
The Magazine for Professional Testers

December, 2009

IS
SN

 1
86

6-
57

05

w

w
w.

te
st

in
ge

xp
er

ie
nc

e.
co

m

fre
e

di
gi

ta
l v

er
si

on

pr
in

t v
er

si
on

 8
,0

0
€

pr
in

te
d

in
 G

er
m

an
y

Standards –
What about it?

8

© iStockphoto.com/belknap

68 The Magazine for Professional Testers www.testingexperience.com

Test Automation: Salutations to the World
by David Harrison

© iStockphoto.com/visual7

In a previous article [1], the role of test au-
tomation in a software development project
context was set out. In particular the success
of test automation on Java-Swing projects was
described.

Whilst this article hopefully gave you, the
reader, a basic grasp of this challenging topic,
which is often so poorly described in the test-
ing and quality assurance literature, it left open
the low-level details of how the industrial-
strength approach described was architected.
It is the intention of this article to demonstrate,
via a practical example, highly relevant to
the test automation domain, together with it’s
companion Part 2 article, the key elements of
the pattern of solution. It should be noted that,
as set out in [1], the approach to test automa-
tion is essentially a programmatic one, and the
reader needs to be open to this aspect. Once
this fact is grasped, the means to obtain ef-
ficiency, scalability and effectiveness of a
solution is basically the same as that for any
other software development task. The unique
example application, showcased in this article,
Hello World!, was crafted by Peter Walser who
specialises in the construction of advanced ap-
plications using Java-Swing and Eclipse RCP
technology. Peter can be contacted on pwals-
er@frostnova.ch.

Say Hello to the World
Our example Java-Swing application is a test
automation version of the ubiquitous Hello
World! example – after startup it displays a
textual greeting to the planet Earth, see Figure
1, below:

Figure 1 – Hello World!

However, to get this friendly, earthly greeting,
we must first login immediately at application

startup. This small piece of functionality is
extremely common in industrial software and
happens to be the, almost universal, example
used in the automated testing literature when
authors describe their approach to automation
(e.g. [3]-[6]). So for these two reasons, it’s a
very useful feature to have in our example ap-
plication. The login panel is as shown below:

Figure 2 – Login Panel

This application is designed to allow the user
to obtain friendly earthly salutations. In par-
ticular we will login, initially, using the cre-
dentials “test/test123”, in which case we see
the eventual result as shown in Figure 1, the
main application panel shows the greetings
“Hello World!”. However, the twist to this
login story is that with alternative credentials
“pluto/pluto123”, we get a completely differ-
ent message.

Getting different outcome on the UI of a soft-
ware application depending upon the login
credentials is a very common situation. For
example, we might see the following:

main panel title embellished with the •
logged-in user name

a status message reflecting the logged-in •
user name

other screen embellishments that reflect •
the access rights of the user

So this example embodies these issues.

Test Structure
In essence, then, our automated test must have
the following structure, expressed below as

pseudocode:

The structure shown here contains two Static
Validation Test elements – validation of the
Login panel and validation of the Main panel.
This Static Validation Test concept is one ex-
plained in more detail in [1] [2]. Suffice it to
say, that in this example the lack of real “busi-
ness” Use Cases means that these forms of test
represent the limit of what is possible.

The Automation Challenges
The above test case is deceptively simple.
Why is that?

Well first of all our test, as well as starting the
target application, the SUT, requires that we
wait for the application to become established,
in this case, within the context of the JVM,
and then that we wait for the login panel to
appear. These two steps require the test auto-
mation tool to have an intimate knowledge of
when objects, the login and application pan-
els, become fully instantiated as well having
the capability of raising an event to signal
this important outcome. In addition, we have
the companion issues of intelligently tracking
when objects are dismissed, essential in order
to proceed to following test steps with the ap-
plication in a known state. These issues, cap-
tured well in this seemingly simple example,

Start application
Wait for application to become
established
Wait for the Login panel to ap-
pear
Validate Login Panel
Enter user-name – ”test“
Enter user-password – “test123“
Press Login Button
Wait for login panel to be dis-
missed
Wait for main application panel
to appear
Validate the UI elements of the
Main panel
Terminate the application

69The Magazine for Professional Testerswww.testingexperience.com

are extremely well handled by QF-Test1, and
this is the automation tool we use here. The
singular attributes of this tool in the Java-
Swing area have been noted elsewhere [7].

