

eXept Software AG, Tel. +49 7143 88304-0, info@exept.de, www.exept.de

Taking the stress out
of test automation!

Ex2_Anzeige_148,5x105mm_TExp:Layout 1 18.11.2008 14:16 Uhr Seite 1