Let’s see how we meet, and overcome, these
challenges…

The Test Project
Within the QF-Test tool, the test structure, the
test project, is organized as shown below:

Figure 3 – Test Project

Here you can see that the test, the Test-
case, is somewhat similar to that which
would be recognizable to a developer involved
in Unit testing. Within the Test-case we
have a Setup element, then a Test element
followed by a Cleanup element. As with
Unit testing, the strategy here is that before
each Test, the Setup action is executed and
after each Test the Cleanup is executed.
This is a very good structure for test automa-
tion, since prior to each test we start the ap-
plication and following each test (successful
or not) the application is terminated. Hence,
each Test is executed with the application in a
known and clean state. This is a fundamental
strength of our pattern of solution.

The Detail
Let’s take a look in more detail at the parts of
our Test project (Figure 3).

The Setup Element

The Setup element starts our Hello World!
application via a specified batch file. The
mechanism here follows the documented ap-
proach from QFS. Expanding the Setup node
in the project structure, the content is as shown
in Figure 4 below:

Figure 4 – Setup Element

1 www.qfs.de

As can be seen, we “call” a Procedure to start
our application, with the parameters specifying
the name and location of the appropriate batch
file (using Jython conventions for variables,
in this case specified globally). Why do we
use this approach? Well, proceeding like this
means that we gain the benefit of reusability of
the test “code” we write – the Procedure neat-
ly encapsulates everything needed to securely
start any application via a batch file, and thus
can be re-used in any testing project.

Within the
Start Pro-
cedure we
use a built-
in QF-Test
Start SUT
node. Once
the appli-
cation is
started, a
login pan-
el appears
and our
test design
must take

account of
this. Let’s look at what this Procedure does in
pseudocode form:

As you can see the structure is fairly simple,
the task of starting the target application is
broken down into a number of steps; one that
calls a QF-Test Start SUT function which lit-
erally starts the executable via its batch file,
one that waits for the application to announce
that it is fully started, and yet another which
then deals with the details of the login task.
Here, we may base the design on the strong
exception handling capability of QF-Test. The
pseudocode above is expressed in the project
as shown in Fig 5-.

The procedure that logs into the application
with specific (globally defined) credentials is

as shown in Figure 6.

In this Procedure, we wait for the login dia-
log to become fully established and then enter

the credentials. It should be noted that we take
account of any (unexpected) blocking Modal
Dialogs that arise e.g. user name not valid,
password not valid etc.

It should also be noted that we take account
of the special characteristics of the JPass-
wordField, when writing the password text
by using generic library calls.

The Test Element

The intention of our test is to perform a Static
Validation [1] of our main panel. This form of
test is a very important one in the test automa-
tion domain. Why is this? Well, prior to per-
forming any sort of business-related workflow
test, we must ensure that the state of the ap-
plication is as expected. In particular, we will
need to verify elements such as:

the main menu – both structure and en-•
ablement

the toolbar – both button enablement as •
well as tooltip text

main panel decorations – such things as •
dates, title text, memory monitoring ele-
ments and any user-specific elements

In this example, for simplicity we restrict our-
selves to validation of the message displayed
and the main panel title.

(See Fig 7)

Some important observations can be made
about our Test element:

we use Procedures to encapsulate the •
logic of main panel validation (Test-
case Support.ValidateMain-
PanelText)

we use a Procedure to validate the (• JLa-
bel) textual greeting (Utility.La-
bel.CheckText), one parameter of
which specifies the expected greetings

as well as catching exceptions (• User-
Exception, UnexpectedCli-
entException), we throw them too
– specifically to signal that the test cannot
continue (UserException) – a very
clean and elegant approach which leaves
our test uncluttered by tedious logic, thus
improving readability and maintainabil-
ity.

we use QF-Test scripts to perform log-•
ging

The Cleanup Element

In this element of our test, we simply “kill”
the application (it may be in a bad state, any
menus may not be working). Figure 8 shows
the details of the Stop Procedure, called from
our Cleanup element.

Where Are We…
In this relatively simple example of test auto-
mation , a number of important themes have
been touched upon. These can be summarized
as follows:

using QF-Test we have a genuine capa-•

Try
 Use Start SUT client
node using supplied parameters
 Use Wait for client node
 Call Procedure to per-
form the login step
 Return true
Catch ClientNotConnected
 Return false
Catch DuplicateClientException
 Return true

70 The Magazine for Professional Testers www.testingexperience.com

Figure 5 – Start Procedure

Figure 6 – LoginDialog.DoLogin Procedure

Figure 7 – Test Element

Figure 8 – Stop Element

bility to design our tests

the use of Procedures delivers to us as test •
automators, the same benefits that they
do to the general software development
community

the availability of a first-class exception •
architecture provides crucial benefits in
responding to the SUT state

although only hinted at in this example, •
we have the capability of developing
a generic automation library of Proce-
dures which allow us to interact with
Java-Swing objects such as JLabel,
JComboBox, JPasswordField,
JTable etc. This is a crucial observation
for real-world, project-based automation
efforts.

Say Hello to Pluto
In real-world projects the automator is very
often faced with software that, to one extent
or other, contains UI elements that change in
relation to such things as:

The currently “logged in” user•

The current date/time•

The currently open file/document within •
the application

The current “pending edit” state •

The machine on which the application is •
running

The current number of elements in a col-•
lection, e.g. number of open documents,
number of results found by searching

A good example of this variation is the way in
which most applications which deal with doc-
uments, embellish the main application frame
with a title that carries the current document
title as well as a mark, often ‘*’, that indicates
that there are pending edits. When QF-Test
responds to object creation, the default com-
ponent naming mechanism takes these special-
izations into account. So, for example, if we
attempt to automate a Search functionality for
which the Search panel carries a result JLa-
bel like:

to inform the user that the Search resulted in
120 result elements, then this represents a case
for which the default Name Resolving process
will produce different values of component ID
as differing result counts are found through
searching. In such a case, if we recorded the
JLabel component, we might see a default
component ID like:

But in the case where we see an outcome in-
volving 1200 result elements, we would see:

Hits = 120

Label_Hits_=_120

Label_Hits_=_1200

71The Magazine for Professional Testerswww.testingexperience.com

Given this situation, if we develop our tests us-
ing the former component ID, then when we
want to address the count JLabel again for
the situation with a different result count, the
component will not be found. On first reflec-
tion, this situation may seem somewhat cata-
strophic for successful test automation. Well,
QF-Test provides us with a very elegant, prac-
tical and powerful solution to this problem –
the Name Resolver API.

As a simple example of what all this means,
let’s revisit Hello World!, our good friend
from earlier discussions. By design, with this
application we can login as a different user,
other than “test/test123”, the credentials we
used earlier, and see a different set of impor-
tant visual outcomes. In particular, we now say
hello to a different planet! Let’s see how this
works…

Saying Hello Again
The alternative set of credentials we can use
for Hello World! is “pluto/pluto123”. In real
situations, the application being automated
may have a large set of credentials that are
permissible when it comes to logging in. This
“unboundedness” (for all practical consider-
ations), if it leads to variations in the visual el-
ements of the application, should be the alarm
bell that we must enhance the name resolving
process.

If we take a look in the “Windows and com-
ponents” section of the Hello World! project,
and expand the tree view, then the JLabel
component (when we logged in with “test/
test123”) can be located, as shown below:

Figure 9 – Hello World Label

In this figure we can see that the main panel
of Hello World!, as well as the relevant Main
Window JLabel component are highlighted.
The component ID of the JLabel is

just the form we described earlier. In addition,
we can see that the main application frame is
also decorated with the specialized text, e.g.
frameHello_World!. In addition, all the com-
ponents below the main application frame are
given names that involve the specialized text.
If we now look at the situation when we use
the “pluto/pluto123” credentials, and re-record
this entire main application frame [8], then the
situation as shown below emerges:

Figure 10 – Hello Pluto! Components

So now we have our “Windows and compo-
nents” section containing two top-level ele-
ments, essentially the same components, but
having different names/IDs, only brought
about because we have logged in with differ-
ent credentials. As an alternative strategy to
extending the basic QF-Test Name Resolver,
we could get the developers to do setName()
on the UI controls. When this is done, such
controls do not have their name overridden by
QF-Test.

This is a great strategy to solve this component
naming problem. However, typically on proj-
ects, the test automation workstream gets ac-
tive only later in the overall project life cycle,
and this makes sense as the software, particu-
larly in relation to its UI, is becoming stable.
At this point, developers are often heavily
involved in getting the business functionality
integrated, for example, and asking them to go
through the code and do a setName() on con-
trols is probably not a practical proposition.
Having a strategy for resolving this naming
problem that is in the hands of the QA work-
stream, then, has definite appeal.

Let’s set about resolving this conundrum us-
ing the Name Resolver extension API within
QF-Test.

The two components for which we want to
provide a new, neutral name are the main ap-
plication window (Class: idx.loginapp.Exam-
pleApplication) and the JLabel that ends up be-
ing displayed on the main application window
area (Class: idx.gui.text.AntialiasedLabel),
and you see below how a test is made in our
Name Resolver Jython script, using methods
of the Resolver Registry object, to determine
if the class type of the current object is one of
those in which we are interested.

(See Fig 11)

This Name Resolver script is “installed” as
part of our Setup phase of each test [2].

In the case where we detect that we have an
object of the main application class type, then
we return the neutral name “APPLICATION_
FRAME“, and if the current component is of
the label class and if the text property has the
prefix “Hello “ and the postfix of “!”, then we
return the neutral name “Hello_PLANET”.

Once this Name Reseolver script is installed
[8], then as these components are brought into
existence within the application, the compo-
nent Name/ID will be assigned these neutral
names. When we record these specific UI ob-
jects [8], we will see these names/IDs instead
of the default ones assigned by QF-Test.

Now we can, with confidence, develop our au-
tomated tests using these neutral names.

The importance of this Name Resolving ap-
proach cannot be overstated when considering
its effectiveness at dealing with this “compo-
nent naming” issue – one that bedevils test au-
tomation generally.

Now when we login with any alternative cre-
dentials, all is well - the elements we need
to find can be found and their properties as-
serted.

Now that’s a pretty good outcome for test au-
tomation…

Summary
Hopefully, in this article, a number of the cru-
cial steps along the road to successful Java-
Swing test automation have been illuminated.
The issues highlighted, as well as the tool attri-
butes which help us meet the challenges, can-
not be overstated in their importance to a suc-
cessful project-based approach. Good luck…

References
[1] Project-based Test Automation, Testing
Experience, June 2009, www.testingexperi-
ence.com

[2] “Automated Functional Testing for Java-
Swing; A Pattern of Solution”, David Harri-
son, 2009, ISBN (978-1-4092-9068-1) www.
LuLu.com

[3] A Simplified Automation Solution, Using
WATIJ, Steven Troy et al, Testing Experience,
December 2008, www.testingexperience.com

[4] The Record & Playback Fairytale, Koen
Wellens, Testing Experience, December 2008,
www.testingexperience.com

[5] Model-based Test Development and Auto-
mation, Claus Gittinger, Testing Experience,
December 2008, www.testingexperience.com

labelHello_World!

72 The Magazine for Professional Testers www.testingexperience.com

[6] Robot Framework for Test Automation, Marcin Michalak et al, Testing Experience, December 2008, www.testingexperience.com

[7] Boon and Bane of GUI Test Automation, Mark Michaelis, Testing Experience, December 2008, www.testingexperience.com

[8] QFTest Documentation

David Harrison works as an independent software QA/Test Manager – currently at
SwissRe, Zurich, Switzerland within the tools development group. This group has the
mandate to develop and deploy globally reinsurance costing tools to the actuary and
underwriter desktop. David can be contacted via email at dharrison_ch@yahoo.co.uk,
or via his web site www.dexters-defect-dungeon.com
This article is based on material from his book: “Automated Software Testing for Java-
Swing; A Pattern of Solution”, 2009, ISBN (978-1-4092-9068-1) www.LuLu.com

Biography

Figure 11 – Hello World! Name Resolver

